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Abstract—This paper is aimed at constructing fractional power series (FPS) solutions of fractional
Burgers–Huxley equations using residual power series method (RPSM). RPSM is combining
Taylor’s formula series with residual error function. The solutions of our equation are computed
in the form of rapidly convergent series with easily calculable components using Mathematica
software package. Numerical simulations of the results are depicted through different graphical
representations and tables showing that present scheme are reliable and powerful in finding the
numerical solutions of fractional Burgers–Huxley equations. The numerical results reveal that
the RPSM is very effective, convenient and quite accurate to time dependence kind of nonlinear
equations. It is predicted that the RPSM can be found widely applicable in engineering.
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1. INTRODUCTION

Fractional calculus, including integrals and derivatives of arbitrary order, is a generalization of
classical integer-order differentiation and integration [1]. In the past few decades, fractional calculus
theory has played an important role in the fields of fluid mechanics, physics, entropy and engineering [2–
5]. Fractional partial differential (FPD) equations are important tool to describe physical and natural
phenomena such as: damping laws, rheology, diffusion, electrostatics, electrodynamics, fluid flows, and
so on [6–9]. And in most of these applications it is too complicated to obtain exact solutions in terms
of composite elementary functions, so approximation and numerical techniques are used extensively,
such as the tanh method [10], the differential transform method [11, 12], the Homotopy perturbation
method [13, 14], the Adomian decomposition method [15, 16], the variational iteration method [17], The
Homotopy analysis method [18–20], the optimal homotopy asymptotic method [21] and finite difference
method [22]. In this paper, we apply the RPSM to find series solution for fractional Burgers–Huxley
equations. The RPSM is an effective and easy tool to construct a power series solution for strongly
linear and nonlinear equations without linearization, perturbation, or discretization. Different from
the classical power series method, the RPS method does not need to compare the coefficients of the
corresponding terms and a recursion relation is not required. The RPSM method does not require any
conversion while switching from the low-order to the higher-order and from simple linearity to complex
nonlinearity; consequently, the method can be applied directly to the given problem by choosing an
appropriate initial guess approximation. Thus, through RPSM, explicit analytic solutions of nonlinear
problems are possible to obtain. The RPSM was developed as an efficient method for fuzzy differential
equations [23]. It has been advantageously implemented for the fractional foam drainage equation [24],
for the time-fractional two-component evolutionary system of order two [25] and for other equations [26].
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The remainder of the paper is organized as follows. In the next section, we review some fundamental
definitions and theorems of fractional calculus theory and fractional power series. In Section 3, the
procedure of the RPSM is described, and then, the residual power series to fractional Burgers–Huxley
equations is derived. In Section 4 our algorithm is applied graphical and numerical results are presented
and in Section 5 conclusions are given.

2. PRELIMINARIES

This section seeks to describe the operational properties on factional calculus theory that will help us
follow through the principle with the solutions of fractional partial differential equations. There are many
definitions of the fractional operators that have been constructed as Riemann–Liouville, Grunwald–
Letnikov, Weyl, Riesz and Caputo. In our work we will use Caputo’s definition since the derivative of
the constant is zero, and the initial conditions of the fractional PDE’s with Caputo’s derivatives take the
usual form of the integer order PDE’s Which reduces the chance of the occurrence of complications as
in the Riemann–Liouville case.

Definition 1. The fractional power series (FPS) about t = t0 has the form
∞∑

m=0

am(t− t0)
mα = a0 + a1(t− t0)

α + a2(t− t0)
2α + ..., 0 < α < 1, t ≤ t0.

Theorem 1. Suppose that C(t) has a FPS of the form C(t) =
∞∑

m=0
am(t− t0)

mα, t0 ≤ t ≤ t0 +R.

If Dmα
t C(t), m = 0, 1, 2, ..., are continuous on t0 ≤ t ≤ t0 +R, then am = Dmα

t C(t0)/Γ(1 +mα),
where Dmα

t = Dα
t D

α
t ...D

α
t ( m-times) and R is the radius of convergence.

Definition 2. The multiple FPS about t = t0 has the form
∞∑

m=0
Cm(x)(t− t0)

mα.

Theorem 2. Suppose that u(x, t) has a multiple FPS representation at t = t0 of the form

u(x, t) =
∞∑

m=0
Cm(x)(t− t0)

mα, x ∈ I, t0 ≤ t ≤ t0 +R. If Dmα
t u(x, t), m = 0, 1, 2, ..., are continuous

on I × (t0, t0 +R), then Cm(x) = Dmα
t u(x, t0)/Γ(1 +mα).

Corollary 1. Suppose that u(x, y, t) has a multiple FPS representation at t = t0 of the form

u(x, y, t) =
∞∑

m=0
hm(x, y)(t− t0)

mα, (x, y) ∈ I1 × I2, t0 ≤ t ≤ t0 +R. If Dmα
t u(x, y, t), m = 0, 1, 2, ...,

are continuous on I1 × I2 × (t0, t0 +R), then hm(x, y) = Dmα
t u(x, y, t0)/Γ(1 +mα).

3. RPS ALGORITHM FOR SOLVING GENERALIZED FRACTIONAL
BURGERS–HUXLEY EQUATION

The aim of this section is to construct power series solution to the generalized fractional Burgers-
Huxley equation by substituting its power series (PS) expansion among its truncated residual function.
From the resulting equation, a recursion formula for the computation of the coefficients is derived,
while the coefficients in the fractional PS expansion can be computed recursively by recurrent fractional
differentiation of the truncated residual function. The fractional Burgers–Huxley equation has the form

Dα
t u(x, t) = κ

∂2

∂x2
u(x, t)− ωuδ(x, t)

∂

∂x
u(x, t) + βu(x, t)(1 − uδ(x, t))(ηuδ(x, t)− γ),

0 < α ≤ 1, t ≥ 0, x ≥ 0. (1)

Subject to the initial condition

u(x, 0) = C(x), (2)

where κ, ω, β, η and γ are real constants and δ is a positive integer. The RPS method assumes the
solution for the equation (1) as fractional power series about the initial point (t = 0) as follows

u(x, t) =

∞∑

m=0

Cm(x)
tmα

Γ(1 +mα)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R.
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Next, we let uk(x, t) to denote the kth truncated series of u(x, t) i.e.,

uk(x, t) =

k∑

m=0

Cm(x)
tmα

Γ(1 +mα)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R.

By using the initial condition (2), the 0th RPS approximate solution of u(x, t) is u0(x, t) = C0(x) =
u(x, 0) = C(x). Also, in general the kth RPS approximate solution of u(x, t) can be written in the form

uk(x, t) = C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)
, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R. (3)

Now, we define the residual function for Eq. (1) as

Re su(x, t) = Dα
t u(x, t)− κ

∂2

∂x2
u(x, t) + ωuδ(x, t)

∂

∂x
u(x, t)− βu(x, t)(1 − uδ(x, t))(ηuδ(x, t)− γ),

and the kth residual function has the form

Re su,k(x, t) = Dα
t uk(x, t)− κ

∂2

∂x2
uk(x, t) + ωuδk(x, t)

∂

∂x
uk(x, t)

− βuk(x, t)(1 − uδk(x, t))(ηu
δ
k(x, t)− γ). (4)

As in [8, 22], Re s(x, t) = 0 and Re s(x, t) = lim
k−→∞

Re su,k(x, t) = Re su(x, t) for all and x ∈ I. There-

fore, Diα
t Re s(x, t) = 0 since the fractional derivative of a constant in the Caputo’s sense is 0. Also, the

fractional derivative Diα
t of Re su(x, t) and Re su,k(x, t) is matching at t = 0 for each i = 0, 1, 2, ..., k.

Now to clarify the RPS technique, we substitute (3) in Eq. (4) to get

Re su,k(x, t) = Dα
t

(
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

)
− κ

∂2

∂x2

(
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

)

+ ω

(
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

)δ
∂

∂x

(
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

)

− β

[
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

]⎡

⎣1−
(
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

)δ
⎤

⎦

×

⎡

⎣η
[
C(x) +

k∑

m=1

Cm(x)
tmα

Γ(1 +mα)

]δ

− γ

⎤

⎦ .

To get the required coefficients (Cm(x), m = 1, 2, ..., k), take the fractional derivative formula when

i = k − 1 (i.e D(k−1)α
t ) of both Re su,k(x, t), k = 1, 2, ..., and then solve the obtained algebraic system

D
(k−1)α
t Re su,k(x, 0) = 0, 0 < α ≤ 1, x ∈ I, k = 1, 2, ... . (5)

After solving algebraic system (5), we have the coefficients C1(x), C2(x), ..., Ck(x). Therefore, the kth
RPS approximate solution is derived. Next, we will deduce the first approximate solution in detail. In
fact, it is very convenient to perform computations by using the Mathematica software package.

4. APPLICATION AND NUMERICAL RESULTS

In this section we will generalize a classical test problem from Burgers–Huxley equation into a
fractional one by replacing the first time derivative by a fractional derivative of order then we will apply
the RPS method demonstrated above on this problem, later, graphics and numerical results will be
discussed.
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Example 1. Consider the following time fractional Burgers equation

Dα
t u(x, t) = uxx(x, t) + u(x, t)ux(x, t) + u(x, t)(1 − u(x, t))(u(x, t) − 1),

0 < α ≤ 1, t ≥ 0, x ≥ 0. (6)

Subject to the initial conditions u(x, 0) = C(x), when α = 1 and C(x) = 1/2 − (1/2) tanh(x/4), the
exact solutions of equation (6) is u(x, t) = 1/2− (1/2) tanh(x/4− 3/(8t)). According to the process of
the RPSM described in Section 3, we get the first few RPS approximate solutions

u0(x, t) = C0(x) = C(x), u1(x, t) = C(x) + C1(x)t
α/Γ(1 + α),

u2(x, t) = C(x) +C1(x)t
α/Γ(1 + α)C2(x)t

2α/Γ(1 + 2α),

u3(x, t) = C(x) + C1(x)t
α/Γ(1 + α) + C2(x)t

2α/Γ(1 + 2α) + C3(x)t
3α/Γ(1 + 3α),

... (7)

The kth residual function for Eq. (6) has the form

Re su,k(x, t) = Dα
t uk(x, t)−

∂2

∂x2
uk(x, t)− uk(x, t)

∂

∂x
uk(x, t)− uk(x, t)(1− uk(x, t))(uk(x, t)− 1).

To get the coefficient C1(x) substitute u1(x, t) = C(x) +C1(x)t
α/Γ(1 + α) in the first residual function

Re su,1(x, t) = C1(x)− C ′′(x) + C(x)((C(x)− 1)2 − C
′
(x))

− [Γ(1 + α)]−1(C(x)C
′
1(x) + C

′′
1 (x)− C1(x))(1 − C

′
(x) + C(x)(3C(x)− 4)))tα

− C1(x)[Γ(1 + α)]−2(C
′
1(x)− C1(x)(3C(x) − 2))t2α + C3

1 (x)[Γ(1 + α]−3t3α.

From Eq. (5), we deduce that Re su,1(x, 0) = 0 and thus C1(x) = C ′′(x) +C(x)(C ′(x)− (C(x)− 1)2).
Therefore, the first RPS approximate solution is

u1(x, t) = C(x) + (C
′′
(x) + C(x)(C ′(x)− (C(x)− 1)2))tα[Γ(1 + α)]−1.

To get the coefficient C2(x) substitute u2(x, t) in the second residual function

Re su,2(x, t) = C(x)− 2C2(x) + C3(x) + C1(x)− C(x)C ′(x)− C ′′(x)

+ [Γ(1 + α)]−1(C2(x)− C(x)C ′
1(x)− C ′′

1 (x) + C1(x))(1 − C ′(x) +C(x)(3C(x) − 4)))tα

+ [Γ(1 + 2α)]−1(C2(x)(1 − C ′(x) + C(x)(3C(x)− 4))− C(x)C
′
2(x)− C ′′(x))

+ C1(x)[Γ(1 + α)]−2(C1(x)(3C(x) − 2)− C ′
1(x))t

2α − [Γ(1 + α)Γ(1 + 2α)]−1C2(x)C
′
1(x)

+ C1(x)(C
′
2(x) + C2(x)(4− 6C(x)))) − C3

1 (x)[Γ(1 + α)]−3t3α + C2(x)[Γ(1 + 2α)]−2

× (−C ′
2(x) + C2(x)(3C(x) − 2)) + 3C2(x)C

2
1 (x)Γ(1 + α)]2[Γ(1 + 2α)]−1t4α

+ 3C1(x)C
2
2 (x)[Γ(1 + α)Γ(1 + 2α)2]−1t5α + C3

2 (x)[Γ(1 + 2α)]−3t6α. (8)

Applying Dα
t on both sides of Eq. (8) gives

Dα
t Re su,2(x, t) = C2(x)− C(x)C ′

1(x)− C ′′
1 (x) + C1(x)(1− C ′(x) + C(x)(3C(x)− 4))

+ [Γ(1 + α)]−1(C2(x)(1 −C
′
(x) + C(x)(3C(x) − 4)) − C(x)C

′
2(x)− C

′′
2 (x))

+ Γ(1 + 2α)C1(x)[Γ(1 + α)−3](C1(x)(3C(x) − 2)− C
′
1(x))]t

α − Γ(1 + 3α)[Γ(1 + α)Γ(1 + 2α)]−2

× (C2(x)C
′
1(x) + C1(x)(C

′
2(x) + C2(x)(4− 6C(x)))))

− Γ(1 + 3α)C3
1 (x)[Γ(1 + α)]−3[Γ(1 + 2α)]−1t2α

+

[
Γ(1 + 4α)C2(x)

Γ(1 + 3α)[Γ(1 + 2α)]2
(−C

′
2(x) + C2(x)(3C(x) − 2)) +

3Γ(1 + 4α)C2(x)C
2
1 (x)

Γ(1 + α)2Γ(1 + 2α)Γ(1 + 3α)

]
t3α

× 3Γ(1 + 5α)C1(x)C
2
2 (x)

Γ(1 + α)[Γ(1 + 2α)]2Γ(1 + 4α)
t4α +

Γ(1 + 6α)C3
2 (x)

[Γ(1 + 2α)]3Γ(1 + 5α)
t5α.
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Fig. 1. The 4th RPS approximate solutions for application1 when C(x) = 1/2− (1/2) tanh(x/4) α = 1, 0 < x < 8
and 0 < t < 3.

By the fact that Diα
t Re su,2(x, t) = 0 and solving the above resulting system for the unknown coefficient

function C2(x), we get

C2(x) = C(x)C
′
1(x) + C ′′

1 (x) +C1(x)(C
′(x) +C(x)(4 − 3C(x))− 1))

and the second RPS approximate solution is

u2(x, t) = C(x) + (C
′′
(x) + C(x)(C ′(x)− (C(x)− 1)2))tα/Γ(1 + α)

+ C(x)C ′
1(x) + C ′′

1 (x) + C1(x)(C
′(x) + C(x)(4− 3C(x))− 1)))t2αΓ(1 + 2α).

Thus, by using the same manner as above and from Eq. (5), solving the equation Di2α
t Re su,3(x, t) = 0

results in the following formula

C3(x) = C(x)C
′
2(x) + C

′′
2 (x) + C2(x)(C

′
(x) + C(x)(4− 3C(x))− 1))

+ Γ(1 + 2α)[Γ(1 + α)]−2C1(x)(C
′
1(x) + C1(x)(2− 3C(x))),

and the third RPS approximate solution is

u3(x, t) = C(x) + (C ′′(x) +C(x)(C ′(x)− (C(x)− 1)2))tα/Γ(1 + α)

+ C(x)C ′
1(x) + C ′′

1 (x) + C1(x)(C
′(x) + C(x)(4− 3C(x))− 1)))t2α/Γ(1 + 2α)

+ C(x)C ′
2(x) + C ′′

2 (x) + C2(x)(C
′(x) + C(x)(4− 3C(x))− 1))

+ Γ(1 + 2α)[Γ(1 + α)]−2C1(x)(C
′
1(x) + C1(x)(2 − 3C(x)))t3α/Γ(1 + 3α).

If we repeat the same procedures for k = 4, 5, 6, ..., we will get the RPS approximate solutions of our
time-fractional problem. In this application, we study the solutions of the time fractional Burgers–
Huxley equation numerically. In order to validate the efficiency and accuracy of the RPS method, we
will compare between the exact solution and the 4th approximate solutions. Figure 1 explores the fourth
RPS approximate solutions of u(x, t) when α = 1 and for different values of x and t.

It is clear from the Figure 1 that the 4th order RPS approximate solutions (when α = 1) are nearly
identical and in excellent agreement with the exact solution. Figure 2 shows the 4th order RPS
approximate solutions for various values of α and we observe that each of the subfigures is nearly
coinciding and similar in their behavior. The graphical results in provide a numerical estimate for the
convergence of the RPS method in predict the solitary pattern solution. Anyhow, the accuracy is in
advanced by using only few terms of approximations. Indeed, we can conclude that higher accuracy can
be achieved by computing further terms. To show the accuracy of the method, numerical results at x = 4
with some selected grid points t for K = 10 are given in Table 1. From the table, it can be seen that the
present method provides us with an accurate approximate solution to Burgers equation (6). Indeed, the
results reported in this table confirm the effectiveness of the RPS method.

Example 2. Consider the following time fractional Burgers equation

∂αu

∂tα
=

∂2u

∂x2
− u2

∂u

∂x
+ u(1− u2), 0 < α ≤ 1, t ≥ 0, x ≥ 0. (9)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 2 2019



ANALYTICAL SOLUTION OF FRACTIONAL 179

0.3

� = 0.75� = 0.55

0.2
0.1

0
2

4
6

8 0

1

2

3
0.3
0.2
0.1

0
2

4
6

8 0

1

2

3

0.3

� = 1� = 0.95

0.2
0.1

0
2

4
6

8 0

1

2

3
0.3
0.2
0.1

0
2

4
6

8 0

1

2

3

Fig. 2. The 4th RPS approximate solutions for application1 when C(x) = 1/2− (1/2) tanh(x/4).

Subject to the initial conditions

u(x, 0) = C(x), (10)

when α = 1 and C(x) =
√

1/2− (1/2) tanh(x/3), the exact solutions of equation (9) is

u(x, t) =
√

1/2− (1/2) tanh(x/3 − 10t/9).

According to the process of the RPSM described in Section 3, we get the same results as in equation (7).
The kth residual function for Eq. (9) has the form

Re su,k(x, t) = Dα
t uk(x, t)−

∂2

∂x2
uk(x, t) + u2k(x, t)

∂

∂x
uk(x, t)− uk(x, t)(1 − u2k(x, t)). (11)

To determine C1(x) we consider (k = 1) in equation (11) and substitute u1(x, t) = C(x) +
C1(x)t

α[Γ(1 + α)]−1 in the 1-th residual function Re su,1(x, t) to get

Re su,1(x, t) = C1(x)− C ′′(x) + C(x)(−1 +C(x)(C(x) + C ′(x)))

+ [Γ(1 + α)]−1(C2(x)C ′
1(x)− C ′′

1 (x) +C1(x)(3C
2(x) + 2C(x)C

′
(x)− 1))tα

+ C1(x)[Γ(1 + α)−2](2C(x)C ′
1(x) + C1(x)(3C(x) + C ′(x)))t2α

+ C2
1 (x)[Γ(1 + α)−3](C1(x) + C ′

1(x))t
3α.

From Eq. (5) we deduce that Re su,1(x, 0) = 0 and thus

C1(x) = C ′′(x)− C(x)(−1 + C(x)(C(x) + C
′
(x))).

Therefore, the first RPS approximate solution is

u1(x, t) = C(x) + (C ′′(x)− C(x)(−1 + C(x)(C(x) + C ′(x))))tα/Γ(1 + α).
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Fig. 3. The surface graph of the exact solution u(x, t) and the 5th RPS approximate solution u5(x, t) for application 2
when C(x) =

√
1/2 − (1/2) tanh(x/3).

To obtain the coefficient C2(x), we substitute the second truncated series

u2(x, t) = C(x) + C1(x)t
α/Γ(1 + α) + C2(x)t

2α/Γ(1 + 2α)

into the second residual function Resu,2(x, 0) and by using the same manner as above, we getC2(x) = 0.
So, the second RPS approximate solution is

u2(x, t) = C(x) + (C
′′
(x)− C(x)(−1 + C(x)(C(x) + C ′(x))))tα/Γ(1 + α).

Thus, solving the equation Di2α
t Re su,3(x, t) = 0 results in the following recurrence formula

C3(x) = −Γ(1 + 2α)C1(x)[Γ(1 + α)]−2(2C(x)C
′
1(x) + C1(x)(3C(x) + C

′
(x))),

and the third RPS approximate solution is

u3(x, t) = C(x) + (C
′′
(x)− C(x)(−1 + C(x)(C(x) + C ′(x))))tα/Γ(1 + α)

− Γ(1 + 2α)C1(x)[Γ(1 + α)]−2(2C(x)C
′
1(x) + C1(x)(3C(x) + C

′
(x)))t3α/Γ(1 + 3α).
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Table 1. Numerical and error results of the RPS approximate solution for application 1 at α = 1

t uexact(x, t) u10(x, t) Absolute error Relative error

0.1 0.11155054 0.11155054 5.5511151× 10−17 4.976322× 10−16

0.2 0.104331223 0.104331223 2.220446× 10−16 2.128266× 10−15

0.3 0.097527837 0.097527837 1.7152945× 10−14 1.7587743× 10−13

0.4 0.091122961 0.091122961 3.9696024× 10−13 4.3563141× 10−12

0.5 0.085099045 0.085099045 4.5216024× 10−12 5.3133443× 10−11

0.6 0.079438549 0.079438549 3.2865377× 10−11 4.1372076× 10−10

0.7 0.074124065 0.074124065 1.7519996× 10−10 2.3636043× 10−9

0.8 0.069138420 0.069138410 7.4432132× 10−10 1.0765668× 10−8

0.9 0.064464765 0.064464763 2.6588732× 10−9 4.1245372× 10−8

1.0 0.0600866501 0.060086641 8.2840590× 10−9 1.3786854× 10−7

Table 2. Numerical and error results of the RPS approximate solution for application 2 at α = 1 and x = 3

t uexact(x, t) u20(x, t) Absolute error Relative error

0.1 0.38023381 0.38023381 0 0

0.2 0.417474934 0.417474934 0 0

0.3 0.456736825 0.456736825 0 0

0.4 0.497658317 0.497658317 2.4980018× 10−15 5.01951181× 10−15

0.5 0.539758441 0.539758441 1.93955962× 10−13 3.59338451× 10−13

0.6 0.582446247 0.582446247 4.97579755× 10−12 8.54293005× 10−12

0.7 0.625045964 0.625045964 1.89318560× 10−11 3.02887421× 10−11

0.8 0.66683727 0.666837271 1.543232985× 10−9 2.31425724× 10−9

0.9 0.707106781 0.707106821 4.064332081× 10−8 5.74783355× 10−8

1.0 0.745203365 0.745203937 5.727171323× 10−7 7.685380384× 10−7

Repeat the same procedures for k = 4, 5, 6, ..., to get the RPS approximate solutions of our time-
fractional problem. The geometric behavior of the solutions of equation (9) and (10) (when the
initial condition u(x, 0) =

√
(1/2 − (1/2) tanh(x/3)) are studied next by drawing the 3-dimensoinal

space figures of the 5-th order RPS approximate solution together with the exact solution (u(x, t) =√
1/2 − (1/2) tanh(x/3− 10t/9)) when α = 1. Anyhow, the scenario of subfigures is to plot u5(x, t)

when α = 0.55, α = 0.75, α = 0.95 and α = 1 respectively, on the domain [0, 5]× [0, 1.2]. It is clear
from the Figure 3 that each of the subfigures are nearly coinciding and similar in their behavior, while for
the special case the subfigures (α = 1, exact solution) are nearly identical and in excellent agreement to
each other in terms of the accuracy. The performance errors analysis is obtained by the RPS at x = 3
with some selected grid points t for K = 20 are summarized in Table 2. Numerically, it is showed that
the proposed approach is effective, accurate and convenient method.

5. CONCLUSIONS

In this work, the RPS method is successfully employed to solve the time-fractional Burgers–Huxley
equations with variable pressure in two dimensions. The given examples reveal that the RPS method can
be used as an alternative to obtain analytical solutions of time fractional nonlinear differential equations.
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The proposed technique provides solutions in terms of rapidly convergent series with easily computable
components, which are in excellent agreement with the exact solutions (when α = 1) as revealed by the
numerical results. The algorithm for this method is direct and easy because it is based on the recursive
differentiation of time- fractional dispersive and the application of a given initial constraints conditions
so that we can compute the coefficient of the multiplicity FPS solution with less computations. The
simulation results obtained shows that the technique is simple and reveal the validity and reliability of
RPS method.
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