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Abstract—In this article authors present a new method to construct low-rank approximations of
dense huge-size matrices. The method develops mosaic-skeleton method and belongs to kernel-
independent methods. In distinction from a mosaic-skeleton method, the new one utilizes the hier-
archical structure of matrix not only to define matrix block structure but also to calculate factors of
low-rank matrix representation. The new method was applied to numerical calculation of boundary
integral equations that appear from 3D problem of scattering monochromatic electromagnetic wave
by ideal-conducting bodies. The solution of model problem is presented as an example of method
evaluation.
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1. INTRODUCTION

Methods of boundary integral equations are widespread use in problems of electromagnetic wave
scattering. Significant efficiency these methods show in external problems because they require to
build grid only on surfaces of irradiating bodies, so there is no problem of expanding of the grid to fulfill
conditions on infinity. Nevertheless, in problems with complex geometry or with huge electrodynamic
size (the relation of body size to wavelength is big) one have to solve large-scale systems of linear
equations, moreover, matrices of these systems are dense. So for the solution of such kind of
problems special systems with distributed memory are used as well as numerical methods based on
approximations of dense matrices.

Different methods are known to approximate matrices growing while discretization of integral
equations. The most widespread are multipole methods [1, 2]. Their parameters can be tuned
according to problem type. Other methods for approximating large dense matrices utilize pure algebraic
approaches. These methods use function of matrix-element calculation like black-box, so that is why
they called kernel-independent methods.For example, method of mosaic-skeleton [3–5] approximations
is kernel-independent method, as well as method utilising H2 matrices [6–8]. All methods of matrix
approximations allow to construct approximations and to multiply matrix of size N ×N by vector of size
N in O(N log(N)) or even O(N) operations instead of O(N2) operations.

In this article authors present a new method to construct approximations of a large dense matrix.
The presented method is the evolution of mosaic-skeleton method, and so it is kernel-independent. In
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distinction from a mosaic-skeleton method, the new one utilizes a hierarchical structure of matrix not
only to define matrix block structure but also to calculate factors of low-rank matrix representation.

The method was applied to an approximate matrix that appears in the problem of scattering electro-
magnetic wave by the ideal-conducting body with complex geometry. To solve the diffraction problem
with large wave number by the method of integral equations, one should solve the system of linear
equations with a large dense matrix. This task needed utilization of low-rank approximations methods
and supercomputer calculations as well. In distinction with [7] in this method, low-rank approximations
were calculated without iterations. New non-iterative parallel algorithm of matrix approximation is
better scalable than an iterative algorithm of [7].

This article is organized as follows: the electrodynamic problem is described in Section 2, Section 3
includes an overview of the mosaic-skeleton method, Section 4 presents the main ideas of a new method,
Section 5 shows valuable details of a new method, that makes it robust, and in Section 6 the calculation
examples are presented.

2. ELECTRODYNAMICS PROBLEM

Let us consider the problem of monochromatic electromagnetic wave scattering by a perfectly
conducting surface Σ, which can be either closed or open.

A monochrome wave with a frequency ω satisfies the Maxwell equations,

∇× �E = iμμ0ω �H;∇× �H = −iεε0ω �E.

On a perfectly conducting surface the following boundary condition holds,

�n× ( �E0 + �E) = 0,

where �E0 is a given function, defined by the incident wave (we assume that the incident wave is planar),
and �n is a normal vector to the surface.

To find a unique solution it is necessary to pose additional conditions �E ∈ Lloc
2 (Ω) and

d

dτ

⎛
⎝ �E

�H

⎞
⎠− ik

⎛
⎝ �E

�H

⎞
⎠ = o

(
1

|�x|

)
, τ = |�x|, τ → ∞.

The problem can be reduced to the electric field integral equation in the unknown tangential vector
field �j(y) to the surface Σ:

�n×
∫∫

Σ

�j(y)
(

grad divF (x− y) + k2F (x− y)
)
dσy = −�n× �E0(x), x ∈ Σ, (1)

where k = ω
√
εε0μμ0 is the wave number, and

F (R) =
exp (ikR)

R
, R = |x− y|.

In equation (1) the integral can be understood in the sense of the Hadamard finite part.
For the numerical solution of the equation (1) we use a numerical scheme described in [8]. In this

scheme the surface is uniformly divided into cells σi, i = 1, n, and for each cell an orthonormal basis �ei1,
�ei2 is introduced. For each cell σi it is assumed that �ji = �j(xi), where xi is the center of mass of the
cell. Each cell is considered to be planar. Discretization of the integral operator produces a matrix that
consists of 2× 2 blocks:

Aij =

⎛
⎝ �E1j(xi) · �e1i �E2j(xi) · �e1i

�E1j(xi) · �e2i �E2j(xi) · �e2i

⎞
⎠ ,

�E1j(xi) =

∫

∂σj

�Q(xi)(�s,�e2)dl + k2�e1j

∫

σj

exp (ikR)

R
dσ;
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�E2j(xi) = −
∫

∂σj

�Q(xi)(�s,�e1)dl + k2�e2j

∫

σj

exp (ikR)

R
dσ, �Q(x) = ∇y

exp (ik|x− y|)
|x− y| , (2)

where �s is a unit tangent vector to a curve. In (2) the contour and surface integrals are calculated
numerically.

A variation of the algorithm for calculating blocks Aij of matrix A is described in details in papers
[9, 10].

3. MOSAIC-SKELETON METHOD

Let’s apply mosaic-skeleton approximations method [3] to large dense matrix Ā (2) of size N . This
method is based on a hierarchical decomposition of the matrix to blocks. If the block corresponds to
separated domains, then we can construct low-rank approximation for it with algorithm 1 (incomplete
low-rank approximation).

Algorithm 1
The building of low-rank approximation of block Ã of matrix A with predefined precision.
On entrance: Matrix element calculation function A = (aij), size of block m× n, precision ε. On

exit: factors U = (uik) and V = (vjk) in format m× r and n× r respectively with the property that

matrix Ã = UV T is approximation of matrix A minimizing expression ||A− Ã||F , where |||̇|F is some
matrix norm (usually Frobenius norm) (r is rank of created approximation).

1. p := 1; j1 := �n/2�; Ã := 0 initialization: p is iteration index; j1 is initial column;
2. REPEAT;

3. uip := aijp −
p−1∑
k=1

uikvjpk, i = 1, . . . ,m (calculating matrix column and basing on it recurrent

vector up = (uip) in U );
4. ip = max

i
uip (defining recurrent row index ip);

5. vip := aipj −
p−1∑
k=1

uipkvjk, i = 1, . . . , n (calculating matrix row and basing on it recurrent vector

vp = vip in V );
6. jp+1 = max

i
vip (defining column index jp−1 for next iteration);

7. Up =
(
Up−1 up

)
; Vp =

(
Vp−1 vp

)
;

8. p := p+ 1;

9. UNTIL
(√

min{m,n} − (p − 1)
(∣∣∣∣UpV

T
p

∣∣∣∣
F
−

∣∣∣∣Up−1V
T
p−1

∣∣∣∣
F

)
≥ ε

∣∣∣∣UpV
T
p

∣∣∣∣
F

)
AND((p +

r0) < min{m,n});
10. RETURN U := Up; V := Vp.

Algorithm 1 is closely connected with skeleton decomposition [3, 11, 12] of matrix A = UV T . Skele-
ton decomposition is one of the main decompositions in linear algebra and it is based on choosing linear-
independent rows and columns of matrix. Skeleton decomposition for matrix A ∈ C

n×m, rank(A) = r
looks like

A = C̃Â−1R̃, (3)

where matrix C̃ ∈ C
n×r consists of basis columns of matrix A, R̃ ∈ C

r×m—of basis rows, and Â−1—
submatix, consisting of elements placed on interception of chosen rows and columns. In Algorithm
1 besides decomposition factors U and V the indexes of rows I = {ip}, p = 1, . . . , r, and columns
J = {jp}, p = 1, . . . , r, of skeleton decomposition (3) are calculated. According to these index sets
with help of function for calculating matrix element one can calculate matrices C̃ ∈ C

n×r, R̃ ∈ C
r×m

and Â−1 ∈ C
r×r of decomposition (3).
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(a) (b)

(c) (d)

Fig. 1. Cluster tree and block matrix structure: (a) level 1; (b) level 2; (c) level 3; (d) level 4.

Basing on skeleton decomposition (3) Algorithm 1 is interpreted as interpolation algorithm that
thins out the set of row and columns of matrix A, in other words find sets consisting of rows I = {ip},
p = 1, . . . , r, and columns J = {jp}, p = 1, . . . , r, that are enough to approximate the whole matrix with
formula (3). Further we will use formula (3) in following representation

A = CÂR, (4)

where C = C̃Â−1, R = Â−1R̃.
Reliability if approximation (4) calculation increases if algorithm maxvol from [13] is applied after

Algorithm 1.
The description of the parallel method of mosaic-skeleton approximations is published in work [14].

4. HIERARCHICAL BASIS

Let’s construct matrix approximation utilizing hierarchical decomposition of a matrix to calculate
factors of low-rank approximation. Let consider that low-rank approximation for low-level blocks uses
a low-rank approximation of higher-level blocks.

Let’s see the example of approximation construction following one special case of matrix decomposi-
tion to blocks. Fig. 1 represents the correspondence of domain with grid cells centers to cluster tree and
matrix decomposition to blocks. In the example in Fig. 1, there are 4 levels of decomposition, grey color
marks dense blocks, data from other blocks are compressed in low-rank matrix approximation. Figure 2
shows decomposition of matrix on level 3. Basing on this block structure let’s represent the method of
low-rank matrix decomposition calculation with hierarchical basis.

Let A0 ∈ C
N×N is matrix, consisting of elements of dense blocks of matrix Ā, and other elements of

A0 are equal to zero. According to figure 2 matrix A0 consists of small number of non-zero elements,
that means A0 is sparse.

Let’s construct multipliers of low-rank representation of 3rd level. To get row multipliers we divide
matrix so as it is shown in figure 3 (a) (all low-rank block-rows united into one block and consists of all
row elements except blocks of matrix A0). According to Fig. 1 row blocks include data from low-rank
blocks constructed on levels equal or higher than 3. For each row block with the help of Algorithm 1 and
formula (4) we calculate matrices C, which we will represent as L1 p ∈ C

np×r1p , p = 1, . . . , 8, where r1p
is rank of low-rank decomposition in Algorithm 1. Matrix

L1 = diag(L1 1, . . . , L1 8), (5)

we will name row basis of 3 level. Value r1 =
8∑

i=1
t1i we will call row rank of 3 level.

Using the same approach we construct the column blocks (see Fig. 3b), where with Algorithm 1 and
formula (4) matrices R are calculated. These matrices, that we’ll denote as R1 p ∈ C

t1p×mp , p = 1, . . . , 8
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Fig. 2. Block matrix structure on the level 3.

(a) (b)

Fig. 3. United blocks of matrix A for constructing row (a) and column (b) basises.

(t1p is rank of low-rank decomposition of column-block p in Algorithm 1), are members of column basis
of 3rd level,

R1 = diag(R1 1, . . . , R1 8). (6)

Value q1 =
8∑

i=1
r1i we will call column rank of 3rd level.

Let us denote Ã1 ∈ C
r1×q1—matrix, consisting of matrices Â from formula (4) for low-rank blocks,

constructed on levels not lower than 3. In Fig. 4 (a) matrices Â are shown with grey squares in low-rank
blocks. According the our construction process elements of matrix Â are defined by sets of indices of
rows I = {ip} when constructing matrix R1 and columns J = {jp} when constructing matrix L1 with
Algorithm 1. So Algorithm 1 allowed us to approximate matrix A with row and column basises of 3rd
level

A = A0 + L1Ã1R1. (7)

Let’s mark with A1 ∈ C
r1×q1 matrix, which holds elements of matrix Ã1 of low-rank blocks of 3rd

level and other elements are equal to zero (see figure 4 (b)). In matrix Ã1 −A1 we consolidate blocks of
third and second levels. Then using Algorithm 1 for matrix Ã1 −A1 we construct row basis of second
level L2 and column basis of second level R2:

Ã1 = A1 + L2Ã2R2, (8)

following the same way as for matrices L1 and R1 from (7).

Matrix Ã2 ∈ C
r2×q2 is analogical to matrix Ã1 from (7) (see Fig. 5). As Ã2 holds data of all low-rank

blocks of 2nd level lets denote it A2 = Ã2 according to (7) and (8) low-rank representation of A takes
form

A = A0 + L1

(
A1 + L2A2R2

)
R1. (9)

Figure 6 shows scheme of representation of matrices from (9).
Now then, in approximation (9) matrices Lk and Rk, k = 1, 2, define basises and matrices Ak,

k = 1, 2, contains coordinates of initial data in hierarchical basises.
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(a)
R11

L11

L12

L18

R12 R18 (b)

Fig. 4. (a) Blocks of matrices L1, R1 and Ã1; (b) blocks of matrix A1.

Fig. 5. Matrix structure Ã2.

R11

L11

L12

L17

L18

R12

R21 R24

R18R17

L21

L24

Fig. 6. Blocks of matrices A0, L1, R1 A1, L2, R2, A2.

What is the advantage of this low-rank matrix representation of A to mosaic-skeleton representa-
tion? Blocks of matrices L1, R1 are common for both low-rank matrices A of level 3 and level 2, so for
low-rank blocks of level 2 we can keep in memory O(r2) elements instead of O(nr).

5. BASISES CALCULATION

To calculate matrices Lk, Rk, k = 1, . . . , first using Algorithm 1 we calculate sets of indices of
basis rows I = {ip} and basis columns J = {jp}. Then with formula (4) we calculate matrices Lk,
Rk, k = 1, . . . .

If we try to apply Algorithm 1 to row and column blocks represented in Fig. 3 it requires the
calculation of long rows and columns and sequentially to huge expenses in memory and processor time.
To fasten the calculation of indices sets I = {ip} and J = {jp} it is better first to apply mosaic-skeleton
approximations to each low-rank block to define temporal sets of indices Ĩ = {ip} and J̃ = {jp}.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 11 2019
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Table 1. Memory required to store full and compressed matrices (in megabytes)

N 8448 34 122 94 872 167 676 376 800

Full 544 8883 68 670 214 502 1 083 208

MS 190 979 3304 6160 15 210

HB 124 409 756 1390 4330

In mosaic-skeleton method only indices of driving rows and columns are calculated but not factors
themselves. Then we apply Algorithm 1 only to row and column blocks shown in Fig. 3, but for high
dimensionality we look for driving indices only among calculated earlier indices Ĩ = {ip} and J̃ = {jp}.

A parallel algorithm for calculating matrices Lk, Rk is based on the distribution of row and column
blocks of the minimal level to processors. In the example in Fig. 1, minimal level where low-rank blocks
appear is 2. The number of low-rank blocks is equal to 4, so a parallel algorithm for calculating matrices
Lk, Rk easily scales to the number of processes less or equal than 4. If the number of available processors
is more than the number of blocks on a minimal level, then we increase the minimal level basing on the
number of processors. For example, if we have 8 processors, the minimal level, where we construct
low-rank and dense blocks, we choose 3.

The matrices Lk, Rk, Ak, k = 1, . . . , are calculated by Algorithm 2.
Algorithm 2
1. Matrix is divided into blocks with mosaic-skeleton method, blocks are spreaded to processors, for

each block leading rows and columns are calculated;
2. Blocks data including sets of leading rows and columns are copying to all processors;
3. According to algorithm described in this section row and column blocks of the minimal level are

spreaded to processors. If the number of available processors is more than the number of blocks on a
minimal level, then we increase the minimal level basing on the number of processors;

4. Independently on each processor basing on leading rows and columns that were calculated on step
1 we calculate with Algorithms 1, maxvol and formula (4) matrix blocks L1 (R1) of matrix C (R) from (4)
and find sets of basis rows (columns) to calculate blocks of matrices L2 (R2);

5. Applying Algorithm 1, algorithm maxvol and formula (4) to submatrix which rows (columns)
are defined by set of basis rows (columns) found on step 4 and colums (rows) are defined with set of
leading columns (rows), found on step 1, we calculate matrix blocks L2 (R2) and find sets of basis rows
(columns) to calculate blocks of matrices L3 (R3);

6. Repeat step 5 to calculate blocks of matrix Lk (Rk) basing on matrix Lk−1 (Rk−1) data;
7. Send found sets of basis rows and columns between processors and basing on them calculate

blocks of matrices Ak, k = 1, . . . .
Note that constructed algorithm include mosaic-skeleton algorithm (step 1).

6. NUMERICAL EXAMPLES

In this section we apply the presented method to the electrodynamic problem. For example, let’s
consider plane-wave scattering by a perfectly conducting round cylinder with diameter 15 cm and height
25 cm (see Fig. 7).

In Table 1 N is matrix size, in row Full the memory required for full matrix storage is shown, in row
MS is memory required for storage in mosaic-skeleton format, in HB is memory required for matrix
storage in hierarchical basis format. Memory expressed in megabytes. Irradiation frequency is equal to
8 GHz. Approximation accuracy is 10−2.

For the cylinder with 125594 cells and frequency 8 GHz and approximation accuracy 10−2 the results
for scalability are shown in Table 2. In table np is number of processors. In Table 2 are shown coefficients
of acceleration for calculation of matrix in mosaic-skeleton format and hierarchical basis format for
the different number of processors. The calculations were done on Intel Xeon E5-2670v3 2.30 GHz
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Fig. 7. Geometry and grid of the object.
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Fig. 8. RCS, 16 GHz, vertical polarization.

processors of INM RAS cluster (http://cluster2.inm.ras.ru/). We used Intel Fortran Compiler 9.0 for
Linux (9.0.033). The results show that the scalability of HB algorithm is lower.

The scalability of algorithms for HB is lower than of MS algorithm. In fact, Algorithm 1 is done on
the first step of Algorithm 2 and then sequential steps 2 and 7 decrease it scalability.

Unlike the example in Fig. 2 in diffraction problem the blocks of minimal level which are spreaded
among processors have different size so the calculation times of matrices Lk, Rk, k = 1, . . . , on steps
3–6 of Algorithm 2 differ on different processors. This time difference in calculating steps 3–6 influences
the scalability of Algorithm 2.

In diffraction problem the scalability of Algorithm 2 is not an issue because the approximation itself is
times faster than linear system solution. The problem solution first of all needs huge amount of memory
and the number of processors is not of that importance. According to 1 Algorithm 2 better compresses
matrix so it seems to be preferable in solution of diffraction problem than known before algorithm of
mosaic-skeleton approximations.

Table 2. Scalability of different algorithms for low-rank approximations

np 1 2 4 8 16 32 64 128

MS 1 1.91 3.61 7.24 13.38 24.51 41.31 51.84

HB 1 1.88 3.51 7.15 10.26 16.27 23.17 32.86
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Fig. 9. RCS, 64 GHz, horizontal polarization.

In Fig. 8 backscattering RCS for frequency 16GHz is shown. Value σ for different unit vectors �τ of
wave vectors (see Fig. 7) of incident wave was calculated by formula

σ(�τ ) =
4π

| �E0|2

∣∣∣∣∣
n∑

i=1

(
�ji − �τ · (�τ ·�ji)

)
k2 exp (−ik�τ · xi)σi

∣∣∣∣∣
2

.

Figure 8 shows RCSs, got with different methods: experiment (EXP), integral equations (IE),
physical optics (according to [15]) (FO). All results are close to each other.

Straight solution without low-rank approximations allowed to calculate RCS on the cylinder for
frequencies up to 16 GHz on INM RAS cluster. The described method of approximation allowed to
calculate RCSs for frequencies up to 64 GHz (Fig. 9).

So, the presented methods better compress matrix, than known mosaic-skeleton method. The
parallel implementation allowed to find RCS for high frequencies.
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