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Abstract—In this article we propose to use special classes of the generalized functions in order to
state the correct statement of some diffraction problems of electromagnetic waves by thin conducting
screens in the cylindrical waveguides with conducting walls. As the generalized solutions, such
mappings are considered which assign a linear functional defined on the linear shell of the set of
the functions satisfying the corresponding boundary conditions to every value of longitudinal space
coordinate. The traces of the solutions on the cross-section of the cylindrical domain are interpreted
in the generalized sense. The infinite sets of linear algebraic equations are derived immediately from
the generalized boundary conditions. We show that it is advisable to use the boundary conditions for
the normal components of the electromagnetic field.
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1. INTRODUCTION

We suppose that the eigen wave propagates in the cylindrical waveguide with conducting walls. If an
infinite thin and ideally conducting plate (screen) is placed on the lateral sections of the waveguide, then
electromagnetic field arises in the form of the wave outgoing at infinity on two sides of the screen. The
mathematical statement of this problem is the following. We seek the solutions of the set of Maxwell
equations on two sides of the screen satisfying the boundary conditions on the walls of the waveguide,
the radiation conditions and boundary conditions in the plane of the screen.

Let the cylindrical waveguide be placed along the axis z of Cartesian coordinates, and the lateral
screen be located in the plane z = 0. As it is known (the first publication in this area is the article [1]),
the longitudinal components of electric and magnetic vectors of the field can be represent inside the
bounded by coordinate z area in the form

Hz(x, y, z) =
+∞∑

m=0

λmϕm(x, y)
[
a−me−iγmz + a+meiγmz

]
,

Ez(x, y, z) =
+∞∑

m=0

χmψm(x, y)
[
b−me−iδmz + b+meiδmz

]
, (1)

where γm =
√
k2 − λm, δm =

√
k2 − χm and ϕm(x, y), ψm(x, y) are eigen values and eigen functions

of the spectral problems

ψm(x, y), m = 0, 1, . . . | Δψm + χmψm = 0, ψm

∣∣
C
= 0,
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ϕm(x, y), m = 0, 1, . . . | Δϕm + λmϕm = 0,
∂ϕ

∂ν

∣∣∣
C
= 0.

We suppose the piecewise smooth bound C of the cross-section is such that these spectral problems
have the complete sets of the eigen functions. In addition, let these functions be orthonormal. Either the
longitudinal propagate constants γm and δm are positive, or they have the positive imaginary parts.

The coefficients a±m and b±m determine the electric and magnetic wave in the complete field respec-
tively. The solution of Maxwell equations satisfy the radiation condition in the semi-infinite area z > 0
if a−m = 0 and b−m = 0. Analogously, the solution of Maxwell equations satisfy the radiation condition in
the area z < 0 if a+m = 0 and b+m = 0.

The tangential components of the field are represented by potential functions Ez and Hz in the
following way (see, for example, [2])

E∓
x = iωμ0μ

∑

m

a∓m
∂ϕm

∂y
e∓iγmz ∓ i

∑

m

b∓mδm
∂ψm

∂x
e∓iδmz,

E∓
y = −iωμ0μ

∑

m

a∓m
∂ϕm

∂x
e∓iγmz ∓ i

∑

m

b∓mδm
∂ψm

∂y
e∓iδmz,

H∓
x = ∓i

∑

m

a∓mγm
∂ϕm

∂x
e∓iγmz − iωε0ε

∑

m

b∓m
∂ψm

∂y
e∓iδmz,

H∓
y = ∓i

∑

m

a∓mγm
∂ϕm

∂y
e∓iγmz + iωε0ε

∑

m

b∓m
∂ψm

∂x
e∓iδmz. (2)

If z �= 0 then the series in the expressions of the components of the field converge for any bounded
sequences of the coefficients a±m and b±m because the functions e∓iγmz and e∓iδmz decrease exponentially.
The limiting process under z → 0 is correct if some additional restrictions on the classes of unknown
solutions of Maxwell equations are imposed.

We will show that these restrictions can be removed if we replace the classical statement with the
diffraction problem to a generalized statement. We will consider the mappings which assign a linear
functional defined on the linear shell of the set of the functions satisfying the corresponding boundary
conditions to every value of longitudinal space coordinate.

2. GENERALIZED FUNCTIONS ON THE SEGMENT

We choose the set of all linear combinations of the functions ϕn(x) =
√
2/a sin(πnx/a), n =

1, 2, . . . , as the space of basic functions. The generalized functions are defined as linear functionals
on the space of basic functions ϕ(·). The analogous approach was used in the theory ϕ-distributions [3].

The linear functional f [·] on the space of basic functions is determined uniquely by set of numbers
fn = f [ϕn(·)], n = 1, 2, . . . . Therefore, the generalized functions are identified with sequences of the
numbers fn. The sequence of Fourier coefficients

fn =

a∫

0

f(x)ϕn(x) dx, n = 1, 2, . . . ,

corresponds to functions f(·) integrable on the segment [0, a]. We call the generalized function regular
if usual function expanded into Fourier series corresponds to it.

We will consider the formal series
+∞∑

n=1

fnϕn(·)

just as a generalized function. Such record is only the list of the basic functions and of the values of
generalized functions on these functions.

The generalized derivatives are defined in the following way (further only the second derivatives will
be used).
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If f(·) is twice differentiable on [0, a] function and f(0) = 0, f(a) = 0, then
a∫

0

f ′′(x)ϕn(x) dx = −
(πn

a

)2
a∫

0

f(x)ϕn(x) dx.

Therefore, we call the second order derivative of generalized function f [·] such generalized function g[·]
that

g[ϕn(·)] = −
(πn

a

)2
f [ϕn(·)] ∀n = 1, 2, . . .

We will say that the sequence of generalized functions fj[·] converges under j → +∞ to generalized
function f [·] if the numerical sequence fj[ϕ(·)] converges to number f [ϕ(·)] for every basic function ϕ(·).
It is sufficient to consider only functions ϕn(·) in the set of all basic functions. If the parameter set of
generalized functions fα[·] is given, then the limit pass under α → α0 is defined analogously.

The generalized functions f [·] and g[·] are equal if f [ϕn(·)] = g[ϕn(·)] for every n = 1, 2, . . . (or
fn = gn, n = 1, 2, . . . ). But as in the classical theory of distributions [4], the values of the generalized
function are not defined at the separate points of the segment [0, a].

Let the segment [0, a] consist of two parts M and N . Further the sets of numbers

Inm =

∫

M

ϕn(x)ϕm(x) dx and Jnm =

∫

N

ϕn(x)ϕm(x) dx, n,m = 1, 2, . . . ,

will be used. These integrals can be calculated easily, they are connected with each other by the formula
Jnm = δnm − Inm.

We will say that the generalized function f [·] = 0 on N if
+∞∑

m=1

Jnmfm = 0 ∀n = 1, 2, . . .

(more precisely, if all these series converge and their sums are equal to zero) or in the equivalent form

fn =

+∞∑

m=1

Inmfm ∀n = 1, 2, ... .

We illustrate the sense of this definition. If f [·] is a regular generalized function and f(·) = 0 on N
then

f(x) =
+∞∑

m=1

fmϕm(x), where fm =

∫

M

f(x)ϕm(x) dx.

Hence

fn =

∫

M

(+∞∑

m=1

fmϕm(x)
)
ϕn(x) dx =

+∞∑

m=1

fmImn.

The equality of two generalized functions on N or on M can be defined analogously.
It is easy to see that if f [·] = g[·] on N and on M then fn = gn ∀n = 1, 2, . . .

Finally, we will say that generalized function f [·] has on M the same values as the usual function g(·)
if

fn =

∫

M

g(x)ϕn(x) dx, n = 1, 2, . . . ,

or if fn = gn, where g[·] is the regular generalized function corresponding to usual function g(·), which
is equal to zero on the other part of the segment [0, a].
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3. CONJUNCTION PROBLEM FOR HELMHOLTZ EQUATION IN THE STRIP

We consider firstly two-dimensional boundary value problem for Helmholtz equation in the stripe
which corresponds to the problem of TM-polarized electromagnetic wave diffraction by the lateral screen
in the place waveguide. In this case it is necessary to find the solutions of Helmholtz equation in the strip
0 < x < a separatively for z > 0 and for z < 0. These solutions should satisfy the radiation conditions
and boundary conditions on section z = 0.

It is known that any function, which is twice continuously differentiable on (0, a), is continuous on
the segment [0, a] and is equal to zero at the ends on the segment, by Steklov theorem can be expanded
into uniformly convergent series of functions ϕn(·). Then any twice continuously differentiable solution
of Helmholtz equation in the semi-strip 0 < x < a, z > 0 which satisfies the radiation condition has the
form

u1(x, z) =

+∞∑

n=1

ane
iγnzϕn(x)

(the positively oriented solution). Analogously, every twice continuously differentiable and satisfying the
radiation condition solution of Helmholtz equation in the semi-strip 0 < x < a, z < 0 has the form

u2(x, z) =
+∞∑

n=1

bne
−iγnzϕn(x)

(negatively oriented solution).

We will consider u1(x, z) and u2(x, z) as the functions of argument z. These functions have the
generalized function belong to the space constructed above as their values. Their limit values (traces)
under t → 0 are denoted as u10[·] and u20[·]. The values u1[·](z) and u2[·](z) at the basic function ϕn(·)
for the fixed z are u1n = ane

iγnz and u2n = bne
−iγnz . We pass to limit under z → 0 and obtain u10,n = an

and u20,n = bn. Thus, the traces (generalized limits) of the functions u1(x, z) and u2(x, z) on the cross-
section z = 0 of the strip 0 < x < a are generalized functions. The traces of normal derivatives of the
functions u1(x, z) and u2(x, z) on the cross-section z = 0 of the strip are also generalized functions, and
their values are u11,n = iγnbn and u21,n = −iγnbn.

We will state the problem of electromagnetic TM-wave diffraction by the lateral screen in the place
waveguide in the following way. Let the part M of the segment [0, a] correspond to the screen, and N be
the free media interface. Let u0(x, z) be a potential function of the wave from an external source. If this
wave consists of finite set of modes then its traces on the cross-section z = 0 are usual functions.

It is necessary to find the generalized solutions of Helmholtz equation u1[·](·) and u2[·](·) satisfying
the boundary conditions and the conjunction conditions

u00[·] + u10[·] = 0, u00[·] + u20[·] = 0 on M,

u10[·] = u20[·], u11[·] = u21[·] on N . (3)

Here u00[·] is the generalized function built by the usual functions which is equal to u00(·) on M and to
zero on N .

As u10[·] = u20[·] both on N and on M, then, firstly, an = bn ∀n = 1, 2, . . . and, secondly, u11[·] =
−u21[·]. Therefore, u11[·] = u21[·] = 0 on N .

Thus, we have the boundary conditions in terms of generalized functions to determinate the unknown
coefficients an:

u10[·] = −u00[·] on M, u11[·] = 0 on N . (4)

These conditions in the terms of the values of the generalized functions have the form of infinite set of
linear algebraic equations (ISLAE):

ak + u00,k =

+∞∑

m=1

Jkmam, k = 1, 2, . . . γmam =

+∞∑

n=1

Imnγnan, m = 1, 2, ... . (5)
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There exist two transforms of ISLAE (5) which (as it seems) “twice” decrease the number of the
equations. If we insert the expressions am from the second set of equations into the right-hand sides of
the equations from the first set of equations, then we obtain ISLAE

−ak +
+∞∑

m=1

Jkm
1

γm

+∞∑

n=1

Imnγnan = u00,k, k = 1, 2, ... . (6)

If we insert the expressions an from the first set of equations into the right-hand sides of the equations
from the second set of equations, then we obtain

−γmam +

+∞∑

n=1

Imnγn

+∞∑

m=1

Jnmam = −
+∞∑

m=1

Jnmu0n,0, m = 1, 2, ... . (7)

Numerical experiment shows that the approximate solutions of ISLAE (6) and (7) obtained by trunca-
tion method are very similar. But it was stated during the analysis of the numerical result that in the first
case the conditions on M are satisfied more precisely, and in the second case the conditions on N are
satisfied more precisely. Let’s explain this effect.

Let the infinite matrixes A and B be composed of elements Imn and Jmn respectively. These matrixes
define some linear operators in the linear space of numerical sequences.

It is easy to prove that
+∞∑

m=1

InmImk = Ink,
+∞∑

m=1

JnmJmk = Jnk, ∀n, k = 1, 2, ... .

Then A and B are complementary to each other orthogonal projectors, i.e. A2 = A, B2 = B and
A+B = I (I is the unit operator), in addition, AB = 0, BA = 0.

Let u = (a1, a2, . . . ) and u0 = (u00,1, u
0
0,2, . . . ) be the infinite vectors, and C be the diagonal matrix

consisting of elements γ1, γ2, . . . . Then the equations to determinate u have the form

u = Bu−Au0, u = C−1ACu. (8)

We note that the operators C−1AC and C−1BC are also complementary to each other orthogonal
projectors.

If we insert the right-hand side of the second equation (8) into the right-hand side of the first equation
instead u, then we obtain ISLAE (6) in the operator form

u = BC−1ACu−Au0. (9)

It is clear that if u is the solution of the equations (8) then u is the solution of (9). Now let u be the solution
of the equation (9). We apply the operator A and obtain Au = −Au0. But if we apply the operator B
then we obtain only Bu = BC−1ACu instead of u = C−1ACu.

Analogously, if we insert the right-hand side of the first equation (8) into the right-hand side of the
second equation instead of u, then

u = C−1ACBu− C−1ACAu0

(it is ISLAE (7)). In this case we have again no complete equivalence to original equations.
To use all information contained in the original equations, we will minimize the discrepancy of all

these equations. We write this condition “in coordinates”:
+∞∑

k=1

∣∣∣∣
+∞∑

m=1

Ikmam + u0k

∣∣∣∣
2

+

+∞∑

k=1

∣∣∣∣
+∞∑

m=1

Jkmγmam

∣∣∣∣
2

→ min .

If we equate the derivatives by an to zero then we obtain ISLAE
+∞∑

m=1

[+∞∑

k=1

IkmIkn +
+∞∑

k=1

JkmγmJknγn

]
am = −

+∞∑

k=1

Iknu
0
k, k = 1, 2, ... .
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The approximate solution of this set of equations for the same order of truncation as in the case of
ISLAE (6) and (7) gives the most accurate result.

It is possible that the accuracy of the calculations can be increased if we use the different numbers of
equations from two groups (5) by analogy with method of solving the branching problem for the place
waveguide [5]

4. THE SCREEN IN THE RECTANGULAR WAVEGUIDE

Let the rectangular waveguide have the cross-section 0 < x < a, 0 < y < b. In this case we need to
determinate four spaces of basic functions and four spaces of the generalized functions.

The spaces on the basic functions consist of the linear combinations of the functions

ϕss
mn(x, y) =

2√
ab

sin
πmx

a
sin

πny

b
, ϕcs

mn(x, y) =
2√
ab

cos
πmx

a
sin

πny

b
,

ϕsc
mn(x, y) =

2√
ab

sin
πmx

a
cos

πny

b
, ϕcc

mn(x, y) =
2√
ab

cos
πmx

a
cos

πny

b
.

Here and further the indexes m and n are changed in such way that all basic functions are not constant.
The spaces of the generalized functions consist of the linear functionals on the spaces of the basic
functions. We denote these spaces as SS,CS, SC,CC.

The values of the functional f [·] ∈ SS at the function ϕss
mn(·), for example, is denoted as f ss

mn.
We define the operation of the differentiation by x in the following way. This operation transfers the

generalized function from one space to another space, and the values of the generalized functions at the
basic functions are recalculated by the rule:

(∂f
∂x

)cs

mn
=

πm

a
f ss
mn;

(∂f
∂x

)ss

mn
= −πm

a
f ss
mn;

(∂f
∂x

)cc

mn
=

πm

a
f sc
mn;

(∂f
∂x

)sc

mn
= −πm

a
f cc
mn.

The differentiation by y is defined analogously.
It is known (see, for example, [5]), that any non-oriented TM-wave of the rectangular waveguide has

the components

Ez =
∑

m,n

(
amne

iγmnz + bmne
−iγmnz

)
ϕss
mn, Hz = 0,

Ex =
∑

m,n

iγmn

δ2mn

πm

a

(
amne

iγmnz − bmne
−iγmnz

)
ϕcs
mn,

Ey =
∑

m,n

iγmn

δ2mn

πn

b

(
amne

iγmnz − bmne
−iγmnz

)
ϕsc
mn,

Hx =
∑

m,n

−iωε0ε

δ2mn

πn

b

(
amne

iγmnz + bmne
−iγmnz

)
ϕsc
mn,

Hy =
∑

m,n

iωε0ε

δ2mn

πm

a

(
amne

iγmnz + bmne
−iγmnz

)
ϕcs
mn,

where δ2mn = (πm/a)2 + (πn/b)2.
We have also for the non-oriented TE-wave

Ez = 0, Hz =
∑

m,n

(
cmne

iγmnz + dmne
−iγmnz

)
ϕcc
mn,
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Ex =
∑

m,n

−iωμ0μ

δ2mn

πn

b

(
cmne

iγmnz + dmne
−iγmnz

)
ϕcs
mn,

Ey =
∑

m,n

iωμ0μ

δ2mn

πm

a

(
cmne

iγmnz + dmne
−iγmnz

)
ϕsc
mn,

Hx =
∑

m,n

−iγmn

δ2mn

πm

a

(
cmne

iγmnz − dmne
−iγmnz

)
ϕsc
mn,

Hy =
∑

m,n

−iγmn

δ2mn

πn

b

(
cmne

iγmnz − dmne
−iγmnz

)
ϕcs
mn.

It follows that the generalized limits under z → 0 from the region z > 0 of the tangential components
of the field for the positively oriented wave consist of two addends:

(Ex)
cs
mn =

iγmn

δ2mn

πm

a
amn +

−iωμ0μ

δ2mn

πn

b
cmn, (Ey)

sc
mn =

iγmn

δ2mn

πn

b
amn +

iωμ0μ

δ2mn

πm

a
cmn,

(Hx)
sc
mn =

−iωε0ε

δ2mn

πn

b
amn +

−iγmn

δ2mn

πm

a
cmn, (Hy)

cs
mn =

iωε0ε

δ2mn

πm

a
amn +

−iγmn

δ2mn

πn

b
cmn.

We define the conditions when the generalized function is equal to zero on a part of the rectangle
[0, a] × [0, b] analogously to the one-dimensional case. Let

Imnpq =

∫

M

ϕmn(x, y)ϕpq(x, y) dx dy, Jmnpq =

∫

N

ϕmn(x, y)ϕpq(x, y) dx dy

for every space of the generalized functions (here we do not write the upper indexes).
By definition, the generalized function f [·] = 0 on N if

∑

m,n

Jmnpqfmn = 0 ∀p, q or fpq =
∑

m,n

Imnpqfmn ∀p, q.

Consequently, as in the previous case, the boundary conditions of the form (3) for the problem of
diffraction of the eigen wave of the rectangular waveguide on the lateral thin conducting screen M is
reduced to the equalities of traces of the form (4)

E0
x,0[·] = −E1

x,0[·], E0
y,0[·] = −E1

y,0[·] = 0 on M,

H1
x,0[·] = 0, H1

y,0[·] = 0 on N

or to ISLAE of the form (5)
∑

m,n

Icsmnpq

[
iγmn

δ2mn

πm

a
amn − iωμ0μ

δ2mn

πn

b
cmn

]
= −(E0

x,0)
cs
pq ∀p, q,

∑

m,n

Iscmnpq

[
iγmn

δ2mn

πn

b
amn +

iωμ0μ

δ2mn

πm

a
cmn

]
= −(E0

y,0)
sc
pq ∀p, q,

∑

m,n

Jsc
mnpq

[
iωε0ε

δ2mn

πn

b
amn +

iγmn

δ2mn

πm

a
cmn

]
= 0 ∀p, q,

∑

m,n

Jcs
mnpq

[
iωε0ε

δ2mn

πm

a
amn − iγmn

δ2mn

πn

b
cmn

]
= 0 ∀p, q.
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5. THE SCREEN IN THE WAVEGUIDE OF THE ARBITRARY SECTION

In the case of waveguide with metallic walls of the arbitrary section it is advisable to replace the
formulations of the boundary conditions and conjunction conditions on the section of the waveguide to
other conditions.

We define two spaces Φ and Ψ of the generalized functions as the sets of linear functionals on the
linear combinations of the functions ϕm(x, y) and ψm(x, y). If we introduce further the spaces for the
derivatives of these generalized functions, then the components Ex, Ey, Hx, Hy (2) will be composed
from two addends which belong to different spaces. The case of rectangular waveguide is exclusive case.

Then we set the non-standard conditions on the cross-section z = 0: let the components Hz, Ez ,
∂Hz/∂z, ∂Ez/∂z be continuous on the media interface and the components Hz and ∂Ez/∂z be equal to
zero on the screen.

Indeed, if the components Ex, Ey, Hx, Hy satisfy some linear conditions on the media interface, then
the sums and differences of their derivatives satisfy analogous conditions. But it follows from Maxwell
equations that

∂Ey

∂x
− ∂Ex

∂y
= iωμ0μHz,

∂Ex

∂x
+

∂Ey

∂y
= −∂Ez

∂z
,

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz ,

∂Hx

∂x
+

∂Hy

∂y
= −∂Hz

∂z
.

Therefore it is sufficient further to use only two spaces on generalized functions.

As a result, we set the generalized conditions on the sections z = 0 for the traces of normal
components of the field in the following form:

on M : H+
z,0[·] +H0

z,0[·] = 0, H−
z,0[·] +H0

z,0[·] = 0,

(∂E+
z

∂z

)

0
[·] +

(∂E0
z

∂z

)

0
[·] = 0,

(∂E−
z

∂z

)

0
[·] +

(∂E0
z

∂z

)

0
[·] = 0,

on N : H+
z,0[·] = H−

z,0[·],
(∂E+

z

∂z

)

0
[·] =

(∂E−
z

∂z

)

0
[·],

E+
z,0[·] = E−

z,0[·],
(∂H+

z

∂z

)

0
[·] =

(∂H−
z

∂z

)

0
[·].

Consequently,

H+
z,0[·] = H−

z,0[·],
(∂E+

z

∂z

)

0
[·] =

(∂E−
z

∂z

)

0
[·]

both on M and on N . Then a+m = a−m = am and b+m = −b−m = bm, besides
(∂H+

z

∂z

)

0
[·] = −

(∂H−
z

∂z

)

0
[·], E+

z0 = −E−
z0.

Therefore the diffraction problem on the screen is reduced to one-side boundary value problem

on M : H+
z,0[·] = −H0

z,0[·],
(∂E+

z

∂z

)

0
[·] = −

(∂E0
z

∂z

)

0
[·],

on N :
(∂H+

z

∂z

)

0
[·] = 0, E+

z,0[·] = 0.

Now let

Iϕmp =

∫

M

ϕm(x, y)ϕp(x, y) dx dy, Jϕ
mp =

∫

N

ϕm(x, y)ϕp(x, y) dx dy,
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Iψmp =

∫

M

ψm(x, y)ψp(x, y) dx dy, Jψ
mp =

∫

N

ψm(x, y)ψp(x, y) dx dy

(here all integrals are two-dimensional, but the functions ϕ and ψ have only one index). Then, as before,
generalized function f [·] = 0 on N if

∑

m

Jmpfm = 0 ∀p or fp =
∑

m

Impfm ∀p.

Finally, ISLAE of the diffraction problem has the form (the multipliers λm and χm are absent in the
sums (1))

+∞∑

m=0

Impam = −(H0
z,0)p,

+∞∑

m=0

Impδmbm = −
(∂E0

z

∂z

)

0,p
,

+∞∑

m=0

Jmpγmam = 0,

+∞∑

m=0

Jmpbm = 0, p = 0, 1, ... .

It is easy to see, that we have the independent equations for the unknown am and bm.
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