Monomial Ideals with Quasi-Linear Quotients

S. Nazir1*, I. Anwar2, and A. Ahmad3*****

(Submitted by E. K. Lipachev)

1Lahore University of Management Sciences, Lahore, Punjab, 54792 Pakistan

2Abdus Salam School of Mathematical Sciences, GC University, Lahore, 54000 Pakistan

3COMSATS Institute of Information Technology, Lahore, Punjab, 54000 Pakistan Received July 27, 2018

Abstract—In this paper, we extend the notion of quasi-linear quotients for a pure monomial ideal (not necessarily square-free) of degree d . We introduce the notion of quasi-linear free resolution and show that if a pure monomial ideal $I = (u_1, u_2, \dots, u_m)$ of degree d in the polynomial ring $S = k[x_1,\ldots,x_n]$ admits quasi-linear quotients then $L_q = (u_1,\ldots,u_{q-1}) : u_q$ admits quasi-linear free resolution for all $q \leq m$. Moreover, we show that if a pure monomial ideal I of degree d admits quasi-linear quotients then $I_{\langle t \rangle}$ will also have quasi-linear quotients for $t \geq d.$

DOI: 10.1134/S1995080219010116

Keywords and phrases: *shellable simplicial complex, facet ideal, graded free resolution, graded betti numbers, betti diagram, colon of monomial ideals.*

1. INTRODUCTION

The class of square-free monomial ideals with quasi-linear quotients was introduced in [1]. A monomial ideal is said to have *quasi-linear quotients*, if there exists a minimal monomial system of generators u_1, u_2, \ldots, u_m of I such that $\beta_{01}(L_k) \neq 0$ for all $1 < k \leq m$, where $L_k = (u_1, u_2, \ldots, u_{k-1})$: (u_k) . The concept of shellability has been the subject of a considerable number of geometric and algebraic investigations for instance see [2–4], and [6]. The facet ideal $I_{\mathcal{F}}(\Delta)$ (introduced in [5]) of a pure shellable simplicial complex Δ admits quasi-linear quotients [2]. Moreover, the class of monomial ideals with linear quotients (introduced by Herzog and Takayama [7]) is contained in the class of monomial ideals with quasi-linear quotients.

The potential aim of this article is to study the monomial ideals with quasi-liner quotients. We introduce the notion of *quasi-linear free resolution* and show that if a pure monomial ideal $I =$ (u_1, u_2, \ldots, u_m) of degree d admits quasi-linear quotients then $L_q = (u_1, \ldots, u_{q-1}) : u_q$ admits *quasilinear free resolution* for all $q \leq m$. We also show that if a pure monomial ideal I of degree d admits quasi-linear quotients then $I_{\langle t \rangle}$ will also have quasi-linear quotients for $t \geq d.$

 $\mathrm{^*E}\text{-}$ mail: shaheen.nazir@lums.edu.pk

^{**}E-mail: iimrananwar@gmail.com

^{***}E-mail: aniqa.mathematics@gmail.com

2. BACKGROUND

In this section, we define some basic notions that we will use in the paper along with some background theory.

Let $S = k[x_1, \ldots, x_n]$ denote the polynomial ring in *n* variables over an infinite field k with each $deg(x_i)=1$ and I a monomial ideal of S. The graded Betti numbers $\beta_{i,j} = \beta_{i,j} (I)$ appear in the graded minimal free resolution

$$
\mathfrak{F}: 0 \to \bigoplus_{j \in Z} S(-j)^{\beta_{h,j}} \to \cdots \to \bigoplus_{j \in Z} S(-j)^{\beta_{0,j}} \to I
$$

of I in S. Then $\beta_{i,j}(I) = \dim_k \text{Tor}_i(I,k)_j$ for all i and j. There are two important invariants attached to a monomial ideal $\tilde{I} \subset S$ defined in terms of the minimal graded free resolution of I :

proj dim
$$
(I)
$$
 = max{ $i : \beta_{i,j}(I) \neq 0$ },

$$
reg(I) = max\{j : \beta_{i,i+j}(I) \neq 0 \text{ for some } i\}
$$

namely *projective dimension* and *regularity* of I respectively. We say that I has a **linear resolution** if there exists an integer $m \ge 1$ such that $\beta_{i,i+j} = 0$ for all i and j with $j \ne m$. Thus, in particular, if I has a linear resolution, then I is generated by homogeneous polynomials of the same degree.

Definition 2.1. *Let* I *be a monomial ideal in* S *and* u *be any monomial in* S*. Then the* colon ideal *of* I *with respect to* (u) *is defined as*

$$
I: (u) = \{ f \in S \mid fu \in I \}.
$$

Here, we recall an important class of monomial ideals namely *ideals with linear quotients* along with some important results.

Definition 2.2. *Let I* ⊂ $S = k[x_1, \ldots, x_n]$ *be a monomial ideal, we say that I has* linear quotients*, if there exists a minimal monomial system of generators* u_1, u_2, \ldots, u_m of I such that L_k is *generated by linear forms for all* $1 < k \le m$ *, where*

$$
L_k = (u_1, u_2, \dots, u_{k-1}) : (u_k).
$$

Moreover for each k, we denote the number of generators of L_k by r_k or in other words $\mu(L_k) = r_k$.

One of the reasons that makes ideals with linear quotient an important subject for considerations is due to the following result [6, Proposition 8.2.1].

Theorem 2.3. *Suppose that* I ⊂ S *is a graded ideal generated in degree* d *and that* I *has linear quotients. Then* I *has a* d*-linear resolution.*

3. PURE MONOMIAL IDEALS WITH QUASI-LINEAR QUOTIENTS

In this section, we will consider only monomial ideals with quasi-linear quotients in the polynomial ring $S = k[x_1,\ldots,x_n]$. We say that a monomial ideal $I \subset S$ is pure of degree d, if and only if $\beta_{0,j}(I)=0$ for all $j \neq d$.

Definition 3.1. *Let* I *be a monomial ideal in* S*. We define the indeg*(I) *as follows*

$$
\text{indeg}(I) = \min\{j : \beta_{0,j}(I) \neq 0\}.
$$

Definition 3.2. *Let* $I ⊂ S$ *be a monomial ideal, we say that* I *has* quasi-linear quotients, if there *exists a minimal monomial system of generators* u_1, u_2, \ldots, u_m *of* I such that indeg(L_i) = 1 *for* all $1 < i \leq m$, where

$$
L_i = (u_1, u_2, \dots, u_{i-1}) : (u_i).
$$

Remark 3.3. *Let* I ⊂ S *be a monomial ideal having* linear quotients*, then* I *has quasi-linear quotients as well. Therefore, the class of ideals with quasi-linear quotients is a generalization of the class of monomial ideals with linear quotients.*

Definition 3.4. *We say that* I has a quasi-linear resolution if for each integer i with $0 \leq$ $i <$ proj dim(*I*), *there exists an integer* j *such that*, $\beta_{i,j}(I) \neq 0$ *implies* $\beta_{i+1,j+1}(I) \neq 0$ *. Thus, in* *particular, if* I *will have a quasi-linear resolution, then there is at least one linear shift in each step of the minimal free resolution of* I.

The following example is given to show the various aspects of quasi-linear resolution of an ideal I.

Example 3.5. Let us consider the polynomial ring $S = k[x_1, \ldots, x_7]$ and monomial ideal $I = (x_1x_2x_3, x_1x_3x_4, x_3x_4x_5, x_4x_5x_6, x_5x_6x_7)$. *Its minimal free resolution is as follows:*

$$
0 \to S(-7) \to S(-4)^4 \oplus S(-6) \to S(-3)^5 \to I
$$

with Betti diagram:

One can see the linear shift in each step clearly.

Theorem 3.6. *Let* $I \subset S = k[x_1, \ldots, x_n]$ *be a pure monomial ideal of degree d, minimally generated by* $\{u_1, u_2, \ldots, u_m\}$. *If I* has quasi-linear quotients, then $L_q = (u_1, u_2, \ldots, u_{q-1}) : u_q$ *has a quasi-linear free resolution for all* $1 < q \leq m$.

Proof. Since *I* has quasi-linear quotients, so L_q has a variable as a generator, for all $1 < q \leq m$. To show L_q has a quasi-linear free resolution, it is enough to show that a monomial ideal containing a variable has a quasi-linear free resolution.

Let L be an ideal containing a variable. We may assume that $L = (J, x_1)$ with $x_1 \notin \text{supp}(J)$. By using the definition of minimal graded free resolution, one may obtain a minimal graded free resolution of L from a minimal graded free resolution of J , as

$$
\operatorname{Tor}_i^S(L,k)_j = \operatorname{Tor}_i^S(J,k)_j \oplus \operatorname{Tor}_{i-1}^S(J(-1),k)_j, \quad \text{for all } i \ge 1 \quad \text{and}
$$

$$
\operatorname{Tor}_0^S(L,k)_j = \operatorname{Tor}_0^S((x_1,k)_j \oplus \operatorname{Tor}_0^S(J,k)_j.
$$

Now suppose that $\beta_{i+1}(L) \neq 0$. Then $\beta_i(J) \neq 0$. (In fact, if $\beta_i(J)=0$, then $\beta_{i+1}(J)=0$, which implies $\beta_{i+1}(L)=0$, a contradiction.) In particular, there exists j such that $\beta_{i,j} (J) \neq 0$. The presence of $\text{Tor}_{i}^{S}(J,k)_{j} \oplus \text{Tor}_{i-1}^{S}(J(-1),k)_{j}$ ensures that $\beta_{i,j}(L) \neq 0$ and $\beta_{i+1,j+1}(L) \neq 0$. Therefore, L has a quasi-linear free resolution for all $k \leq m$.

Here we give an example to demonstrate the step recursively mentioned in the proof of above theorem. **Example 3.7.** Let $I = (a, b, cd, ce, de)$ *be a monomial ideal in the polynomial ring* $S = k[a, b, c]$ d, e]. *Therefore, we have the following chain of ideals*

$$
I_0 = (cd, ce, de) \subset I_1 = (a, I_0) \subset I_2 = I.
$$

The Betti diagram of I_0 *is given as:*

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 40 No. 1 2019

The Betti diagram of I_1 *can be obtained from* I_0 *(changes in shift are shown in bold entries)*:

$$
\begin{array}{cccc}\n- & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
2 & 3 & 5 & = 3 + 2 \\
2 & = 2 + 0\n\end{array}
$$

The Betti diagram of $I_2 = I$ *can be obtained from* I_1 *(changes in shift are shown in bold entries)*:

One can notice the changes in the shifts by comparing the above Betti diagrams. It is clear from above that

$$
\text{Tor}_{i}^{S}(I_{1},k)_{j} = \text{Tor}_{i}^{S}(I_{0},k)_{j} \oplus \text{Tor}_{i-1}^{S}(I_{0}(-1),k)_{j} \text{ for } i > 0
$$

and

$$
\text{Tor}_{i}^{S}(I,k)_{j} = \text{Tor}_{i}^{S}(I_{1},k)_{j} \oplus \text{Tor}_{i-1}^{S}(I_{1}(-1),k)_{j} \text{ for } i > 0.
$$

Moreover,

$$
\operatorname{Tor}_0^S(I_1,k)_j=\operatorname{Tor}_0^S((a),k)_j\oplus \operatorname{Tor}_0^S(I_0,k)_j
$$

and

$$
Tor_0^S(I,k)_j = Tor_0^S((b),k)_j \oplus Tor_0^S(I_1,k)_j.
$$

For a pure monomial ideal $I\subset S$ of degree $d,$ we have $I_{\langle t\rangle}$ is a monomial ideal generated by t degree monomials in $I.$ In particular, $I_{\langle t \rangle} = I.(x_1, x_2, \ldots, x_n)^{t-d}.$

Theorem 3.8. *Let* I ⊂ S *be a pure monomial ideal of degree* d *having quasi-linear quotients* with respect to the generating set $G(I)=\{u_1,u_2,\ldots,u_m\}.$ Then $I_{\langle t \rangle}$ will also have quasi-linear *quotients for* $t \geq d$.

Proof. We prove our claim by giving the an ordered generating set of $I_{\langle t \rangle} = I.(x_1, x_2, \ldots, x_n)^{t-d}$ that admits quasi-linear quotients. We claim that $I_{\langle t \rangle}$ have quasi-linear quotients with respect to the following generating system.

$$
v_1u_1, v_1u_2, \ldots, v_1u_m,
$$

\n
$$
v_2u_1, v_2u_2, \ldots, v_2u_m,
$$

\n
$$
\vdots
$$

\n
$$
v_ru_1, v_ru_2, \ldots, v_ru_m,
$$

such that $r = \binom{n+t-d-1}{n-1}$. We order the above list of generators in lexicographic order with respect to v_i by ignoring the monomial u_j . One may observe that all the monomials in the above list are of type $v_i.u_j$ where v_i is a monomial of degree $t - d - 1$. Firstly, observe that if u_1,\ldots,u_m admits quasi-linear quotients then $x_1^{t-d}u_1, x_1^{t-d}u_2, \ldots, x_1^{t-d}u_m$ also admits the quasi-linear quotients, therefore all the colon $L_{v_1u_k}$ will have a linear term for all $1\leq k\leq m.$ Now take any term from the list of monomials v_iu_k for $2 \leq i$ from the above list with the assumption that $v_i = x_i^p \mathbf{x}$ (with $\deg(\mathbf{x}) = t - d - p$ and $\text{supp}(\mathbf{x}) =$ $\{x_j\,|\,j>i\}$ then there exists a term $v_j=x_1x_i^{p-1}\mathbf{x}$ such that $v_i<_{lex}v_j$ (or equivalently $i>j$). Therefore, the colon ideal $L_{v_i u_k}$ will have a linear term $\frac{v_j u_k}{GCD(v_i u_k, v_j u_k)} = x_1$, as required.

ACKNOWLEDGMENTS

The authors would like to thank the Higher Education Commission, Pakistan for supporting this research under the project number 4234.

REFERENCES

- 1. I. Anwar and Z. Raza, "Quasi-linear quotients and shellability of pure simplicial complexes," Commun. Algebra **43**, 4698–4704 (2015).
- 2. I. Anwar and K. Shabbir, "A note on: quasi-linear quotients and shellability of pure simplicial complexes," Commun. Algebra **46** (2), 850–850 (2018). doi 10.1080/00927872.2017.1327599
- 3. A. Dress, "A new algebraic criterion for shellability," Beitr. Algebr. Geom. **340** (1), 45–50 (1993).
- 4. J. A. Eagon and V. Reiner, "Resolution of Stanley-Reisner rings and Alexander duality," J. Pure Appl. Algebra **130** (3), 265–275 (1998).
- 5. S. Faridi, "The facet ideal of a simplicial complex," Manuscr. Math. **109**, 159–174 (2002).
- 6. J. Herzog and T. Hibi, *Monomial Ideals,* Vol. 260 of *Graduate Texts in Mathematics* (Springer, London, 2010).
- 7. J. Herzog and Y. Takayama, "Resolutions by mapping cones," Homology Homotopy Appl. **4** (2), 277–294 (2002).