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Uniqueness Theorem for the Eigenvalues’ Function
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Abstract—We study the family of Sturm–Liouville operators, generated by fixed potential q and
the family of separated boundary conditions. We prove that the union of the spectra of all these
operators can be represented as the values of a real analytic function of two variables. We call this
function “the eigenvalues’ function” of the family of Sturm–Liouville operators (EVF). We show that
the knowledge of some eigenvalues for an infinite set of different boundary conditions is sufficient to
determine the EVF, which is equivalent to uniquely determine the unknown potential. Our assertion
is the extention of McLaughlin–Rundell theorem.
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let us denote by L(q, α, β) the Sturm–Liouville boundary-value problem

�y ≡ −y′′ + q(x)y = μy, x ∈ (0, π), μ ∈ C, (1)

y(0) cosα+ y′(0) sinα = 0, α ∈ (0, π], (2)

y(π) cos β + y′(π) sin β = 0, β ∈ [0, π), (3)

where q is a real-valued function, summable on [0, π] (we write q ∈ L1
R
[0, π]). By L(q, α, β) we

also denote the self-adjoint operator, generated by the problem (1)–(3) (see [1–3]). It is known,
that under these conditions the spectrum of the operator L(q, α, β) is discrete and consists of real,
simple eigenvalues (see [1–4]), which we denote by μn = μn(q, α, β) = λ2

n(q, α, β), n = 0, 1, 2, . . . ,
emphasizing the dependence of μn on q, α and β. We assume that eigenvalues are enumerated in the
increasing order, i.e.

μ0(q, α, β) < μ1(q, α, β) < · · · < μn(q, α, β) < . . . . (4)

For eigenvalues μn we have proved (see [4]) that

lim
α→0

μ0(q, α, β) = lim
β→π

μ0(q, α, β) = −∞

and also we obtained new asymptotic formulae (when n → ∞)

μn(q, α, β) = [n+ δn(α, β)]
2 +

1

π

π∫

0

q (t) dt+ rn(q, α, β), (5)

where δn(α, β), n = 2, 3, . . ., are smooth and bounded (−1 ≤ δn(α, β) ≤ 1) functions, defined on [0, π]×
[0, π] (for more details, see [5]) and rn(q, α, β) → 0 (when n → ∞), uniformly by α, β ∈ [0, π] and q is
from the bounded subsets of L1

R
[0, π].
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Fig. 1. The domain (0,∞)× (−∞, π).

With the aim to investigate “the movement” of the eigenvalues dependending on α and β we
introduced the concept of “the eigenvalues function (EVF)” of the family of operators (see [4, 6, 7])
in the following way.

First, we note that arbitrary γ ∈ (0,∞) can be represented in the form γ = α+ πn, where α ∈ (0, π]
and n = 0, 1, 2, . . .; and arbitrary δ ∈ (−∞, π) can be represented in the form δ = β − πn, where
β ∈ [0, π) and n = 0, 1, 2, . . .. In what follows, we assume q is fixed, so when we say “the function
μ(q, γ, δ) of two arguments” we understand that arguments are γ and δ.

Definition. The function μ(q, γ, δ) of two arguments, defined on (0,∞) × (−∞, π) by the
formula

μ(q, γ, δ) = μ(q, α+ πn, β − πm) := μn+m(q, α, β), (6)

where μk(q, α, β), k = 0, 1, 2, . . . , are the eigenvalues of L(q, α, β), enumerated in the increasing
order (see (4)), we shall call the eigenvalues’ function of the family of operators {L(q, α, β), α ∈
(0, π], β ∈ [0, π)}.

The meaning of this definition is easy to understand from Figure 1.

The values of EVF is the union of all spectra ({μn(q, α, β)}∞n=0) of operators L(q, α, β), when (α, β)
changes on (0, π] × [0, π). For the case q(x) ≡ 0 we constract the part of the graph of EVF μ(0, γ, δ),
which contains the part of μ0 (see Figure 2).

In [4] we have proved, that EVF is a real analitic function of two arguments. This property gives us
hope, that the following assertion may be true.

Theorem 1. Let the EVF μ(q1, ·, ·) and μ(q2, ·, ·) be such that

μ(q1, γk, β1) = μ(q2, γk, β2), k = 1, 2, . . . , (7)

where β1, β2 ∈ [0, π) and {γk}∞k=1 is the sequence with distinct positive elements γk, that converges
to some γ0 > 0, i.e. limk→∞ γk = γ0. Then q1(x) = q2(x) a.e. on [0, π] and β1 = β2.

Similarly, if

μ(q1, α1, δk) = μ(q2, α2, δk), k = 1, 2, . . . , (8)

where α1, α2 ∈ (0, π] and {δk}∞k=1 is the sequence with distinct elements δk ∈ (−∞, π), that
converges to some δ0 ∈ (−∞, π), i.e. limk→∞ δk = δ0, then q1(x) = q2(x) a.e. on [0, π] and α1 = α2.

The paper is organized as follows: in Section 2 we give some preliminaries, in Section 3 we prove
Theorem 1 and in Section 4 we consider the connection of our theorem and the theorem of McLaughlin–
Rundell.
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Fig. 2. The graph of the function μ(0, γ, δ).

2. SOME PRELIMINARIES

Let us denote by ϕ(x, μ, α, q) (sometimes, for brevity, we will write ϕ(x, μ)) the solution of (1), that
satisfies the initial conditions

ϕ(0, μ, α, q) = sinα, ϕ′(0, μ, α, q) = − cosα, (9)

and by ψ(x, μ, β, q) (for brevity ψ(x, μ)) the solution of (1), that satisfies the initial conditions

ψ(π, μ, β, q) = sin β, ψ′(π, μ, β, q) = − cos β. (10)

It follows from (9) that ϕ(x, μ, α, q) satisfies the boundary condition (2) and from (10) that
ψ(x, μ, β, q) satisfies the boundary condition (3). Therefore, μ∗ will be the eigenvalue of L(q, α, β) if
ψ(x, μ∗, β, q) satisfies (2), or if ϕ(x, μ∗, α, q) satisfies (3). Thus, the following statement is true.

Lemma 1. μ∗ is an eigenvalue of L(q, α, β) if and only if

ψ(0, μ∗, β, q) cosα+ ψ′(0, μ∗, β, q) sinα = 0, (11)

or
ϕ(π, μ∗, α, q) cos β + ϕ′(π, μ∗, α, q) sin β = 0.

Thus, ϕ(x, μn(q, α, β), α, q) and ψ(x, μn(q, α, β), β, q) are eigenfunctions of L(q, α, β), correspond-
ing to the eigenvalue μn(q, α, β), n = 0, 1, 2, . . ..

It is well-known (see [1, 8]) that ϕ(x, μ), ϕ′(x, μ), ψ(x, μ), ψ′(x, μ), for a fixed x[0, π], are entire
functions of μ.

Let us define the functions f0 and fπ by formulae

f0(μ) := ψ(0, μ, β1, q1)ψ
′(0, μ, β2, q2)− ψ′(0, μ, β1, q1)ψ(0, μ, β2, q2),

fπ(μ) := ϕ(π, μ, α1, q1)ϕ
′(π, μ, α2, q2)− ϕ′(π, μ, α1, q1)ϕ(π, μ, α2, q2).

It is easy to see that f0 and fπ are also entire functions of μ.
Lemma 2. If both ψ(x, μ∗, β1, q1) and ψ(x, μ∗, β2, q2) satisfy (11), then f0(μ

∗) = 0.
Lemma 3. If ψ(x, μ∗, β1, q1) satisfies (11) and f0(μ

∗) = 0, then ψ(x, μ∗, β2, q2) satisfies the (11).
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The proofs of these lemmas are carried out by direct verification.

Similar lemmas are true for the functions ϕ(x, μ∗, α, q).

Denote (see (7))

νk := μ(q1, γk, β1) = μ(q2, γk, β2), k = 1, 2, . . . .

Since, by the condition of Theorem 1, the sequence {γk}∞k=1 converges (limk→∞ γk = γ0), then,
according to the smoothness of EVF, the sequence {νk}∞k=1 also converges:

lim
k→∞

νk = lim
k→∞

μ(q1,2, γk, β1,2) = μ(q1,2, γ0, β1,2) = ν0.

Since the positive γk we can represent in the form γk = αk + πm, where αk ∈ (0, π] and some m =
0, 1, 2, . . ., and

νk = μ(q1,2, αk + πm, β1,2) = μm(q1, αk, β1) = μm(q2, αk, β2),

are eigenvalues of the operator L(q1, αk, β1), then the functions ψ(x, νk, β1, q1) and ψ(x, νk, β2, q2) are
eigenfunctions of this operator and, therefore, they satisfy the conditions

ψ(0, νk, β1, q1) cosαk + ψ′(0, νk, β1, q1) sinαk = 0,

ψ(0, νk, β2, q2) cosαk + ψ′(0, νk, β2, q2) sinαk = 0,

for all k = 1, 2, . . . . By Lemma 2 it follows that f0(νk) = 0. Since f0 is entire function and {νk}∞k=1
converges, it follows that f0(μ) ≡ 0, μ ∈ C. Thus, the following assertion is true.

Lemma 4. If the condition (7) is satisfied, then f0(μ) ≡ 0, μ ∈ C. Similarly, if the condition (8)
is satisfied, then fπ(μ) ≡ 0, μ ∈ C.

3. THE PROOF OF THEOREM 1

Let now μ
(1)
n := μ(q1, α1 + πn, β1) = μn(q1, α1, β1), n = 0, 1, 2, . . ., i.e. {μ(1)

n }∞n=0 is the spectrum of
L(q1, α1, β1) for some α1 ∈ (0, π]. In particular, this means that the equality

ψ(0, μ(1)
n , β1, q1) cosα1 + ψ′(0, μ(1)

n , β1, q1) sinα1 = 0

holds for all n = 0, 1, 2, . . . . Since f0(μ) ≡ 0, then f0(μ
(1)
n ) = 0 for all n = 0, 1, 2, . . ., and from Lemma 3

it follows that the equality

ψ(0, μ(1)
n , β2, q2) cosα1 + ψ′(0, μ(1)

n , β2, q2) sinα1 = 0

holds for all n = 0, 1, 2, . . .. This means that all μ(1)
n are eigenvalues of the operator L(q2, α1, β2), or,

which is the same, {μn(q1, α1, β1)}∞n=0 ⊂ {μn(q2, α1, β2)}∞n=0. This implies that each μn(q1, α1, β1) =
μm(q2, α1, β2) for some m. But from the asymptotics of eigenvalues (see (5)) it follows that m = n, i.e.

μn(q1, α1, β1) = μn(q2, α1, β2), n = 0, 1, 2, . . . . (12)

Similarly, if we take μ(2)
n = μn(q1, α2, β1), n = 0, 1, 2, . . ., where α2 ∈ (0, π], α1 �= α2, we will obtain,

that

μn(q1, α2, β1) = μn(q2, α2, β2), n = 0, 1, 2, . . . . (13)

It follows from the equalities (12) and (13), that q1(x) = q2(x) a.e. on [0, π] and β1 = β2 according to the
classical two spectrum version of the inverse Sturm–Liouville problem, studied by G. Borg (see [9–13]).
Thus the first part of our Theorem 1 is proved. The proof of the second part is completely analogous.

It should be noted that the same proof shows, that the spectrum {μn(q1, α, β)}∞n=0 of the operator
L(q1, α, β) coincides with the spectrum {μn(q2, α, β)}∞n=0 of the operator L(q2, α, β), for arbitrary
α ∈ (0, π] and β ∈ [0, π). It means that EVFμ(q1, γ, δ) ≡ μ(q2, γ, δ) for all γ ∈ (0,∞) and δ ∈ (−∞, π).
For this reason we call our theorem the uniqueness theorem for the EVF.
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4. THEOREM OF MCLAUGHLIN–RUNDELL

In [14] J. McLaughlin and W. Rundell considered the Sturm–Liouville problem

−y′′ + q(x)y = λy, y(0) = 0, y′(π) + βy(π) = 0,

for q ∈ L2
R
[0, π] and denoted by λn(q, β) the eigenvalues of this problem, and proved the following

theorem:
Theorem 2. Let q1, q2 ∈ L2

R
[0, π]. Fix j, a positive integer. Suppose βk for k = 1, 2, . . . are

distinct real numbers and λj(q1, βk) = λj(q2, βk), k = 1, 2, . . . . Then q1(x) = q2(x), a.e.

It is clear that each real number βk can be represented as βk = cot β̃k, where β̃k ∈ (0, π). Since βk are
distinct, then β̃k are also distinct. The sequence {β̃k}∞k=1 forms a bounded set in [0, π] and, consequently
has at least one accumulation point β̃0, i.e. there exist a subsequence β̃kl s.t. limkl→∞ β̃kl = β̃0. If we
define δkl = β̃kl − πj, then {δkl} forms a real distinct sequence, which converges to β̃0 − πj. Note, that

limkl→∞ cot β̃kl = cot β̃0 =
cos β̃0

sin β̃0
. And so, the boundary condition y′(π) + βy(π) = 0 we can write in

the form y(π) cos β̃ + y′(π) sin β̃ = 0 and the whole problem can be considered as the problem L(q, π, β̃)
in our notations. Thus, McLaughlin–Rundell uniqueness theorem is the particular case of our, where
the condition (8) is written in the form

μ(q1, π, δm) = μ(q2, π, δm), m = 1, 2, . . . ,

where δm = β̃m − πj converges to β̃0 − πj.
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