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1. INTRODUCTION

In this work we consider the evolution of the multi-level system each level of which interacts with
its own bosonic reservoir at zero temperature. For the simplicity we assume that the reservoirs are
similar and the coupling of each level to its reservoir is also similar (the explicit mathematical model
is described in Section 2). The main aim of the work is the comparison of the exact evolution of
the reduced density matrix of the system (obtained by the pseudomode method, see Section 3) with
the approximate evolution defined by master equations which are widespread in the physical literature.
Namely, we consider the Nakajima–Zwanzig equation in the Born approximation, the non-Markovian
Redfield equation and the Markovian Redfield equation. Usually in physical literature equations for
the reduced density matrix are derived in the following way. The initial Liouville–von Neumann (linear
differential) equation is reduced to the Nakajima–Zwanzig (linear integro-differential) equation [1, 2]
(or some equivalent equation obtained by exclusion of reservoirs degrees of freedom). The Nakajima–
Zwanzig is an exact equation for the reduced density matrix. Then the following four assumptions are
subsequently done:

1. Born approximation [3, p. 131], [4, p. 7]. This equation is also integro-differential, which allows
one to consider it as a non-Markovian one [5, 6]. Sometimes this approximation is also called the
Redfield approximation or the second-order approximation [7, p. 249], [8, Subsec. 11.2], [9].

2. Assumption that the reduced density matrix inside the integral could be taken at the same time
as outside, which leads to the non-Markovian Redfield equation [10], [3, p. 132], [11]. Actually,
this approximation is very close to Markovianity but only on the long times.

3. The full Markovian approximation, which leads to the Markovian Redfield equation [12, p. 141],
[3, p. 132] , [4, p. 7].

*E-mail:taemsu@mail.ru

1587



1588 TERETENKOV

4. Secular approximation [3, p. 132], [12, p. 145], which leads to Markovian equations with the
Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) generator [13, 14].

At the same time only the equation obtained after all four assumptions has mathematically strict
justification [15, 16]. And its derivation goes back to [17, 18] and is based on the van Hove–Bogolyubov
scaling [16, Sec. 1.8]. Moreover, only the last equation guarantees positivity and even complete
positivity [13, 14]. At the same time the Redfield equation can violate the positivity, which indeed
could be fixed by applying the slippage-operators to the initial conditions [19–21] or by some other
methods [22]. On the other hand, in physical calculations the Redfield equation without secular
approximation is frequently used [23, 24]. Some advantages of the Redfield equation in comparison with
GKSL equations of the secular approximation are discussed in [25, 26]. For the damped oscillator the
Redfield equation can both be translation invariant and have canonical equilibrium state [27] as opposed
to GKSL equation [28]. If the aim is to take into account the non-Markovian effects, then only Born
approximation is usually done [9]. Thus, it is suggested in physical literature that the equations of the
first one or two approximations could be more accurate than the GKSL equation which needs all four
approximations. So it is natural to study the exactly solvable model to compare its prediction with the
approximate ones.

In Section 2 we present the initial problem for the system and the reservoirs. It is important to
mention that we introduce the Hamiltonian which is already in the rotating wave approximation form.
Hence we leave the discussion of this approximation by itself out of the range of our study. At the same
time, if one derives GKSL equations by the stochastic limit approach, then it is not necessary to assume
this approximation and it is a corollary of the van Hove–Bogolyubov scaling [16].

In Section 3 we present the pseudomode approach and obtain the exact evolution of the reduced
density matrix. This approach was developed in [29–34]. In [35] we have shown that the Friedrichs
model [36] naturally arises as an intermediate step in this approach. In a quite general form the
description of the non-Markovian evolution in the Friedrichs approximation was discussed in [37].

In Sections 4 and 5 we present the Nakajima–Zwanzig equation in Born approximation and the
Redfield equation (both non-Markovian and Markovian) for our special case, accordingly, and solve
them. In our case the Markovian Redfield equation appears to be identical to the one with the secular
approximation.

Finally, in Section 6 we compare the solutions for exact and approximate equations. In Conclusions
we summarize our results and suggest the directions for the further studies.

2. SCHROEDINGER EQUATION FOR SYSTEM AND RESERVOIRS

We consider the evolution in the Hilbert space

H ≡ (C⊕ C
N )⊗

N⊗

i=1

Fb(L2(R)).

Here C⊕ C
N is a (N + 1)-dimensional Hilbert space with a pointed one-dimensional subspace which

corresponds to the degrees of freedom of the (N + 1)-level system. Let |i〉, i = 0, 1, . . . , N be an
orthonormal basis in such a space and |0〉 correspond (be collinear) to the pointed subspace. Fb(L2(R))
are bosonic Fock spaces which describe the reservoirs. There is one reservoir for each excited level of the
system. Let |Ω〉 be a vacuum vector for the reservoirs. Let us also introduce the creation and annihilation
operators which satisfy the canonical commutation relations: [bk,i, b

†
k′,j] = δijδ(k − k′), [bk,i, bk′,j] = 0,

bk,i|Ω〉 = 0.

We consider the system Hamiltonian in the general form

ĤS =
∑

i

εi|i〉〈i| +
∑

i�=j

Jij |i〉〈j| = 0⊕HS, i, j = 1, . . . , N, (1)

without assumption that ĤS is diagonalized in the basis |i〉. From the physical point of view |i〉 plays
the role of local basis [38, 39]. The only restriction is that it is non-zero only in the excited subspace,
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i.e. in the subspace which is an orthogonal complement to the pointed one-dimensional subspace. The
restriction of ĤS to the excited subspace is denoted by HS in formula (1).

The reservoir Hamiltonian is a sum of identical Hamiltonians of free bosonic fields (with the identical
dispersion relation ωk)

ĤB =

N∑

i=1

∫
ωkb

†
k,ibk,idk. (2)

The interaction is described by the following Hamiltonian

ĤI =
∑

i

∫ (
g∗k|0〉〈i| ⊗ b†k,i + gk|i〉〈0| ⊗ bk,i

)
dk, (3)

i.e. each level interacts only with its own reservoir and the functions gk (called the form factors [40]) are
the same for all reservoirs. Let us note that from the physical point of view such a Hamiltonian assumes
that the dipole approximation (the only terms which are linear in creation and annihilation operators
involved in the Hamiltonian) and the rotating wave approximation (the terms of the form |i〉〈0| ⊗ b†k,i are
absent) are justified. The validity of the latter one in a general case is controversial [41, 42], but we do
not discuss this question in our study.

We consider the Schroedinger equation

d

dt
|Ψ(t)〉 = −iĤ|Ψ(t)〉, (4)

with the Hamiltonian Ĥ = ĤS ⊗ I + I ⊗ ĤB + ĤI and the initial condition

|Ψ(0)〉 = (|ψ(0)〉 + ψ0(0)|0〉) ⊗ |Ω〉, 〈0|ψ(0)〉 = 0, (5)

i.e. we assume the initial condition to be completely factorized as in [35]. Thus, non-Markovian effects
related to non-factorized initial state are also out of the range of our study. A quite general approach for
such effects was suggested in [43]. We also assume that the initial state of the system is pure and the
reservoirs are in the vacuum states, i.e. in their Gibbs states at zero temperature.

3. PSEUDOMODE APPROACH AND EXACT EVOLUTION

First of all let us show that 1-particle restriction of the Hamiltonian Ĥ is related to a generalized
Friedrichs model. Let us introduce an injective mapˆ: h → H, where h = C

N ⊕
⊕N

i=1 L2(R) which for
any |ψF 〉 ∈ h of the form

|ψF 〉 = |ψ〉 ⊕
N∑

i=1

∫
dkψk,i|k, i〉,

where ψk,i are from the Schwartz space S(R) and
∫
dk · |k, i〉 is a Fourier transform for each i =

1, . . . ,m, defines |ψ̂F 〉 ∈ H by the formula

|ψ̂F 〉 = |ψ〉 ⊗ |Ω〉+ |0〉 ⊗
N∑

i=1

∫
dkψk,ib

†
k,i|Ω〉.

Such a map we called one-particle second quantization in [35], it is a special realization of the idea to
consider non-composite systems as composite ones suggested in [44–47].

Theorem 1. The solution of the Cauchy problem (4), (5) has the form

|Ψ(t)〉 = ψ0(0)|0〉 ⊗ |Ω〉+ |ψ̂F (t)〉, (6)

where |ψF (t)〉 is a solution of the Cauchy problem for the Friedrichs model:

d

dt
|ψF (t)〉 = −iHF |ψF (t)〉, |ψF (0)〉 = |ψ(0)〉 ⊕ 0, (7)
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where HF = HS ⊕HB +HI , HS is defined by formula (1) and

HB =

N∑

i=1

∫
ωk|k, i〉〈k, i|dk, HI =

N∑

i=1

∫
(g∗k|k, i〉〈i| + gk|i〉〈k, i|) dk.

The proof of this theorem is based on the direct substitution. But the deep reason for the preservation
of 0-particle and 1-particle subspaces consists in the presence of the integral of motion

N̂ =

N∑

i=1

|i〉〈i| ⊗ I + I ⊗
N∑

i=1

∫
b†k,ibk,idk, (8)

which is nothing else but the total number of particles in reservoir and excitations in the system.
This N-level generalized Friedrichs model is close to the one considered in [48], but there was only

one reservoir coupled to all the excited states of the system.
Now we are going to obtain the reduced evolution but for a state vector rather than a density matrix

as it is usually done for the master equation derivation. Let us define the projection P on the linear
subspace C

N in the Hilbert space h and the projection Q = IN − P on the orthogonal complement to
this subspace.

Theorem 2. Let the integral

G(t) =

∫
|gk|2e−iωktdk (9)

converge for all t ∈ R+ and define the continuous function G(t), then |ψ(t)〉 = P |ψF (t)〉 satisfies
the integro-differential equation

d

dt
|ψ(t)〉 = −iHS |ψ(t)〉 −

t∫

0

dsG(t− s)|ψ(s)〉 (10)

with the initial condition |ψ(t)〉|t=0 = |ψ(0)〉, where HS is defined by formula (1).
Proof. Let us prove this theorem by the projection approach to emphasize the closeness of this

approach to the Nakajima–Zwanzig projection one. Let us represent equation (7) as the system
{

d
dtP |ψF (t)〉 = −iPHFP |ψF (t)〉 − iPHFQ|ψF (t)〉,
d
dtQ|ψF (t)〉 = −iQHFP |ψF (t)〉 − iQHFQ|ψF (t)〉.

Let us solve the second equation as a linear differential with respect to Q|ψF (t)〉 considering
−iQHFP |ψF (t)〉 as an inhomogeneity

Q|ψF (t)〉 = e−iQHFQtQ|ψF (0)〉 − i

t∫

0

dse−iQHFQ(t−s)QHFP |ψF (s)〉.

Substituting into the first one we obtain

d

dt
P |ψF (t)〉 = −iPHFP |ψF (t)〉 − iPHFQe−iQHFQtQ|ψF (0)〉

− PHFQ

t∫

0

dse−iQHFQ(t−s)QHFP |ψF (s)〉. (11)

Taking into account

P |ψF (t)〉 = |ψ(t)〉, PHFP = HS, Q|ψF (0)〉 = 0, QHQ = HB,

QHFP =
N∑

i=1

∫
g∗k|k, i〉〈i|dk, PHFQ =

N∑

i=1

gk|i〉〈k, i|dk,
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we have

PHFQe−iQHFQtQHFP =

N∑

i,j=1

∫
dkdk′gkg

∗
k′ |i〉〈k, i|e−iHB t|k′, j〉〈j|

=

N∑

i,j=1

∫
dkdk′gkg

∗
k′ |i〉e−iωktδijδ(k − k′)〈j| = IN

∫
dke−iωkt|gk|2 = G(t)IN .

Substituting into (11) we obtain (10). �

Let us note that the solution of equation (10) with the initial condition |ψ(t)〉|t=0 = |ψ(0)〉 and a
continuous function G(t) exists and is unique [58, Sec. 2.1].

Thus, equation (10) is an analog of the Nakajima–Zwanzig equation but for the state vector. Such
approach is called Feshbach projection approach [49, 50]. Its application to open systems and its
generalization describing completely positive evolution of a reduced density matrix could be found in [51].

In fact, we have already used the pseudomode approach in the interaction picture in [35], but we have
not dwelt on it explicitly. So let us introduce here the equation in the interaction picture in the explicit
form.

Corollary 1. The vector |ψI(t)〉 ≡ eiHSt|ψ(t)〉 satisfies the equation

d

dt
|ψI(t)〉 = −

t∫

0

dsG(t− s)eiHS(t−s)|ψI(s)〉 (12)

with the initial condition|ψI(t)〉|t=0 = |ψ(0)〉.
It is important that |ψ(t)〉 and |ψI(t)〉 unambiguously define the evolution of a reduced density matrix

or of a reduced density matrix in the interaction picture, accordingly.
Lemma 1. The reduced density matrix ρS(t) ≡ trR|Ψ(t)〉〈Ψ(t)|, where trR is a partial trace with

respect to the space
N⊗
i=1

Fb(L2(R)) and |Ψ(t)〉 is defined by formula (6), has the form

ρS(t) = 0⊕ |ψ(t)〉〈ψ(t)| + ψ0(0)
∗|ψ(t)〉〈0| + ψ0(0)|0〉〈ψ(t)| + (1− ||ψ(t)||2)|0〉〈0|

as well as the reduced density matrix in the interaction picture ρSI(t) ≡ eiĤStρS(t)e
−iĤS t has the

form

ρSI(t) = 0⊕ |ψI(t)〉〈ψI(t)|+ ψ∗
0(0)|ψI (t)〉〈0| + ψ0(0)|0〉〈ψI (t)|+ (1− ||ψI(t)||2)|0〉〈0|. (13)

This lemma could be proved by direct calculation (see also discussion in [35, Sec. 4]).
In this paper we focus on the case, when G(t) has the special form

G(t) = g2e−
γ
2
|t|−iεt, γ > 0, g > 0, ε ∈ R, (14)

although the approach presented below could be immediately generalized to the case of the combination

of exponentials G(t) =
∑

j g
2
j e

− γj
2
|t|−iεjt (see [35]). In physics usually the spectral density J (ω) [31]

defined by

G(t) =

+∞∫

−∞

dω

2π
e−iωtJ (ω), J (ω) =

+∞∫

−∞

G(t)eiωtdt

rather than the function G(t) is given from the experimental data. In our case, when G(t) has form (14),
we have

J (ω) =
γg2

(γ
2

)2
+ (ω − ε)2

, (15)

i.e. nothing else but Lorentzian spectral density.
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Theorem 3. Let |ψ(t)〉 be a solution of (10) with the initial condition |ψ(t)〉|t=0 = |ψ(0)〉 in the
case, when G(t) has form (14), then |ψ̃(t)〉 ≡ |ψ(t)〉 ⊕ |ϕ(t)〉 ∈ C

N ⊕ C
N , where

|ϕ(t)〉 ≡ −ig

t∫

0

dse−(
γ
2
+iε)(t−s)|ψ(s)〉, (16)

satisfies the Schroedinger equation with a non-Hermitian (dissipative) Hamiltonian

d

dt
|ψ̃(t)〉 = −iHeff|ψ̃(t)〉, Heff =

⎛

⎝HS gIN

gIN
(
ε− iγ2

)
IN

⎞

⎠ (17)

with the initial condition |ψ̃(t)〉 = |ψ(0)〉 ⊕ 0.
Proof. Substituting (14) in (10) and taking into account (16) we obtain

d

dt
|ψ(t)〉 = −iHS|ψ(t)〉 − ig|ϕ(t)〉

and differentiating (16) with respect to t we have

d

dt
|ϕ(t)〉 = −ig|ψ(t)〉 −

(γ
2
+ iε

)
|ϕ(t)〉.

By combining these two ordinary differential equations into one for the vector |ψ̃(t)〉 = |ψ(t)〉 ⊕ |ϕ(t)〉
we obtain (17). �

Actually, the non-Hermitian part of Heff is very close to the optical potential concept from the nuclear
physics [52, 53].

Corollary 2. The vector |ψ̃I(t)〉 ≡ |ψI(t)〉 ⊕ eiHSt|ϕ(t)〉 satisfies the equation

d

dt
|ψ̃(t)〉 = −iHI,eff|ψ̃(t)〉, HI,eff =

⎛

⎝ 0 gIN

gIN −HS +
(
ε− iγ2

)
IN

⎞

⎠ (18)

with the initial condition |ψ̃I(t)〉 = |ψ(0)〉 ⊕ 0.
Equation (18) could be solved in the global basis, i.e. the eigenbasis of HS [38, 39]. We will numerate

the global basis by the Greek letters:

|i〉 =
N∑

α=1

Uiα|α〉, HS =

N∑

α=1

Eα|α〉〈α|.

We also define the energy detunings

ΔEα ≡ Eα − ε.

Corollary 3. Let us decompose |ψI(t)〉 =
∑N

α=1 ψα(t)|α〉, eiHSt|ϕ(t)〉 =
∑N

α=1 ϕα(t)|α〉, then the
coefficients of the decomposition satisfy the systems of equations

d

dt

⎛

⎝ψα(t)

ϕα(t)

⎞

⎠ =

⎛

⎝ 0 −ig

−ig iΔEα − γ
2

⎞

⎠

⎛

⎝ψα(t)

ϕα(t)

⎞

⎠ , α = 1, . . . , N.

The eigenvalues of the matrix −iHI,eff equal

λexact
α,± = −1

2

(γ
2
− iΔEα

)
± 1

2

√(γ
2

)2
−ΔE2

α + 4g2 − iγΔEα, α = 1, . . . , N.

We are interested in the population decay rates and the decoherence rates. They are defined by the
real parts of the eigenvalues

Reλexact
α,±
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= −γ

4
±

√
2

4

√√√√(γ
2

)2
− 4g2 −ΔE2

α +

√((γ
2
+ 2g

)2
+ΔE2

α

)((γ
2
− 2g

)2
+ΔE2

α

)
. (19)

The population decay rates in the global basis are characterized by the minimal absolute value of these
eigenvalues

ηexact
α = −2Reλexact

α,+ , (20)

as well as the decoherence rates are characterized by

ηexact
αβ = −Reλexact

α,+ − Reλexact
β,+ , ηexact

α0 = −Reλexact
α,+ . (21)

At the end of this section let us concentrate on the fact that equation (17) is equivalent to a GKSL
equation for a density matrix in the (2N + 1)-dimensional space.

Theorem 4. The (2N + 1) by (2N + 1) matrix

ρ̃(t) ≡ 0⊕ |ψ̃(t)〉〈ψ̃(t)|+ ψ0(0)|0〉〈ψ̃(t)|+ ψ0(0)|ψ̃(t)〉〈0| + (1− ||ψ̃(t)||2)|0〉〈0| ∈ C
(2N+1)×(2N+1)

satisfies the GKSL equation

d

dt
ρ̃(t) = −i[H, ρ̃(t)] +

N∑

l=1

(
Llρ̃L

†
l −

1

2
L†
lLlρ̃−

1

2
ρ̃L†

lLl

)
, H = 0⊕ 1

2
(H†

eff +Heff), Ll = |0〉〈l̃|,

where |0〉, |1〉, . . . , |N〉, |1̃〉, . . . , |Ñ 〉 is the basis of C2N+1.
The proof of this theorem could be found in [35, Proposition 1]. Thus, we have built up the GKSL

description of the non-Markovian evolution of the reduced density matrix at the cost of introduction of
additional degrees of freedom (see recent discussion in [35, 54]). This GKSL equation (similar to the
Friedrichs model) could be considered as a one-particle restriction of models in larger Hilbert spaces.
For example, multi-level generalizations of the Jaynes–Cummings model with dissipation [55] could be
considered in such a way.

4. NAKAJIMA–ZWANZIG EQUATION IN BORN APPROXIMATION

The Nakajima–Zwanzig equation in the Born approximation [3, p. 131], [56, p. 9] at zero temperature
(the state of the reservoir is |Ω〉〈Ω|)

d

dt
ρSI(t) = −

t∫

0

dsTrB[ĤI(t), [ĤI(s), ρSI(s)⊗ |Ω〉〈Ω|]], (22)

where ĤI(t) is the iteration Hamiltonian in the interaction picture, i.e.

ĤI(t) ≡ ei(ĤS⊗I+I⊗ĤB)tĤIe
−i(ĤS⊗I+I⊗ĤB)t. (23)

In our case ĤS , ĤB, ĤI are defined by formulae (1), (2) and (3). This equation could be obtained in
the second order of the perturbation theory with respect to coupling constant between a system and a
reservoir [3, Subsec. 9.1.1], [57].

Lemma 2. The interaction Hamiltonian (23) has the form

ĤI(t) =
∑

i,α

(
|0〉〈α| ⊗ b†α,i(t) + |α〉〈0| ⊗ bα,i(t)

)
, (24)

where

bα,i(t) ≡
∫

Uiαgke
−i(ωk−Eα)tbk,idk. (25)

Moreover, bα,i(t)|Ω〉 = 0 and the following commutation relations are held

[bα,i(t), b
†
β,j(s)] = δijUiαU

∗
iβG(t− s)ei(Eαt−Eβs), [bα,i(t), bβ,j(s)] = 0, (26)
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where G(t) is defined by (9).
Proof. Let us represent the interaction Hamiltonian in the global basis

ĤI =
∑

i,α

∫ (
g∗kU

∗
iα|0〉〈α| ⊗ b†k,i + Uiαgk|α〉〈0| ⊗ bk,i

)
dk, i, α = 1, . . . , N.

Taking into account eiĤSt|α〉〈0|e−iĤS t = eiEαt|α〉〈0| and eiĤBtbk,ie
−iĤBt = e−iωktbk,i we obtain

ĤI(t) =
∑

i,α

∫ (
g∗kU

∗
iαe

i(ωk−Eα)t|0〉〈α| ⊗ b†k,i + Uiαgke
−i(ωk−Eα)t|α〉〈0| ⊗ bk,i

)
dk.

Thus, we obtain (24), bα,i(t)|Ω〉 = 0 and the second of commutation relations (26) follows from
definition (25) of bα,i(t) which is a linear combination of annihilation operators. Let us calculate

[bα,i(t), b
†
β,j(s)] =

[∫
Uiαgke

−i(ωk−Eα)tbk,idk,

∫
U∗
jβg

∗
pe

−i(ωp−Eβ)sb†p,jdp

]

=

∫ ∫
dkdpUiαgke

−i(ωk−Eα)tU∗
jβg

∗
pe

−i(ωp−Eβ)s[bk,i, b
†
p,j ]

=

∫ ∫
dkdpUiαgke

−i(ωk−Eα)tU∗
jβg

∗
pe

i(ωp−Eβ)sδijδ(k − p)

= δij

∫
dkUiαU

∗
iβ|gk|2e−i(ωk−Eα)tei(ωk−Eβ)s = δijUiαU

∗
iβG(t− s)ei(Eαt−Eβs).

Thus, we obtain the first of commutation relations (26). �

Lemma 3. In our case, i.e., when ĤI(t) is defined by formula (24), equation (22) takes the
form

d

dt
ρSI(t) =

t∫

0

dsG(t− s)
(
|0〉〈0|Tr(ΠeiĤS (t−s)ρSI(s))−ΠeiĤS(t−s)ρSI(s)

)

+

t∫

0

dsG∗(t− s)
(
|0〉〈0|Tr(ρSI(s)e−iĤS(t−s)Π)− ρSI(s)e

−iĤS(t−s)Π
)
, (27)

where the projection

Π =

N∑

i=1

|i〉〈i| = IN+1 − |0〉〈0| = 0⊕ IN (28)

is introduced.
Proof. Let us expand the following expression

TrB [HI(t), [HI(s), ρSI(s)⊗ |Ω〉〈Ω|]]
= 〈Ω|HI(t)HI(s)|Ω〉ρSI(s) + ρSI(s)〈Ω|HI(s)HI(t)|Ω〉

− TrBHI(t)|Ω〉ρSI(s)〈Ω|HI(s)− TrBHI(s)|Ω〉ρSI(s)〈Ω|HI(t) (29)

Thus, only two terms could be calculated, the other two could be obtained by interchange of t and s. By
Lemma 2 we obtain

〈Ω|HI(t)HI(s)|Ω〉ρSI(s) =
∑

i,α,β

|α〉〈β|UiαU
∗
iβG(t− s)ei(Eαt−Eβs)ρSI(s)

= eiĤSt
∑

i,α,β

|α〉〈β|UiαU
∗
iβG(t− s)e−iĤSsρSI(s)

= eiĤSt
∑

i

|i〉〈i|G(t − s)e−iĤSsρSI(s) = ΠeiĤS(t−s)ρSI(s)
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and

TrBHI(t)|Ω〉ρSI(s)〈Ω|HI(s)

= TrB
∑

ij,αβ

(
|0〉〈α| ⊗ b†α,i(t) + |α〉〈0| ⊗ bα,i(t)

)
|Ω〉ρSI(s)〈Ω|

(
|0〉〈β| ⊗ b†β,j(s) + |β〉〈0| ⊗ bβ,j(s)

)

= TrB
∑

ij,αβ

|0〉〈α| ⊗ b†α,i(t)|Ω〉ρSI(s)〈Ω||β〉〈0| ⊗ bβ,j(s)

=
∑

i,α,β

|0〉〈α|ρSI (s)|β〉〈0|U∗
iαUiβG(s− t)e−i(Eαt−Eβs)

=
∑

i,α,β

U∗
iαUiβ |0〉〈α|e−iĤS tρ(s)eiĤSs|β〉〈0|G(s − t)

=
∑

i

|0〉〈i|e−iĤS tρ(s)eiĤSs|i〉〈0|G(s − t)

= G∗(t− s)|0〉〈0|Tr(Πe−iĤStρ(s)eiĤSs) = G∗(t− s)|0〉〈0|Tr(Πe−iĤS(t−s)ρ(s)),

where [Π, ĤS ] = [0⊕ IN , 0⊕HS] = 0 is used. By substituting the obtained expressions into (29) and
then into (22) we obtain (27). �

Equation (27) has a convolution form and, hence, could be solved by means of Laplace transform [58,
p. 30]. This convolution form is preserved in the Schroedinger picture:

d

dt
ρS(t) = −i[ĤS , ρ(t)] +

t∫

0

dsG(t− s)
(
|0〉〈0|Tr(ΠρS(s)eiĤS(t−s))−ΠρS(s)e

iĤS(t−s)
)

+

t∫

0

dsG∗(t− s)
(
|0〉〈0|Tr(e−iĤS(t−s)ρS(s)Π)− e−iĤS(t−s)ρS(s)Π

)
.

Lemma 4. The solution of equation (27) could be represented in the form

ρSI(t) = ρ00(t)|0〉〈0| + ψ0(0)|ψI (t)〉〈0| + ψ0(0)|0〉〈ψI (t)|+ 0⊕ σ(t),

σ(t) =
N∑

i,j=1

ρij(t)|i〉〈j|, (30)

where the vector-valued function |ψI(t)〉 satisfies equation (12) with the initial condition
|ψI(t)〉|t=0 = |ψ(0)〉, the matrix-valued function σ(t) satisfies the equation

d

dt
σ(t) = −

t∫

0

dsG(t− s)eiHS(t−s)σ(s)−
t∫

0

dsG∗(t− s)σ(s)e−iHS (t−s) (31)

and the scalar function ρ00(t) could be defined from the normalization condition ρ00(t) = 1−
Trσ(t).

Thus, without additional assumptions about function G(t) we obtain that the coherences between
excited and ground state of the system (defined by the vector |ψI(t)〉) coincide for exact (13) and
approximate (30) solutions.

Now let us consider the special case, when the function G(t) is defined by formula (14). Similar
to the solution of equation (12) for |ψI(t)〉 (see theorem 3) one could use a similar technique to solve
equation (31). This technique is also very close to auxiliary density matrices method developed in
[59, 60].
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Lemma 5. Let σ(t) satisfy equation (31), G(t) have form (14) and

X(t) ≡ −ig

t∫

0

dse−(
γ
2
+iε−iHS)(t−s)σ(s),

then σ(t) and X(t) satisfy the system of linear matrix equations with constant coefficients
{

d
dtσ(t) = −igX(t) + igX†(t),
d
dtX(t) = −

(γ
2 − i(HS − ε)

)
X(t)− igσ(t).

(32)

As well as for the case of equations (18) it is natural to solve this system in the global basis.
Corollary 4. If one decomposes σ(t) and X(t) in the global basis σ(t) =

∑
αβ σαβ(t)|α〉〈β|,

X(t) =
∑

αβ Xαβ(t)|α〉〈β|, then the coefficients of the decomposition satisfy the systems

d

dt

⎛

⎜⎜⎜⎝

σαβ(t)

Xαβ(t)

−X∗
βα(t)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

0 −ig −ig

−ig −γ
2 − iΔEα 0

−ig 0 −γ
2 + iΔEβ

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

σαβ(t)

Xαβ(t)

−X∗
βα(t)

⎞

⎟⎟⎟⎠ , α, β = 1, . . . , N.

So the solution of system (32) is reduced to the calculation of 3× 3-matrix exponential. Hence,
the evolution is defined by the eigenvalues of such a matrix which could be expressed as zeros of the
characteristic polynomial

fαβ(λ) = λ3 + (γ + i(ΔEβ −ΔEα))λ
2 +

((γ
2

)2
+ i

γ

2
(ΔEβ −ΔEα) + 2g2 +ΔEαΔEβ

)
λ

+ g2(γ + i(ΔEβ −ΔEα)).

Namely,

ηαβ ≡ min
fαβ(λ)=0

|Reλ|. (33)

In particular the population decay rate in the global basis is defined by zeros of the characteristic
polynomial

fα(λ) ≡ fαα(λ) = λ3 + γλ2 +

((γ
2

)2
+ 2g2 +ΔE2

α

)
λ+ g2γ (34)

with real coefficients. Namely,

ηα ≡ ηαα = min
fα(λ)=0

|Reλ|. (35)

5. REDFIELD EQUATION
In physical literature [3, p. 132], [12, p. 141] the following equation is frequently used:

d

dt
ρSI(t) = −

t∫

0

dsTrB [ĤI(t), [ĤI(s), ρSI(t)⊗ |Ω〉〈Ω|]] (36)

which is called the (non-Markovian) Redfield master equation [10]. In (36) we have taken into account
zero temperature of the reservoirs. This equation differs from equation (22) by the fact that ρSI inside the
integral is a function of t rather than s. Thus, equation (36) has a time-local generator but this generator
is time-dependent. Moreover, at t = 0 the integral in the left hand side of (22) vanishes, which leads to
zero population and coherence decay rates at t = 0.

After the full Markovian approximation [3, p. 132], [12, p. 145] Redfield equation (36) takes the form

d

dt
ρSI(t) = −

+∞∫

0

dsTrB[ĤI(t), [ĤI(t− s), ρSI(t)⊗ |Ω〉〈Ω|]] (37)
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which we call the Markovian–Redfield master equation.

Lemma 6. In our case, i.e., when ĤI(t) is defined by (24), equation (36) takes the form

d

dt
ρSI(t) =

t∫

0

dsG(t− s)
(
|0〉〈0|Tr(ΠeiĤS (t−s)ρSI(t))−ΠeiĤS(t−s)ρSI(t)

)

+

t∫

0

dsG∗(t− s)
(
|0〉〈0|Tr(ρSI(t)e−iĤS(t−s)Π)− ρSI(t)e

−iĤS (t−s)Π
)

(38)

and equation (37) takes the form

d

dt
ρSI(t) =

+∞∫

0

dsG(s)
(
|0〉〈0|Tr(ΠeiĤSsρSI(t))−ΠeiĤSsρSI(t)

)

+

+∞∫

0

dsG∗(s)
(
|0〉〈0|Tr(ρSI(t)e

−iĤSsΠ)− ρSI(t)e
−iĤSsΠ

)
, (39)

where the projection Π is defined by formula (28).
The proof of this lemma is analogous to the proof of lemma 3.
Corollary 5. Let G(t) be defined by (14), γ > 0 and

Ŷ (t) ≡ Π
g2

γ
2 − i(ĤS − ε)

(
1− e−(

γ
2
−i(ĤS−ε))t

)
, (40)

then equation (38) takes the form

d

dt
ρSI(t) = |0〉〈0|Tr(Ŷ (t)ρSI(t)) − Ŷ (t)ρSI(t) + |0〉〈0|Tr(ρSI(t)Ŷ †(t))− ρSI(t)Ŷ

†(t) (41)

and equation (39) takes the form

d

dt
ρSI(t) = |0〉〈0|Tr((Ŷ (+∞) + Ŷ †(+∞)))ρSI(t))− Ŷ (+∞)ρSI(t)− ρSI(t)Ŷ

†(+∞)), (42)

where

Ŷ (+∞) = Π
g2

γ
2 − i(ĤS − ε)

= γ−1J (ĤS)
(γ
2
I + i(ĤS − εI)

)
.

Proof. Actually, in general, (38) could be represented in form (41) with

Ŷ (t) = Π

t∫

0

dsG(t− s)eiĤS(t−s).

In our case, when G(t) is defined by (14), integration with respect to s leads to (40). In the case of (42)
one would integrate to infinity and obtain (42). �

In particular, equation (39) has a time-independent generator, i.e. non-secular terms do not appear
and it is already in the secular approximation. Actually, this is a result of the rotating wave approximation
in initial interaction Hamiltonian (3). One could show [3, p. 136] that in general the Redfield equation in
the secular approximation has the GKSL form, but let us present the GKSL form for special case (42)
explicitly:

d

dt
ρSI(t) = −i[γ−1J (ĤS)(ĤS − εI), ρSI(t)] +

∑

α

J (Eα)

(
|0〉〈α|ρSI (t)|α〉〈0| −

1

2
{|0〉〈α|, ρSI (t)}

)
,

where the braces denote the anticommutator {A,B} ≡ AB +BA.
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Let us note that similarly to ĤS the matrix Ŷ (t) defined by (40) is supported on the subspace C
N of

C⊕ C
N , i.e. Ŷ (t) = 0⊕ Y (t).

Corollary 6. Equation (41) has a solution of form (30), where the vector-valued function
|ψI(t)〉 is the solution of the Cauchy problem

d

dt
|ψI(t)〉 = −Y (t)|ψI(t)〉, |ψI(0)〉 = |ψ(0)〉 (43)

and the matrix-valued function σ(t) is a solution of the Cauchy problem

d

dt
σ(t) = −Y (t)σ(t)− σ(t)Y †(t), σ(0) = |ψ(0)〉〈ψ(0)|. (44)

Analogously, equation (42) has a solution of form (30), where the vector-valued function |ψI(t)〉
is a solution of the Cauchy problem

d

dt
|ψI(t)〉 = −Y (+∞)|ψI(t)〉, |ψI(0)〉 = |ψ(0)〉, (45)

and the matrix-valued function σ(t) is a solution of the Cauchy problem

d

dt
σ(t) = −Y (+∞)σ(t)− σ(t)Y †(+∞), σ(0) = |ψ(0)〉〈ψ(0)|. (46)

Corollary 7. If one decomposes |ψ(t)〉 and σ(t) in the global basis |ψI(t)〉 =
∑

α ψα(t)|α〉, σ(t) =∑
αβ σαβ(t)|α〉〈β|, then Cauchy problems (43), (44) take the form

d

dt
ψα(t) = −Yα(t)ψα(t), ψα(0) = 〈α|ψ(0)〉, (47)

d

dt
σαβ(t) = −(Yα(t) + Y ∗

β (t))σαβ(t), σαβ(0) = ψ∗
α(0)ψβ(0), (48)

accordingly, and Cauchy problems (45), (46) take the form

d

dt
ψα(t) = −Yα(+∞)ψα(t), ψα(0) = 〈α|ψ(0)〉,

d

dt
σαβ(t) = −(Yα(+∞) + Y ∗

β (+∞))σαβ(t), σαβ(0) = ψ∗
α(0)ψβ(0),

accordingly, where

Yα(t) ≡ Yα(+∞)
(
1− e−(

γ
2
−iΔEα)t

)
, Yα(+∞) ≡ γ−1J (Eα)

(γ
2
+ iΔEα

)
,

and the function J (ω) is defined by formula (15).
Similar to (20) it is natural to define the decoherence rates between excited and ground states of the

system by

ηR
α0(t) ≡ ReYα(t) = γ−1J (Eα)

(γ
2

(
1− e−

γ
2
t cos(ΔEαt)

)
+ (Eα − ε)e−

γ
2
t sin(ΔEαt)

)

and they are time-dependent. The population decay rates and the decoherence rates should be defined
as follows

ηR
α (t) ≡ 2ReYα(t), ηR

αβ(t) ≡ ReYα(t) + ReYβ(t). (49)

At the large time t → +∞ the rates predicted by the Redfield equation approach the rates predicted by
the Redfield equation in the secular approximation

ηGKSL
α0 ≡ ReYα(+∞) =

1

2
J (Eα) =

γ

2

g2
(γ
2

)2
+ΔE2

α

, ηGKSL
αβ ≡ ReYα(+∞) + ReYβ(+∞), (50)

ηGKSL
α ≡ 2ReYα(+∞). (51)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 10 2019



NON-MARKOVIAN EVOLUTION 1599

Although, for the purposes of our article just the population decay rates and the decoherence rates
are needed, one could obtain the explicit expression for the populations and coherences. Therefore let us
state the following lemma.

Lemma 7. The solutions of Cauchy problems (47) and (48) have the form

ψα(t) = ψα(0) exp

(
−γ−1J (Eα)

(γ
2
+ iΔEα

)(
t− 1− e−(

γ
2
−iΔEα)t

γ
2 − iΔEα

))
, σαβ(t) = ψα(t)ψβ(t),

respectively.
To prove that one should directly integrate (47) and (48). Let us note that this integration with respect

to time could be regarded as an analog of time-deformation [61], but it depends on the global basis.

6. COMPARISON

First of all let us compare decoherence rates between excited and ground states for different equations
mentioned in the previous sections.

Theorem 5. Let ηexact
α0 (γ,ΔEα, g), ηB

α0(γ,ΔEα, g) and ηGKSL
α0 (γ,ΔEα, g) be the real-valued

functions defined for γ > 0, g > 0,ΔEα ∈ R by (21), (33) and (50), respectively, then

ηexact
α0 (γ,ΔEα, g) = ηB

α0(γ,ΔEα, g), (52)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηexact
α0 (γ,ΔEα, g) < ηGKSL

α0 (γ,ΔEα, g), F1

(
ΔE2

α
g2 , γ

2

g2

)
> 0 or γ <

√
8g,

ηexact
α0 (γ,ΔEα, g) = ηGKSL

α0 (γ,ΔEα, g), F1

(
ΔE2

α
g2

, γ
2

g2

)
= 0, and γ �

√
8g,

ηexact
α0 (γ,ΔEα, g) > ηGKSL

α0 (γ,ΔEα, g), F1

(
ΔE2

α
g2

, γ
2

g2

)
< 0 and γ >

√
8g,

(53)

where

F1(u, v) = −24576u3v − 10240u2v2 + 32768u2v − 512uv3 + 128v4 − 2048v3 + 8192v2. (54)

The proof of (52) follows immediately from lemma 4 and the discussion after that. The proof of (53) is
based on the direct comparison of (21) and (50) for the ground-excited case.

Corollary 8. Let ηR
α0(γ,ΔEα, g, t

∗) be defined by (49) for γ > 0, g > 0,ΔEα ∈ R, t � 0 and
ηexact
α0 (γ,ΔEα, g) be defined by (21) for γ > 0, g > 0,ΔEα ∈ R. Let F1(u, v) be defined by (54).

If F1

(
ΔE2

α
g2

, γ
2

g2

)
> 0, then there exists t∗ ∈ R (may be not unique) such that ηR

α0(γ,ΔEα, g, t
∗) =

ηexact
α0 (γ,ΔEα, g).

The proof follows from the fact that ηR
α0(t) run over all the points from [0, ηGKSL

α0 ] (but may be not only
them) and Theorem 5.

Now we are going to compare the population decay rates of excited states for different equations
mentioned in previous sections. For that we need a technical lemma based on Routh–Hurwitz criterion.

Lemma 8. Let x ∈ R, then the roots of the cubic polynomial

f(λ) = λ3 + a1λ
2 + a2λ+ a3 (55)

lie in the half-plane Reλ < x if and only if

a1 > −3x, (a1 + 3x)(a2 + 2a1x+ 3x2) > a3 + a2x+ a1x
2 + x3 > 0. (56)

Proof. Let us substitute λ = λ̃+ x, where x ∈ R, into (55)

f(λ̃+ x) = λ̃3 + (a1 + 3x)λ̃2 + (a2 + 2a1x+ 3x2)λ̃+ (a3 + a2x+ a1x
2 + x3).

Applying the Routh–Hurwitz criterion [62, p. 194] (in the particular case of a cubic equation it is also
called the Vyshnegradsky criterion [63, p. 37]) to this polynomial in λ̃ we obtain: Reλ̃ < 0, i.e. Reλ < x,
if and only if (56) are satisfied. �
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Theorem 6. Let ηexact
α (γ,ΔEα, g), ηB

α(γ,ΔEα, g) and ηGKSL
α (γ,ΔEα, g) be the real-valued

functions defined for γ > 0, g > 0,ΔEα ∈ R by (20), (35) and (51), respectively, then
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηexact
α (γ,ΔEα, g) < ηB

α(γ,ΔEα, g), F2

(
ΔE2

α
g2 , γ

2

g2

)
> 0,

ηexact
α (γ,ΔEα, g) = ηB

α(γ,ΔEα, g), F2

(
ΔE2

α
g2

, γ
2

g2

)
= 0,

ηexact
α (γ,ΔEα, g) > ηB

α(γ,ΔEα, g), F2

(
ΔE2

α
g2

, γ
2

g2

)
< 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ηexact
α (γ,ΔEα, g) < ηGKSL

α (γ,ΔEα, g), F1

(
ΔE2

α
g2

, γ
2

g2

)
> 0or γ <

√
8g,

ηexact
α (γ,ΔEα, g) = ηGKSL

α (γ,ΔEα, g), F1

(
ΔE2

α
g2 , γ

2

g2

)
= 0,

ηexact
α (γ,ΔEα, g) > ηGKSL

α (γ,ΔEα, g), F1

(
ΔE2

α
g2

, γ
2

g2

)
< 0and γ >

√
8g,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ηB
α(γ,ΔEα, g) < ηGKSL

α (γ,ΔEα, g), F3

(
ΔE2

α
g2

, γ
2

g2

)
> 0and F4

(
ΔE2

α
g2

, γ
2

g2

)
> 0,

ηB
α(γ,ΔEα, g) = ηGKSL

α (γ,ΔEα, g), F3

(
ΔE2

α
g2

, γ
2

g2

)
= 0, |ΔEα| �

√
3
2 gor

F4

(
ΔE2

α
g2

, γ
2

g2

)
= 0, |ΔEα| >

√
3
2 g,

ηB
α(γ,ΔEα, g) > ηGKSL

α (γ,ΔEα, g), F3

(
ΔE2

α
g2

, γ
2

g2

)
< 0 or F4

(
ΔE2

α
g2

, γ
2

g2

)
< 0,

where

F2(u, v) = 2304u5 + 6400u4v + 30720u4 + 2912u3v2 + 40448u3v + 143104u3 + 400u2v3

− 10112u2v2 + 35264u2v + 256000u2 + 9uv4 − 480uv3 + 9232uv2 − 67584uv

+ 64512u + 36v3 − 1920v2 + 33984v − 200704, (57)

F3(u, v) = 256u4 + 256u3v − 256u3 + 96u2v2 − 704u2v − 1024u2 + 16uv3

− 304uv2 + 1536uv + v4 − 36v3 + 448v2 − 2048v, (58)

F4(u, v) = −16u2 − 8v + v2, (59)

and F1(u, v) is defined by formula (54).

Proof. 1) To compare ηexact
α and ηB

α let us apply lemma 8 to the equation fα(λ) = 0, where fα(λ) is
defined by formula (34), i.e.

a1 = γ, a2 =
(γ
2

)2
+ 2g2 +ΔE2

α, a3 = g2γ,

and let x = Reλexact
α,± which is defined by (19). The third of inequalities (56) appears to be satisfied without

further assumptions and the first one follows from the second one. Thus, only the second inequality has
to be satisfied. It takes the form

F2

(
ΔE2

α

g2
,
γ2

g2

)
> 0,

where the function F2(u, v) is defined by formula (57).

2) The comparison of ηexact
α = 2ηexact

α0 and ηGKSL
α = 2ηGKSL

α0 is equivalent to the comparison of ηexact
α0

and ηGKSL
α0 , which was done in theorem 5.

3) The comparison of ηGKSL
α and ηB

α is similar to the first one. The only distinction is that one should
assume x = −ηGKSL

α0 , then functions (58) and (59) occur from lemma 8. �

The results of Theorems 5 and 6 are presented in Fig. 1. The following feature should be noted.
Corollary 9. There are only two points of the half-plane γ/g > 0, ΔEα/g ∈ R such that

ηexact
α (γ,ΔEα, g) = ηB

α(γ,ΔEα, g) = ηGKSL
α (γ,ΔEα, g).

These points are approximately ΔEα/g ≈ ±0.55, γ/g ≈ 3.55.
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Fig. 1. The following inequalities for the population decay rates predicted by different equations are held in the
regions denoted by Roman numerals (boundaries are not included). I: ηexact

α > ηGKSL
α > ηB

α, II: ηexact
α > ηB

α > ηGKSL
α ,

III: ηGKSL
α > ηexact

α > ηB
α, IV: ηB

α > ηexact
α > ηGKSL

α , V: ηGKSL
α > ηB

α > ηexact
α , VI: ηB

α > ηGKSL
α > ηexact

α . The inequalities
for the excited-ground coherences are: I, II, IV: ηexact

α0 = ηB
α0 < ηGKSL

α0 , III, V, VI: ηexact
α0 = ηB

α0 > ηGKSL
α0 .
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Fig. 2. The regions, where the following inequalities are held, are filled: |ηexact
α − ηB

α| < 0.15ηexact
α (left), |ηexact

α −
ηGKSL
α | < 0.15ηexact

α (right).

If one wants to have simpler conditions for the comparison of ηexact
α and ηB

α than defined by (57), then
one could use the following proposition.

Corollary 10. If γ >
√

64/3g ≈ 4.62g or |ΔEα| >
√

1
3

(
−4 +

3
√
44− 3

√
177 +

3
√
44 + 3

√
177
)
g ≈

0.81g, then ηexact
α (γ,ΔEα, g) < ηB

α(γ,ΔEα, g). If γ � 3
√
2g2 − 4ΔE2

α, then ηexact
α (γ,ΔEα, g) > ηB

α(γ,ΔEα, g).
Fig. 1 shows, where one population decay rates are greater than other ones, but it does not show how close

they are. So we have done it numerically in Fig. 2. One could see that ηB
α is close to ηexact

α not only near the
curve ηB

α = ηexact
α but also for scientifically small g. The region, where ηB

α is close to ηGKSL
α , is also wide and not
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concentrated only near the curve ηB
α = ηGKSL

α . Interestingly the second region is not even close to be a subset
of the first one, so there are areas of parameters when GKSL equations could provide the better fit than the
non-Markovian Nakajima–Zwanzig equation in the Born approximation for the populations decay rate which is
experimentally observable. But for a sufficiently narrow peak in the spectral density (small γ) the non-Markovian
Nakajima–Zwanzig equation in the Born approximation reproduces the population decay better than the GKSL
one.

7. CONCLUSIONS

We have considered the model of the multi-level system interacting with several local reservoirs at zero
temperature. We have compared the population decay rates and the decoherence rates for exact solution and
several approximate master equations: the Nakajima–Zwanzig equation in the Born approximation, the Redfield
equation. It was shown:

1. Both the initial model and the approximate master equations are exactly solvable in the global basis.

2. The Nakajima–Zwanzig equation in the Born approximation gives an exact result for the coherences
between the excited states and the ground states (without additional assumptions for the spectral density
of the reservoir).

3. The conditions for all possible inequalities between excited-ground decoherence rates and population rates
in the global basis for the exact, Born and Markovian Redfield cases are fully characterized by Theorems 5
and 6.

4. Both numerically and analytically we have shown that there exist the cases when the Markovian GKSL
equation reproduces the population decay better than the non-Markovian Nakajima–Zwanzig equation in
the Born approximation, but this is not the case for the sufficiently narrow spectral density.

In our opinion the following directions for the further studies could be fruitful.

1. Application to the real systems. As in [35] in this study we were inspired by vibronic non-Markovian
phenomena in light harvesting complexes. The approach described here could be applied to the one-
exciton models [64, 65] of the Fenna–Matthews–Olson complexes at cryogenic temperatures. For them
the non-Markovian phenomena were experimentally observed [66], which leads to the sufficient interest in
the quantum phenomena in photosynthetic systems [67–71].

2. Finite-temperature analysis. The fact that (8) is an integral of motion for our system allows one to separate
the equations with fixed number of particles. So may be the exact finite-temperature solutions could be
obtained on this way.

3. Multiple Lorentzian and non-Lorentzian generalization of the results described. Multiple Lorentzian peaks
case for the spectral density could be considered in a straightforward way by the methods from [29–35].
Non-Lorentzian case could be dealt with by general Laplace transform methods, but we think that the
approach from [72, 73] could provide more physical insight.
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