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Abstract—Practical applicability of many statistical algorithms is limited by large sizes of corre-
sponding covariance matrices. These limitations can be significantly weakened due to effective use
of the structure of covariance matrices, properties of the autocorrelation function, and advantages
of the architecture of modern GPUs. This paper presents GPU implementations of the algorithms
for inversion of a covariance matrix and solution of a system of linear equations whose coefficient
matrix is a covariance matrix. Inversion of close to sparse covariance matrices is also considered in
the work. For all the cases considered, significant accelerations were obtained in comparison with
Octave mathematical software and ViennaCL computational library. For example, implemented
algorithm of solution of a linear system was 6 times faster as compared with the implementation of
Octave on the CPU and 3 times faster as compared with the ViennaCL implementation on the GPU
for general matrices. The performance of inversion of a covariance matrix was 14 times faster than
inversion algorithm of Octave on the CPU and 6 times faster than ViennaCL inversion algorithm
on GPU.
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1. INTRODUCTION

At the present time use of covariance matrices is widespread in various fields of science. For example,
in the economic statistics, covariance matrices find their use in analysis of multidimensional time
series [1]. Covariance matrices are used in biostatistics to process data of functional magnetic resonance
imaging [2]. Covariance matrices are used in data analysis to predict weather [3]. Many applications of
statistical signal processing, in particular, to microseismic problems [4], are built around covariance
matrices. In the modern world, data volumes are rapidly growing and simultaneously requirements
for processing time become more tight. For the number of areas discussed above, this means the
need to perform operations with covariance matrices of a large size more quickly. For example, the
practical application of the method described in [4] is limited by size of a covariance matrix and time
required for its inversion. In these conditions, methods for effective work with large covariance matrices
become especially relevant. The architecture of modern graphics processing units (GPUs) is suited for
performing operations on matrices; therefore, nowadays GPUs are widely used in optimizing matrix
calculations. There are many libraries for effective work with general matrices, but there are no open
access libraries optimized for working with covariance matrices. At the same time usage of special
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structure of covariance matrices and properties of the autocorrelation function can significantly reduce
time and memory costs of matrix computations. Covariance matrices have Toeplitz structure and
contain only O(n) unique elements instead of O(n2) in case of general matrices. Toeplitz matrix A
can be presented as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 · · · · · · a−(n−1)

a1 a0 a−1
. . . · · ·

...

a2 a1
. . . . . . . . .

...
...

. . . . . . . . . a−1 a−2

...
. . . . . . a1 a0 a−1

an−1 · · · · · · a2 a1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Specialized algorithms for processing of Toeplitz matrices have been known for a long time. One of
the first examples were algorithms of solution of linear systems with a Toeplitz coefficient matrix which
required O(n2) operations instead of O(n3) for general linear systems. Algorithms were proposed by
Levinson [5] and Bareiss [6], the issues of numerical stability were considered in [7] for the Levinson
algorithm and in [8] for the Bareiss algorithm. Comparing these two algorithms, it should be noted
that the Levinson algorithm only requires O(n) additional memory space, while the Bareiss algorithm
requires O(n2). In turn, Bareiss algorithm shows better numerical stability for ill-conditioned coefficient
matrices. To date, asymptotically faster O(n log n) algorithms for solving the Toeplitz systems of
equations have been developed [9]. However, due to the known problems with their numerical stability, as
well as significant constants hidden behind O-notation in logarithmic complexity estimates, this paper
presents GPU implementation of improved Levinson algorithm described in [10].

The inversion of general matrices of can be performed in O(M(n)), where M(n) is complexity of
multiplication of n× n matrices, which in practice almost always equals O(n3). The first inversion
algorithm for Toeplitz matrices working in O(n2) was proposed by Trench [11]. At the moment
asymptotically faster algorithms were developed. For example, algorithm described in [12] requires
O(n log2 n) operations but it is worse parallelized than Trench algorithm. Numerical stability of the
Trench algorithm is shown in [13], and the algorithm itself is presented in a simplified form, prepared for
effective implementation. Also, ideas allowing the inverse Toeplitz matrix to be stored in a sparse form
are presented there.

2. LEVINSON ALGORITHM FOR SOLVING LINEAR SYSTEMS

Solution of linear systems of equations using the Levinson algorithm is performed in two stages. At
the first stage, the first and last columns of the matrix inverse Toeplitz matrix are obtained. At the second
stage, the system of equations is solved using these obtained columns.

If T is a coefficient matrix of a linear system expressed by covariance matrix of two sequences L and
S, i.e. Toeplitz matrix of n× n size. Let us define matrix Tk, which can be obtained from the matrix T
by deleting all rows and columns with indexes i > k. It should be noted that if T is Toeplitz matrix, then
Tk is also a Toeplitz matrix. A covariance matrix due to its Toeplitz structure is completely specified by
the first raw and the last column. In order to use this fact for convenient writing let us designate ai for
i > 0 as covariance of a sequence L shifted on i counts with S sequence, and a−i for i > 0 as covariance
of a sequence L with S sequence shifted on i counts. Then the first row of the matrix T is a vector
(a0, ...a(n−1)), and the first column of the matrix T is a vector (a0, ..., a−(n−1))

T .

Let’s consider x1k and xkk such that they are the solutions of equations Tkx
1
k = e1, Tkx

k
k = ek, where

ek is a vector of corresponding size filled with zeroes and with 1 on the i-th position. Now we consider
following correlation

Tk+1

⎡
⎣x1k 0

0 xkk

⎤
⎦ =

⎡
⎣e1 y1k

ykk ek

⎤
⎦ ,
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where ykk = [a1...ak]x
1
k, y

1
k = [a−1...a−k]x

k
k. We introduce a matrix G such that

Gk =

⎡
⎣ 1 y1k

ykk 1

⎤
⎦ .

Then vectors x1k+1 and xk+1
k+1 will be obtained as follows

[x1k+1x
k+1
k+1] =

⎡
⎣x1k 0

0 xkk

⎤
⎦G−1

k (1)

Using recursion scheme (1) and starting from x11 = xk1 = 1/a0, we can calculate the first and the last
column of the matrix T−1.

The second stage of the algorithm consists in solution of the linear system using the first and the last
column of the matrix T−1. Let us consider the following linear system

Tz = b. (2)

Defining xk and zk as the solutions of linear systems

Tkxk = ek, Tkzk = bk. (3)

From (2) and (3) we obtain following expression

Tk+1

⎡
⎣zk
0

⎤
⎦ =

⎡
⎣bk
dk

⎤
⎦ ,

where dk = [tk+1,1...tk+1,k]zk. In this case, the recursive scheme for solving the linear system will be as
follows:

zk+1 =

⎡
⎣zk
0

⎤
⎦+ (bk+1 − dk)xk+1, z1 =

b1
a0

. (4)

Beginning the recursion (4) from z1 we will obtain the solution of the linear system.

3. EFFICIENT STORAGE OF DIRECT AND INVERSE COVARIANCE MATRICES

The covariance matrix has a Toeplitz structure, which means that in the worst asymmetric case it
has only 2n− 1 unique values, instead of n2 unique values in case of a general matrix. Algorithms
for operations on general matrices require ordinary dense matrices as arguments, therefore, the use
of efficient methods for storing covariance matrices is impossible as long as operations on them are
performed by standard methods. This paper presents methods that are specific to covariance matrices,
so we are free to choose how to represent them in computer memory.

In the implementation of the algorithms presented in this paper, the covariance matrices are stored
as a continuous array of unique elements. This approach to storing covariance matrices has two
advantages. The first and most obvious is space saving. Modern GPU with a memory of 16GB can
accommodate a covariance matrix with a side n ≈ 4.5 × 104 if it is stored in the classical way and with
a side of n ≈ 109 if only unique elements are stored. The second advantage is a significant increase in
data locality. When using this method of storage, operation of accessing the element ai,j of the matrix
is replaced by the operation of accessing the element ci−j+n of the actually stored sequence of unique
values. During inversion covariance matrix loses its Toeplitz structure while remaining persymmetric.

A matrix that is inverse for Toeplitz matrix has n2/2 unique elements. But as it outlined in [13], a
matrix inverse to a covariance matrix is completely determined by its first column and row, while the
remaining elements can be expressed as a function of the elements of the first column and the first row.
Thus the above-mentioned method of storage of direct covariance matrices can also be applied to inverse
ones, which allows obtaining the advantages of space saving and data locality.
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4. MATRIX INVERSION: TRENCH ALGORITHM

The Trench algorithm is applied to normalized covariance matrices, i.e. to those who have ones on the
main diagonal, in other words to the correlation matrices. With this in mind, we introduce the following
notation:

Lk is the correlation matrix which is obtained from the original matrix by deleting first n− k rows and
columns;

a is the vector consisting of the elements of the first row of the original matrix, starting with the
second element;

r is the vector consisting of elements of the first column of the original matrix, starting from the
second element;

Bk = L−1
k ;

ek is the vector consisting of elements of the first column of the matrix Bk starting from the second
element and multiplied by some coefficient;

gk is the vector consisting of elements of the first row of the matrix Bk starting from the second
element and multiplied by some coefficient;

e is the vector consisting of elements of the first column of the matrix L−1 starting from the second
element;

g is the vector consisting of elements of the first row of the matrix L−1 starting from the second
element;

According to the previous section, vectors e and g and element B1,1 completely determines the matrix
B. Let us take the following initialization values for the recursion:

λ1 = 1− a1r1, e1 = −a1, g1 = −r1.

Then, using relations

qk = −(ak+1 + ek[ak . . . a1]), wk = −(rk+1 + rk[gk . . . g1]),

ek+1 =

⎡
⎣ek +

qk
λk
[gk . . . g1]

wk
λk

⎤
⎦ , [gk+1 . . . g1] =

⎡
⎣

qk
λk

[gk . . . g1] +
wk
λk

ek

⎤
⎦ , λk+1 = λk −

wkqk
λk

, (5)

vectors e, g and L−1
1,1 can be obtained from (5) as

L−1
1,1 =

1

λn
, e =

en
λn

, g =
gn
λn

,

and the elements of L−1 can be found from the following equation:

L−1
i+1,j+1 = L−1

i,j +
1

λn
(ge′ − [e1,k . . . e1,1][g1,k . . . g1,1]

′)i,j .

It should be noted that there is no need to store the entire matrix during the algorithm, since the
inverse matrix to the covariance matrix is completely determined by the first row and column, and two
arrays can be used to store the entire sequence of vectors ek and gk.

5. INVERSION OF CLOSE TO SPARSE AUTOCORRELATION MATRICES
USING FROBENIUS FORMULA

In a large number of practical applications, for example in search of a known in advance pattern that
does not repeat in a signal [4], the value of the elements of the autocorrelation matrix tend to zero with
distance from the main diagonal. This is due to that while correlation is a measure of similarity, the
signal is usually most similar to itself, little less similar to itself shifted by one, etc. This fact can be used
to speed up the calculation of the inverse covariance matrix using the Frobenius formula. The formula
of Frobenius is as follows:⎡

⎣A B

C D

⎤
⎦
−1

=

⎡
⎣A−1 +A−1BH−1CA−1 −A−1BH−1

−H−1CA−1 H−1

⎤
⎦ ,
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Fig. 1. Comparison of the speedup of solving a linear system.

where H = D−CA−1B. Frobenius formula gives opportunity to reduce inversion of a matrix withn×n
size to inversion of two n/2× n/2 matrices and ten multiplications of n/2× n/2 matrices.

In practice one of the most well-known libraries of matrix algebra on GPU, ViennaCL, requires
approximately a 3n2 memory to invert n× n matrix. In accordance with this, a matrix with a side
of n ≈ 2.5× 104 can be inverted on a modern GPU with 16GB memory. In the meantime using
Frobenius formula with ViennaCL we memory usage can be reduced to 6(n/2)2, if only A−1, H−1,
current calculating block and temporary matrix are stored. Thus, a matrix with a side of 36000 can be
inverted on a GPU with 16 GB memory. It should be noted that using Frobenius formula recursively to
A−1 and H−1 memory usage can be brought into proximity with 2(n/2)2 at the cost of time for matrix
inversion.

The Frobenius formula can also be used to accelerate the inversion of the covariance matrix, if we take
into account the properties of the autocorrelation function, namely, the fact that with the distance from
the main diagonal, the elements of the autocorrelation matrix tend to zero. We can consider the blocks
C and B close to zero, in this case, even closer to zero we can consider those terms of the Frobenius
formula, which contain multiplications both on the block C and on the block B at the same time. Then
the condensed Frobenius formula for approximate matrix inversion will take the form

⎡
⎣A B

C D

⎤
⎦
−1

≈

⎡
⎣ A−1 −A−1BD−1

−D−1CA−1 D−1

⎤
⎦ .

Thus, we replace the full inversion of matrix of size n× n by the inversion of two matrices of size
n/2× n/2 and four multiplications of matrices of size n/2× n/2, which gives a gain in speed and also
a fairly good approximation to the inverse matrix if the autocorrelation function has assumed properties.
The sufficiency of such approximation should be decided separately for each specific practical problem.
An even rougher approximation is possible if we consider all terms in which C and B are found to be
zeros. Such an approximation allows us to reduce the inversion of an n× n matrix only to the inversion
of two n/2× n/2 matrices

⎡
⎣A B

C D

⎤
⎦
−1

≈

⎡
⎣ A−1 −A−1BD−1

−D−1CA−1 D−1

⎤
⎦ .

It is also worth noting that further application of the operation shown above will lead us to the case
when the inversion of the matrix is reduced to practically computationally free inversion of the elements
of its main diagonal.

6. PERFORMANCE TESTS

The code for the Levinson algorithm and the Trench algorithm was written using C++ and the VexCL
vector expression library, which allows short and scalable coding of calculations on the GPU [15, 16].
Approximate matrix inversion using the Frobenius formula was implemented using the ViennaCL
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Fig. 2. Comparison of the speedup of matrix inversion using the Trench algorithm.
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Fig. 3. Comparison of the speedup of the approximate matrix inversion using the Frobenius formula.

GPU library [17]. Computational experiments described in this section were carried out on a high-
performance workstation equipped with Tesla C2070 professional graphics card. The x-axis on the
graphs shows the size of the matrix side, and the y-axis shows the time for the corresponding operation
in seconds.

Figure 1 shows three timelines for solving the Toeplitz linear system, made using the Octave package
on the central processor, using the ViennaCL matrix algebra library on the GPU and the implementation
of the Levinson algorithm on the GPU presented in this paper. From the tests, we can conclude that
the implementation presented in the work is 6 times faster than the implementation of the linear system
solution in Octave and 3 times faster than the ViennaCL GPU implementation.

Figure 2 shows three plots of the inversion time of a Toeplitz matrix made using the Octave package
on the central processor, using the ViennaCL matrix algebra library on the GPU and using the
implementation of the Trench algorithm on the GPU presented in this paper. It’s worth to mention
that proposed implementation performs better at larger matrix sizes and computational time increase
insignificantly as we increase matrix size. From the tests, we can conclude that the implementation
presented in the work is 14 times faster than the implementation of Octave and 7 times faster than the
implementation of ViennaCL. Again it should be noted that proposed algorithm demonstrates far better
scalability as computational time almost does not increase with increase of the matrix size.

Figure 3 shows four plots of matrix inversion time, performed using the Octave package on the
central processor, using the ViennaCL matrix algebra library on the GPU and using the presented
implementation of the approximate matrix inversion using the Frobenius formula in two forms.

The line marked as Reduce corresponds to the approximate inversion that was performed using the
formula

⎡
⎣A B

C D

⎤
⎦
−1

≈

⎡
⎣ A−1 −A−1BD−1

−D−1CA−1 D−1

⎤
⎦ .
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The line marked as Block corresponds to the approximate inversion that was performed using the
formula ⎡

⎣A B

C D

⎤
⎦
−1

≈

⎡
⎣A−1 0

0 D−1

⎤
⎦ .

7. CONCLUSION

In this paper, the implementations of the Levinson algorithm for solution of linear systems and
the Trench algorithm for inverting Toeplitz matrices are presented. The developed implementations
are intended for GPGPU high-performance computing. The tests showed a threefold increase in
performance for the Levinson algorithm, compared with the current implementation of solving general
systems of equations by the ViennaCL library. The inversion of the Toeplitz matrices based on the
Trench algorithm turned out to be 7 times faster than the current implementation of the inversion general
matrices of the ViennaCL library.

The paper also describes the implementation and performance test for the approximate inversion
algorithm for covariance matrices that are close to sparse using the Frobenius formula. The possible
acceleration of this algorithm depends on the properties of the autocorrelation function for each specific
application. On the test matrices, it was possible to achieve a double acceleration of the matrix inversion
compared with the algorithm from the ViennaCL library.

Also, a method for efficient storage of matrices which are inverse to Toeplitz matrices was considered.
It was possible to achieve a reduction in the used memory from n2 elements to 2n− 1 elements, as well
as obtain significantly increase of the data locality. It should be noted that data locality is one of the
important factors for improving performance when computing on GPUs.

Thus, the proposed implementations of algorithms for covariance matrices can be used in scientific
high-performance software that are demanding in terms of execution time and memory usage.
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