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Abstract—We study the Dirichlet problem with continuous boundary data in simply connected
domains D of the complex plane for the semi-linear partial differential equations whose linear
part has the divergent form. We prove that if a Jordan domain D satisfies the so-called quasi-
hyperbolic boundary condition, then the problem has regular (continuous) weak solutions whose
first generalized derivatives by Sobolev are integrable in the second degree. We give a suitable
example of a Jordan domain with the quasihyperbolic boundary condition that fails to satisfy both
the well-known (A)-condition and the outer cone condition. We also extend these results to some
non-Jordan domains in terms of the prime ends by Caratheodory. The proofs are based on our
factorization theorem established earlier. This theorem allows us to represent solutions of the semi-
linear equations in the form of composition of solutions of the corresponding quasilinear Poisson
equation in the unit disk and quasiconformal mapping of D onto the unit disk generated by the
measurable matrix function of coefficients. In the end we give applications to relevant problems of
mathematical physics in anisotropic inhomogeneous media.
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1. INTRODUCTION

Given a domain D in C, denote by M2×2
K (D) the class of all 2× 2 symmetric matrix functions

A(z) = {ajk(z)} with measurable entries and det A(z) = 1, satisfying the uniform ellipticity condition

1

K
|ξ|2 ≤ 〈A(z)ξ, ξ〉 ≤ K|ξ|2 a.e. in D (1)

for every ξ ∈ C, where 1 ≤ K < ∞. Further we study the semi-linear equations

div [A(z)∇u(z)] = f(u(z)), z ∈ D, (2)

with continuous functions f : R → R either bounded or such that f(t)/t → 0 as t → ∞. Simi-linear
equations with such f describe a number of physical phenomena in anisotropic inhomogeneous media.
The equations (2) are closely relevant to the so-called Beltrami equations. Let μ : D → C be a
measurable function with |μ(z)| < 1 a.e. The equation

ωz̄ = μ(z)ωz, (3)

where ωz̄ = (ωx + iωy)/2, ωz = (ωx − iωy)/2, z = x+ iy, ωx and ωy are partial derivatives of the
function ω in x and y, respectively, is said to be the Beltrami equation. The equation (3) is said to be
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1344 GUTLYANSKIĬ, RYAZANOV

nondegenerate if ||μ||∞ < 1. The homeomorphic solutions of nondegenerate Beltrami’s equations (3)
in W 1,2

loc are called quasiconformal mappings, see e.g. [1, 2] and [27].

We say that a quasiconformal mapping ω satisfying (3) is agreed with A ∈ M2×2
K (D) if

μ(z) =
a22(z) − a11(z) − 2ia12(z)

det (I +A(z))
, (4)

where I is the unit 2× 2 matrix. Condition (1) is now written as

|μ(z)| ≤ (K − 1)/(K + 1) a.e. in D. (5)

Vice versa, given a measurable function μ : D → C, satisfying (5), one can invert the algebraic
system (4) to obtain the matrix function A ∈ M2×2

K (D):

A(z) =

⎛
⎝

|1−μ|2
1−|μ|2

−2Im μ
1−|μ|2

−2Im μ
1−|μ|2

|1+μ|2
1−|μ|2

⎞
⎠ . (6)

By the existence theorem for (3), see e.g. Theorem V.B.3 in [1] and Theorem V.1.3 in [27], any
A ∈ M2×2

K (D) generates a quasiconfomal mapping ω : D → D.
We also would like to pay attention to a strong interaction between linear and non-linear elliptic

systems in the plane and quasiconformal mappings. The most general first order linear homogeneous
elliptic system with real coefficients can be written in the form fz̄ + μ(z)fz + ν(z)fz = 0, with measur-
able coefficients μ and ν such that |μ|+ |ν| ≤ (K − 1)/(K +1) < 1. This equation is a particular case of
a non-linear first order system fz̄ = H(z, fz) where H : G× C → C is Lipschitz in the second variable,

|H(z, w1)−H(z, w2)| ≤
K − 1

K + 1
|w1 − w2|, H(z, 0) ≡ 0.

The principal feature of the above equation is that the difference of two solutions need not solve
the same equation but each solution can be represented as a composition of a quasiconformal
homeomorphism and an analytic function. Thus quasiconformal mappings become the central tool
for the study of these non-linear systems. A rather comprehensive treatment of the present state of
the theory is given in the excellent book of Astala, Iwaniec and Martin [2]. This book contains also an
exhaustive bibliography on the topic. In particular, the following fundamental Harmonic Factorization
Theorem for the uniformly elliptic divergence equations

div A(z,∇u) = 0, z ∈ Ω, (7)

holds, see [2], Theorem 16.2.1: Every solution u ∈ W 1,2
loc (Ω) of the equation (7) can be expressed as

the composition u(z) = h(f(z)) of a quasiconformal homeomorphism f : Ω → G and a suitable
harmonic function h on G.

The main goal of this paper is to point out another application of quasiconformal mappings to the
study of some semi-linear partial differential equations, linear part of which contains the elliptic operator
in the divergence form div [A(z)∇u(z)].

A fundamental role in the study of the posed problem will play Theorem 4.1 in [20], that can
be considered as a suitable counterpart to the mentioned above Factorization theorem: a function
u : D → R is a weak solution of (2) in the class C ∩W 1,2

loc (D) if and only if u = U ◦ ω where ω : D → D

is a quasiconformal mapping agreed with A and U is a weak solution in the class C ∩W 1,2
loc (D) of the

quasilinear Poisson equation

�U(w) = J(w) f(U(w)), w ∈ D, (8)

where J denotes the Jacobian of the inverse quasiconformal mapping ω−1 : D → D. Here a weak
solution to (2) is a function u ∈ C ∩W 1,2

loc (Ω) such that∫

D

〈A(z)∇u(z),∇η(z)〉 dm(z) +

∫

D

f(u(z))η(z) dm(z) = 0 ∀η ∈ C ∩W 1,2
0 (D),

where m(z) stands for the Lebesgue measure in the plane.
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2. DEFINITIONS AND PRELIMINARY REMARKS

In the paper [21], Theorem 3, we have established the following statement on the existence of regular
weak solutions of the Dirichlet problem for a quasilinear Poisson equation.

Proposition 1. Let ϕ : ∂D → R be a continuous function, h : D → R be a function in the class
Lp(D), p > 1, and let f : R → R be a continuous function that is either bounded or with the
nondecreasing function |f | of |t| such that

lim
t→+∞

f(t)

t
= 0. (9)

Then there exist weak solutions U of the quasilinear Poisson equation

�U(z) = h(z) f(U(z)) (10)

such that U ∈ C(D), U |∂D ≡ ϕ. More precisely, U |D ∈ W 2,p
loc (D) and (10) holds a.e. in D. Moreover,

U ∈ W 1,q
loc (D) for some q > 2 and U is locally Hölder continuous in D. If in addition ϕ is Hölder

continuous, then U is Hölder continuous in D. If p > 2, then U ∈ C1,α
loc (D) where α = (p− 2)/p. In

particular, U ∈ C1,α
loc (D) for all α ∈ (0, 1) if h ∈ L∞(D).

Thus, the degree of regularity of the weak solutions of the Dirichlet problem to (10) essentially
depends on the degree of integrability of the multiplier h. Furthermore, by an example in [21] the
equation (10) can have no continuous solutions if h is only in the class L1(D).

Making use of fundamental results on boundary correspondence under conformal and quasiconformal
mappings, one can extend the above statement replacing the unit disk D by a smooth Jordan’s domain.

Corollary 1. Let D be a smooth (C1) Jordan domain in C, Φ : ∂D → R be a continuous function,
H : D → R be a function in the class Lp(D), p > 1, and let f : R → R be a continuous function
which is either bounded or satisfying (9) with nondecreasing |f | of |t|. Then there exist weak
solutions u of the quasilinear Poisson equation

�u(ζ) = H(ζ) f(u(ζ)) for a.e. ζ ∈ D (11)

such that u ∈ C(D), u|∂D ≡ ϕ. More precisely, u|D ∈ W 2,p
loc (D) and (10) holds a.e. in D. Moreover,

u ∈ W 1,q
loc (D) for some q > 2 and u is locally Hölder continuous in D. If in addition Φ is Hölder

continuous, then u is Hölder continuous in D. Furthermore, if p > 2, then u ∈ C1,α
loc (D), where

α = (p− 2)/p. In particular, u ∈ C1,α
loc (D) for all α ∈ (0, 1) if h ∈ L∞(D). In the latter case, if in

addition Φ is Hölder continuous on ∂D with some order β ∈ (0, 1), then u is Hölder continuous in
D with the same order.

Proof. Let ω be a conformal mapping of D onto D. By the Caratheodory–Osgood–Taylor theorem,
ω is extended to a homeomorphism ω̃ of D onto D, see [12] and [13], see also [5] and Theorem 3.3.2 in
the monograph [14]. Then, setting ϕ = Φ ◦ ω̃−1|∂D, we see that the function ϕ : ∂D → R is continuous.
Let h = J ·H ◦Ω, where Ω is the inverse mapping ω−1 : D → D and J is its Jacobian J = |Ω′|2. By
the known Warschawski result, see Theorem 2 in [34], its derivative Ω′ is extended by continuity onto
D. Consequently, J is bounded and the function h is of the same class in D as H in D. Let U be a
solution of the Dirichlet problem from Proposition 1 for the equation (10) with the given ϕ and h. Note
that ω′ = 1/Ω′ ◦ ω is also extended by continuity onto D because Ω′ �= 0 on ∂D by Theorem 1 in [24].
Thus, u = U ◦ ω is the desired solution of the Dirichlet problem for the equation (11). �

By our factorization theorem, mentioned in the Introduction, the degree of the regularity of the weak
solutions of the semi-linear equation (2) will depend on the degree of integrability of the Jacobian J of
the quasiconformal mapping Ω : D → D associated with the matrix function A, see equation (8). In
turn, the latter depends on geometry of the domain D.

Remark 1. By Theorem 4.7 in [3], the Jacobian of a quasiconformal mapping Ω : D → D is in Lp(D),
p > 1, if and only if the domain D satisfies the quasihyperbolic boundary condition, i.e.

kD(z, z0) ≤ a ln
d(z0, ∂D)

d(z, ∂D)
+ b ∀z ∈ D (12)
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1346 GUTLYANSKIĬ, RYAZANOV

for some constants a and b and a fixed point z0 ∈ D, where kD(z, z0) is the quasihyperbolic distance
between the points z and z0 in the domain D,

kD(z, z0) := inf
γ

∫

γ

ds

d(ζ, ∂D)
. (13)

Here d(ζ, ∂D) denotes the Euclidean distance from a point ζ ∈ D to the boundary of D and the infimum
is taken over all rectifiable curves γ joining the points z and z0 in D.

In this connection, recall more definitions. The image of the unit disk D under a quasiconformal
mapping of C onto itself is called a quasidisk and its boundary is called a quasicircle or a quasicon-
formal curve. Recall also that a Jordan curve is a continuous one-to-one image of the unit circle in
C. As known, such a smooth (C1) or Lipschitz curve is a quasiconformal curve and, at the same time,
quasiconformal curves can be even locally non–rectifiable as it follows from the well-known Van Koch
snowflake example, see e.g. the point II.8.10 in [27]. The recent book [17] contains a comprehensive
discussion and numerous characterizations of quasidisks, see also [1, 16] and [27].

Remark 2. Quasidisks satisfy the quasihyperbolic boundary condition. Indeed, as known, the
conformal mapping Ω : D → D is extended to a quasiconformal mapping of C onto itself if ∂D is a
quasicircle, see e.g. Theorem II.8.3 in [27]. By one of the main Bojarski results, see [8], the generalized
derivatives of quasiconformal mappings in the plane are locally integrable with some power q > 2. Note
also that its Jacobian J(w) = |Ωw|2 − |Ωw̄|2, see e.g. I.A(9) in [1]. Consequently, in this case J ∈ Lp(D)
for some p > 1.

A domain D in R
n, n ≥ 2, is called satisfying (A)-condition if

mes D ∩B(ζ, ρ) ≤ Θ0mes B(ζ, ρ) ∀ζ ∈ ∂D, ρ ≤ ρ0 (14)

for some Θ0 and ρ0 ∈ (0, 1), see 1.1.3 in [26]. Recall also that a domain D in R
n, n ≥ 2, is said to be

satisfying the outer cone condition if there is a cone that makes possible to be touched by its top to
every boundary point of D from the completion of D after its suitable rotations and shifts. It is clear that
the outer cone condition implies (A)-condition.

Remark 3. Note that quasidisks D satisfy (A)-condition. Indeed, the quasidisks are the so-called
QED-domains by Gehring–Martio, see Theorem 2.22 in [18], and the latter satisfy the condition

mes D ∩B(ζ, ρ) ≥ Θ∗mes B(ζ, ρ) ∀ζ ∈ ∂D, ρ ≤ diam D (15)

for some Θ∗ ∈ (0, 1), see Lemma 2.13 in [18], and quasidisks (as domains with quasihyperbolic
boundary) have boundaries of the Lebesgue measure zero, see e.g. Theorem 2.4 in [3]. Thus, it
remains to note that, by definition, the completions of quasidisks D in the the extended complex plane
C := C ∪ {∞} are also quasidisks up to the inversion with respect to a circle in D.

Probably the first example of a simply connected plane domain D with the quasihyperbolic boundary
condition which is not a quasidisk was constructed in [7], Theorem 2. However, this domain satisfies
(A)-condition. In the next section, we construct an example of a domain D with the quasihyperbolic
boundary condition but without (A)-condition and, consequently, without the outer cone condition, see
Lemma 1.

3. DIRICHLET PROBLEM FOR SEMI–LINEAR EQUATIONS

By the mentioned above factorization theorem from [20], the study of semi–linear equations (2) in
Jordan domains D is reduced, by means of a suitable quasiconformal change of variables, to the study
of the corresponding quasilinear Poisson equations (8) in the unit disk D.

Theorem 1. Let D be a Jordan domain in C satisfying the quasihyperbolic boundary condition.
Suppose that A ∈ M2×2

K (D), ϕ : ∂D → R is a continuous function and f : R → R is a continuous
function which is either bounded or with nondecreasing |f | of |t| such that

lim
t→+∞

f(t)

t
= 0. (16)
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Then there is a weak solution u : D → R of the equation (2) which is locally Hölder continuous
in D and continuous in D with u|∂D = ϕ. If in addition ϕ is Hölder continuous, then u is Hölder
continuous in D.

Proof. By Theorem 4.1 in [20], if u is a week solution of (2), then u = U ◦ ω, where ω is a
quasiconformal mapping of D onto the unit disk D agreed with A and U is a week solution of the
equation (10) with h = J , where J stands for the Jacobian of ω−1. It is also easy to see that if U is
a week solution of (10) with h = J , then u = U ◦ ω is a week solution of (2). It allows us to reduce the
Dirichlet problem for equation (2) with a continuous boundary function ϕ in the simply connected Jordan
domain D to the Dirichlet problem for the equation (10) in the unit disk D with the continuous boundary
function ψ = ϕ ◦ ω−1. Indeed, ω is extended to a homeomorphism of D onto D, see e.g. Theorem I.8.2
in [27]. Thus, the function ψ is well defined and really is continuous on the unit circle.

It is well-known that the quasiconformal mapping ω is locally Hölder continuous in D, see Theo-
rem 3.5 in [9]. Taking into account the fact that D is a Jordan domain in C satisfying the quasihyperbolic
boundary condition, we can show that both mappings ω and ω−1 are Hölder continuous in D and D,
correspondingly. Indeed, ω = H ◦ Ω where Ω is a conformal (Riemann) mapping of D onto D and H is
a quasiconformal mapping of D onto itself. The mappings Ω and Ω−1 are Hölder continuous in D and
in D, correspondingly, by Theorem 1 and its corollary in [7]. Next, by the reflection principle H can be
extended to a quasiconformal mapping of C onto itself, see e.g. I.8.4 in [27], and, consequently, H and
H−1 are also Hölder continuous in D, see again Theorem 3.5 in [9]. The Hölder continuity of ω and ω−1

in closed domains follows immediately.
Now it is easy to see that if ϕ is Hölder continuous, then ψ is also so, and all the conclusions of

Theorem 1 follow from Proposition 1. �

Lemma 1. There exists a Jordan domain D in C with the quasihyperbolic boundary condition,
that does not satisfy either condition (A) or the condition of the outer cone.

Proof. Let C1 be the cube {z = x+ iy : |x| < 1, |y| < 1 }, Rn are the rectangles {z = x+ iy : 1 ≤
x < an, εn ≤ y < εn−1 } with an = 1/n and εn = 2−n and R∗

n are the reflections of Rn with respect
to the real axis, n = 1, 2, . . .. Let D be the domain consisting of the cube C1 and the remainder
R :=

⋃∞
n=1(Rn ∪R∗

n). First of all, it is clear that D is a Jordan domain whose boundary consists of
a countable collection of segments of horizontal and vertical straight lines and the point z0 = 1.

Let us show that D satisfies the quasihyperbolic boundary condition. Note firstly that the quasihyper-
bolic distance from 0 to any point in its central closed cube C3/4 := {z = x+ iy : |x| ≤ 3/4, |y| ≤ 3/4}
is not grater than 3. Now, let C be the continuum consisting of the cube C3/4 and the segments
3/4 ≤ x ≤ 7/4 on the straight lines y = 3/4 and y = −3/4. It is clear by the triangle inequality that
the quasihyperbolic distance from 0 to any point of C is not grater than 7.

Next, note that all points in the triangle � with the vertices 7/4 + 3i/4, 2 + i and 2 + i/2 lie more
closely to the vertical line x = 2 than to the horizontal lines y = 1 and y = 1/2 because its sides
(7/4 + 3i/4, 2 + i) and (7/4 + 3i/4, 2 + i/2) are bisectrices of the right angles at vertices 2 + i and
2 + i/2 of ∂D. Each point in � lies on a segment of a straight line starting from the corresponding point
on the side (2 + i, 2 + i/2) ⊂ ∂D and ending at the point 7/4 + 3i/4 ∈ C and the slope of the line to the
side is varied in the limits π/4 and π/2. Let s be the natural parameter on one of such segments S with
s = 0 at the corresponding point of ∂D and ζ(s) be the natural parametrization of points on γ. Then

d(ζ(s), ∂D) ≥ s/
√
2. (17)

By the symmetry of D, the similar statement is true for the triangle �∗ that is symmetric for � with
respect to the real axes.

Note also that every point in D \C, except the points of the triangles � and �∗, lies on a segment of a
straight line going under the angle π/4 with respect to horizontal and vertical straight lines, starting from
the corresponding point on ∂D and ending at the nearest point on the continuum C. It is clear that (17)
holds on such segments, too. The lengths of all segments mentioned above are bounded by the diameter
δ of D, δ =

√
13 ≤ 4 and, consequently, kD(ζ(s0), ζ(s∗)) ≤

√
2(ln s∗ − ln s0) ≤

√
2(ln δ − ln s0), where

s∗ and s0 correspond to points in C and in D \ C. Thus, by the triangle inequality

kD(z, 0) ≤
√
2 ln

d(0, ∂D)

d(z, ∂D)
+ 7 +

√
2 ln

δ√
2
<

√
2 ln

d(0, ∂D)

d(z, ∂D)
+ 10 ∀z ∈ D,

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 9 2018



1348 GUTLYANSKIĬ, RYAZANOV

i.e. the domain D really satisfies the quasihyperbolic boundary condition.
Finally, let us show that D does not satisfy A–condition at the point (1, 0). Indeed, let us consider

the sequence of disks Dn centered at the given point with the radii ρ2n = a2n + ε2n = n−2 + 2−2n. Note
that Dn ∩D contains 2 caps of the disk Dn that are cut off by the horizontal straight lines y = εn = 2−n

and y = −εn = −2−n. Consequently,

In :=
mes (Dn ∩D)

mes Dn
≥ αn − sinαn

π
,

where αn is the angular size of each of these caps. Since sin(αn/2) = an/ρn converges to 1 as n → ∞,
we have that αn → π, i.e. In converges to 1 as n → ∞. �

Scaling, rotating and shifting the remainder R from the proof, it is possible to construct Jordan
domains D that are similar to the Van Koch snowflake with the quasihyperbolic boundary condition
and, simultaneously, without (A)-condition at the everywhere dense set of boundary points.

4. THE DIRICHLET PROBLEM IN TERMS OF PRIME ENDS

It is much more simpler than in Lemma 1 to construct similar examples of domains with the
quasihyperbolic boundary condition that are not Jordan.

Lemma 2. There exist bounded simply connected domains D∗ in C that are not Jordan, satisfy
the quasihyperbolic boundary condition, however, without (A)-condition and, consequently,
without the outer cone condition.

Proof. Let P be the rectangular {z = x+ iy : −1 < x < 2, |y| < 1} and let the domain D be
obtained from P through cut along 1 ≤ x < 2 in the real axis. Denote by C the union of the cube C1/2 :=

{z = x+ iy : |x| ≤ 1/2, |y| ≤ 1/2} and 2 segments 1/2 ≤ x ≤ 3/2 on the straight lines y = 1/2 and
y = −1/2. Let � be the triangle with the vertices 3/2 + i/2, 2 + i and 2 and let �∗ be the triangle which
is symmetric for � with respect to the real axis. Arguing as in the proof of Lemma 2, it is easy to get the
following estimate

kD(z, 0) <
√
2 ln

d(0, ∂D)

d(z, ∂D)
+ 5 ∀z ∈ D

i.e. the domain D is really with the quasihyperbolic boundary condition, but it is clear that (A)-condition
does not hold at the end point of the cut in P . �

Before to formulate the corresponding results for non-Jordan domains, let us recall the necessary
definitions of the relevant notions and notations. Namely, we follow Caratheodory [13] under the
definition of the prime ends of domains in C, see also Chapter 9 in [14]. First of all, recall that a
continuous mapping σ : I → C, I = (0, 1), is called a Jordan arc in C if σ(t1) �= σ(t2) for t1 �= t2. We
also use the notations σ, σ and ∂σ for σ(I), σ(I) and σ(I) \ σ(I), correspondingly. A cross–cut of a
simply connected domain D ⊂ C is a Jordan arc σ in the domain D with both ends on ∂D splitting D.

A sequence σ1, . . . , σm, . . . of cross-cuts of D is called a chain in D if:
(i) σi ∩ σj = ∅ for every i �= j, i, j = 1, 2, . . .;
(ii) σm splits D into 2 domains one of which contains σm+1 and another one σm−1 for every m > 1;
(iii) δ(σm) → 0 as m → ∞ where δ(σm) is the diameter of σm with respect to the Euclidean metric

in C.
Correspondingly to the definition, a chain of cross-cuts σm generates a sequence of domains dm ⊂ D

such that d1 ⊃ d2 ⊃ . . . ⊃ dm ⊃ . . . and D ∩ ∂dm = σm. Chains of cross-cuts {σm} and {σ′
k} are called

equivalent if, for every m = 1, 2, . . ., the domain dm contains all domains d′k except a finite number and,
for every k = 1, 2, . . ., the domain d′k contains all domains dm except a finite number, too. A prime
end P of the domain D is an equivalence class of chains of cross-cuts of D. Later on, ED denote the
collection of all prime ends of a domain D and DP = D ∪ ED is its completion by its prime ends.

Next, we say that a sequence of points pl ∈ D is convergent to a prime end P of D if, for a chain
of cross-cuts {σm} in P , for every m = 1, 2, . . ., the domain dm contains all points pl except their finite
collection. Further, we say that a sequence of prime ends Pl converges to a prime end P if, for a chain of
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cross–cuts {σm} in P , for every m = 1, 2, . . ., the domain dm contains chains of cross–cuts {σ′
k} in all

prime ends Pl except their finite collection.
A basis of neighborhoods of a prime end P of D can be defined in the following way. Let d be an

arbitrary domain from a chain in P . Denote by d∗ the union of d and all prime ends of D having some
chains in d. Just all such d∗ form a basis of open neighborhoods of the prime end P . The corresponding
topology on ED and, respectively, on DP is called the topology of prime ends. The continuity of
functions on ED and DP will be understood with respect to this topology or, the same, with respect to
the above convergence.

Theorem 2. Let D be a bounded simply connected domain in C satisfying the quasihyperbolic
boundary condition. Suppose A ∈ M2×2

K (D), ϕ : ED → R is a continuous function and f : R → R

is a continuous function which is either bounded or with nondecreasing |f | of |t| such that

lim
t→+∞

f(t)

t
= 0. (18)

Then there is a weak solution u : D → R of the equation (2) which is locally Hölder continuous in
D and continuous in DP with u|ED

= ϕ.
Proof. By Theorem 4.1 in [20], if u is a week solution of (2), then u = U ◦ ω, where ω is a

quasiconformal map ofD onto the unit diskD agreed with A and U is a week solution of the equation (10)
with h = J , here J stands for the Jacobian of the mapping ω−1. And vice versa, if U is a week solution
of (10) with h = J , then u = U ◦ ω is a week solution of (2).

Hence the Dirichlet problem for (2) in the domain D can be reduced to the so for the equation (10)
in D with the corresponding boundary function ψ = ϕ ◦ ω−1. The existence and continuity of the
boundary function ψ in the case of an arbitrary bounded simply connected domain D is a fundamental
result of the theory of the boundary behavior of conformal and quasiconformal mappings. Namely,
ω−1 = H ◦Ω, where Ω stands for a quasiconformal automorphism of the unit disk D and H is a
conformal mapping ofD onto D. It is known thatΩ can be extended to a homeomorphism ofD onto itself,
see e.g. Theorem I.8.2 in [27]. Moreover, by the well-known Caratheodory theorem on the boundary
correspondence under conformal mappings, see e.g. Theorems 9.4 and 9.6 in [14], the mapping H is
extended to a homeomorphism of D onto DP . Thus, the function ψ is well defined and really continuous
on the unit circle.

Moreover, ω is locally Hölder continuous in D, see e.g. Theorem 3.5 in [9]. Thus, by Theorem 4.1
in [20], Theorem 2 follows from Proposition 1. �

5. SOME MODEL EQUATIONS
The interest to the study of some model semi-linear equations considered below is well known both

from a purely theoretical point of view, due to its deep relations to linear and nonlinear harmonic analysis,
and because of numerous applications of equations of this type in various areas of physics, differential
geometry, logistic problems etc., see e.g. [2, 11, 15, 19, 24, 25, 28, 30] and the references therein.

In particular, the mathematical modelling of reaction-diffusion problems leads to the study of the
corresponding Dirichlet problem for the equation (2) with specified right hand side. Following [4],
a nonlinear system can be obtained for the density u and the temperature T of the reactant. Upon
eliminating T the system can be reduced to a scalar problem for the concentration

�u = λ f(u), (19)

where λ stands for a positive constant. It turns out that the density of the reactant u may be zero in a
closed interior region D0 called a dead core. If, for instance, f(u) = uq, q > 0, a particularization of
the results in Chapter 1 of [15] shows that a dead core may only exist if and only if 0 < q < 1 and λ is
large enough. See also the corresponding examples of cores in [20]. In connection with the above, the
following statement may have of independent interest.

Theorem 3. Let D be a Jordan domain in C satisfying the quasihyperbolic boundary condition.
Suppose that A ∈ M2×2

K (D) and ϕ : ∂D → R is a continuous function. Then there exists a weak
solution u : D → R of the semi-linear equation

div [A(z)∇u(z)] = uq(z), 0 < q < 1, (20)
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which is locally Hölder continuous in D, continuous in D and satisfies the boundary condition
u|∂D = ϕ. If in addition ϕ is Hölder continuous, then u is Hölder continuous in D.

Applying Corollary 1, we also arrive at the following consequence.
Corollary 2. Let D be a smooth Jordan domain in C and let ϕ : ∂D → R be a continuous

function. Then there exists a weak solution U of the quasilinear Poisson equation

�U(z) = U q(z), 0 < q < 1, (21)

which is continuous inD withU |∂D = ϕ and such thatU ∈ C1,α
loc (D) for allα ∈ (0, 1). If in addition

ϕ is Hölder continuous with some order β ∈ (0, 1), then U is also Hölder continuous in D with the
same order.

Recall also that certain mathematical models of a heated plasma lead to nonlinear equations of the
type (19). Indeed, it is known that some of them have the form �ψ(u) = f(u) with ψ′(0) = +∞ and
ψ′(u) > 0 if u �= 0 as, for instance, ψ(u) = |u|q−1u under 0 < q < 1, see e.g. [15]. With the replacement
of the function U = ψ(u) = |u|qsign u, we have that u = |U |Qsign U , Q = 1/q, and, with the choice
f(u) = |u|q2sign u, we come to the equation �U = |U |qsign U = ψ(U).

Corollary 3. Let D be a smooth Jordan domain in C and let ϕ : ∂D → R be a continuous
function. Then there exists a weak solution U of the quasilinear Poisson equation

�U(z) = |U(z)|q−1U(z), 0 < q < 1, (22)

which is continuous inD withU |∂D = ϕ and such thatU ∈ C1,α
loc (D) for allα ∈ (0, 1). If in addition

ϕ is Hölder continuous with some order β ∈ (0, 1), then U is also Hölder continuous in D with the
same order.

In the combustion theory, see e.g. [6, 32] and the references therein, the following model equation

∂u(z, t)

∂t
=

1

δ
�u + eu, t ≥ 0, z ∈ D, (23)

occupies a special place. Here u ≥ 0 is the temperature of the medium and δ is a certain positive
parameter.

We restrict ourselves by stationary solutions of the equation and its generalizations in anisotropic and
inhomogeneous media although our approach makes it possible to consider the parabolic case, see [20].
Applying Theorem 1, we come to the following statement.

Theorem 4. Let D be a Jordan domain in C satisfying the quasihyperbolic boundary condition.
Suppose that A ∈ M2×2

K (D) and ϕ : ∂D → R is a continuous function. Then there exists a weak
solution U : D → R of the semi-linear equation

div [A(z)∇U(z)] = δ e−U(z), δ > 0, (24)

which is locally Hölder continuous in D, continuous in D and such that u|∂D = ϕ. If in addition ϕ

is Hölder continuous, then u is also Hölder continuous in D.
By Corollary 1, applied to the corresponding quasilinear Poisson equation, we will finish this section

with the following statement.
Corollary 4. Let D be a smooth Jordan domain in C and ϕ : ∂D → R be a continuous function.

Then there is a weak solution U of the equation

�U(z) = δ e−U(z), δ > 0, (25)

which is continuous inD withU |∂D = ϕ and such thatU ∈ C1,α
loc (D) for allα ∈ (0, 1). If in addition

ϕ is Hölder continuous with some order β ∈ (0, 1), then U is also Hölder continuous in D with the
same order.

Concluding the presentation, we want to emphasize the fact that joint use of the regularity results
for the quasilinear Poisson equations (10) and the comprehensively developed theory of conformal and
quasiconformal mappings in the plane, see e.g. the monographs [1, 10, 22, 23, 27, 29, 33] opens up a
new approach to the study of a number of problems arising in the mathematical physics in anisotropic
and inhomogeneous media.
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