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Abstract—The graph anomaly detection problem occurs in many application areas and can be
solved by spotting outliers in unstructured collections of multi-dimensional data points, which can
be obtained by graph analysis algorithms. We implement the algorithm for the small community
analysis and the approximate LOF algorithm based on Locality-Sensitive Hashing, apply the
algorithms to a real world graph and evaluate scalability of the algorithms. We use Apache Spark as
one of the most popular Big Data frameworks.
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1. INTRODUCTION

In recent years, data intensive applications have become widespread and appeared in many science
and engineering areas. They are characterized by a large amount of data, irregular workloads,
unbalanced computations and low sustained performance of computing systems. Development of new
algorithmic approaches and programming technologies are urgently needed to boost efficiency of HPC
systems for similar applications thus enabling advancing of HPC and Big Data convergence [1].

Anomaly detection in graphs occurs in many application areas, for example, in the analysis of financial
markets, in spam filtering, as well as in detection of cyber attacks. Often graphs are huge and require
high performance processing and more than one node of a cluster for a memory reason.

Spark [2] is a framework which optimizes programming and execution models of MapReduce [3] by
introducing a resilient distributed dataset (RDD) abstraction. Users can choose between the cost of
storing RDD, the speed of accessing it, the probability of losing part of it, and the cost of recomputing
it. Apache Spark is a popular open-source implementation of Spark. It supports a rich set of high-level
tools including MLlib for machine learning and GraphX for graph processing.

In this research we have implement using Apache Spark two unsupervised anomaly detection
algorithms, apply the algorithms to a real graph and evaluate their performance.
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Fig. 1. Example of egonet with radius is equal to 1.

2. ANALYSIS

We consider a directed weighted graph. Anomaly is an object (e.g. vertex, edge or subgraph) in a
graph that differs the most other objects of the same type in the graph by a set of features. We have a
real world graph from the e-commerce application area and we consider the problem of searching edges
as anomalies.

The authors of the survey [4] outline that the graph anomaly detection problem can be solved by
spotting outliers and anomalies in unstructured collections of multi-dimensional data points, which
can be obtained by graph analysis algorithms. The algorithms transform the graph anomaly detection
problem to the well-known and understood outlier detection problem.

The following groups of graph features can be outlined:

• Vertex-level features (degrees, attributes, centrality measures, etc.);

• Egonet-level features (number of triangles, total weight, etc.);

• Vertex-group-level features (measures of vertex group: density, modularity, etc.);

• Global features (number of connected components, distribution of component sizes, minimum
spanning tree weight, etc.).

We consider vertex-level and egonet-level features. An egonet is the neighborhood with radius 1
around a vertex; including the vertex, its direct neighbors and all the edges among these vertices. Fig. 1
shows an egonet example.

In our application area we consider group level patterns. In [5] the authors introduce blackhole and
volcano patterns. A blackhole pattern is a community of vertices that has only incoming edges to the
community vertices from the other vertices in the graph, a volcano pattern is a community of vertices
that has only outgoing edges to the community vertices from the other vertices in the graph. But in the
current research we do not implement any volcano and blackhole search algorithm.

We consider two algorithms for the anomaly detection problem: OddBall and LOF. The OddBall
algorithm [6] is based on an egonet extraction. It calculates egonet-based features and finds patterns
that most of the egonets of the graph follow with respect to those features. We apply the method to spot
anomalous egonets and hence anomalous edges.

The Local Outlier Factor (LOF) method [7] is based on local normalized density between k nearest-
neighbor points. This normalization is a key to addressing challenges with varying cluster density in
data. The main problem in the LOF method is the nearest neighbors search for every point. There are
different methods to the nearest neighbors search. In the naive accurate brute-force algorithm [8] for
every point one can calculate distances to all other points and sort the values, then for every point k best
points are taken. The brute-force algorithm is too time-consuming for a large data set. In accurate
approach with space partitioning [9] an n-dimension space is splitted apart, but space partitioning
algorithms are slower than the brute-force algorithm when the number of dimensions exceeds 10 [9].
There are a number of other techniques and data structures for the nearest neighbors search: cover
tree [11], clustering [13].

There are a lot of methods for the approximate nearest neighbors search. They can help to reduce
calculation time but we need to control error value in a permission range. The LSH (Locality-Sensitive
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Hashing) approach [10] is one of the most efficient and popular approaches for high-dimensional nearest
neighbors search [14].

The LSH approach relies on a locality-preserving hash function, it creates several hash tables that
hash together similar points with high probability. The less distance between a pair of points, the more
probability of a collision. In such a manner the hash table contains a relatively small set of objects
which are good candidates to be the nearest to the query point. Potentially, one can obtain a very good
approximate solution to the similarity search [15].

Typically, scientists use a large number of hash tables and apply different techniques to address the
problem of non-uniform distribution of data [16]. We try to apply these techniques in the implementation.

3. IMPLEMENTATION

We consider the problem of detection of anomaly edges in graph. At first, it is necessary to calculate
features for each edge of a graph. We consider every vector of features as a point in the n-dimension
space and apply the developed algorithms.

We use the following features for each edge (26 features total): a set of features for the source vertex,
the destination vertex and weight. The set of features for a vertex:

• Degree, in-degree, out-degree, and the number of vertices in the vertex’s egonet with radius 1;

• Average degree, in-degree, out-degree in the vertex egonet with radius 1;

• Number of vertices-volcanoes (vertices with null in-degree), vertices-blackholes (vertices with
null out-degree) and number of other vertices;

• Number and the total weight of incoming and outgoing edges in the vertex egonet with radius 1.

The feature set is the same for OddBall and LOF algorithms.

3.1. OddBall

OddBall method considers the following egonet features:

• Number of vertices in the egonet;

• Number of edges in the egonet.

Suppose that an i-th egonet consists of Ni vertices and Ei edges. If α < logNi
Ei < β, then the i

vertex is normal, else—an anomaly object, where α and β are constants (float numbers), that should be
defined on the evaluation stage.

The algorithm also takes into consideration the structure of the graph. Algorithms for anomaly
detection in graphs often based on community extraction, but usually they extract community with large
radius. The OddBall algorithm considers only communities with radius 1.
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Table 1. System configuration of the Angara-cluster

Server SuperServer 5017GR-TF

Processor E5-2660 (8 cores, 2.2 GHz)

Memory DDR3 64 GB

Number of nodes 36

Interconnect Angara 4D-torus 3× 3× 2× 2

1 Gbit/s Ethernet

Operating system SLES 11 SP4

Spark Apache Spark 2.1.1

Scala Compiler sbt 0.13.13

3.2. Approximate LOF

LOF (Local Outlier Factor) is an outlier detection algorithm that calculates a value for every point.
With calculated value we can understand which points are anomalies. If LOF value for a point is close
to 1 then point considered as a normal, else as an anomaly. A concrete threshold should be chosen by
hands after data analysis.

We denote by k_distance(A) the distance from a point A to the k-th nearest neighbor. We denote by
Nk(A) k nearest neighbors of the A point, d(A,B) is distance between the A and B points.

Denote reachability_distance:

reachability_distancek(A,B) = max(k_distance(B), d(A,B)).

Denote local_reachability_density (lrd(A)):

lrd(A) = 1/

(∑
B∈Nk(A) reachability_distancek(A,B)

|Nk(A)|

)
.

Eventually lrd value of a point compared with lrd values of the point neighbors:

LOFk(A) =

∑
B∈Nk(A)

lrd(B)
lrd(A)

|Nk(A)|
.

We have developed a parallel approximate LOF implementation based on the LSH approach. The main
problem in the LOF method is the nearest neighbors search for every point.

The scheme of the developed approximate nearest neighbors search based on the LSH approach is
showed in Algorithm 1. The main idea of the LSH approach for the nearest neighbors search is for
every point we calculate hash and the less distance between a pair of points the more probability of a
collision. We create a series of tables (NumTables = 100) and random vectors for every table. For the
first table we create a number of random vectors (StartNumV ectors = 3), for each subsequent table
we increment the number of random vectors by a one. Each random vector consists of d random values
with Gaussian distribution with mean 0. The hash calculated for each point is a bit sequence where i-th
bit is 1 if dot product of i-th random vector of a table and the point more or equal 0, and 0 in other cases.

Then we take cells of hash tables which size is less than a const (4 ∗ kNN , kNN is number of k
nearest neighbors). For each point of the cell we obtain other points of the cell as candidates of the point
and add the candidates to the result for the point. For every point in the result array we remove duplicates
and select best candidates (kNN maximum).

After the last iteration we take all cells with size more than the const and for every point in the cells
we take kNN random candidates from the cell, and then erase duplicates and select the best candidates
(maximum kNN ). We take random candidates for every point from the same cell because when the
number of random vectors is large, the cell corresponds to the small part of the n-dimension space
and all the points from the cell are very close to each other. At the end for the points with less than
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kNN neighbors we use brute-force algorithm because the number of the points is very small. We fix
kNN = 10 in the implementation.

Input : points—set of all points
Output : result—map that storage nearest neighbors list forevery point
result = ∅
nv = Start Num Vectors
//create hash table
hash _table = ∅
for 1..Num Tables do

//clear hash table every iteration
hash _table = ∅
hash _vecs = get _random _vecs (nv )
forall the p ∈ points do

hash = get _hash (hash _vecs, p )
hash _table [hash ]+ = p

end
foreach cell ∈ hash _table, cell.size < const do

forall the point ∈ cell do
result [point ]+ = all points ∈ cell without the point

end
end
forall the point ∈ result do

result [point ] = save _only _best _kNN _neighbors
end
nv = nv + 1

end
foreach cell ∈ hash _table, cell.size > const do

forall the point ∈ cell do
result [point ] = save _any _kNN _neighbors ∈ cell

end
end
forall the point ∈ result do

result [point ] = save _only _best _kNN _neighbors
end
foreach point : result [point ].size < kNN do

result [point ]= brute _force (point )
end (1)

Algorithm 1: Nearest neighbors search algorithm based on the LSH approach.

We implement the algorithms using resilient distributed dataset API (RDD [2]). The latest Spark
program interface DataFrame [19] seems to be more efficient, we plan to use it in the future work.

4. EVALUATION

Implementation evaluation was done on the Angara-C1 cluster in JSC NICEVT. The cluster has
36 nodes, but we consider only 8 in the current paper. The cluster configuration is shown in Table 1.
The cluster is equipped with the Angara interconnect [20], but for the evaluation we use 1 Gigabit/s
Ethernet.

4.1. Considered Graphs

We use a real graph Gr from the e-commerce application area with |V | = 114791 vertices and
|E| = 781440 edges. For performance evaluation we also use synthetic Erdos–Renyi graphs [21].
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Table 2. Execution time of the algorithms on the Gr graph

Feature calculation OddBall LOF

107.66 8.03 1978.79

Table 3. Quality results evaluation of approximate LOF algorithm compared with accurate LOF for 6000 data
points

THR FN/P FP/N

2.5 8.03% 1.2%

3 10.27% 0.9%

3.5 12.13% 0.8%

4.2. Results
We run OddBall and LOF algorithms for the Gr graph and take 5% edges with the biggest values

obtained by the OddBall algorithm and the same number of edges with the biggest LOF values.
Anomaly edge part (5%) corresponds to the 2.05 threshold LOF value. Then we compare the sets:
each method finds 39072 anomaly edges (5% of 781440 edges in the Gr graph), intersection of the sets
is 1492 edges—3.82%. It is very interesting that two algorithms for the same feature set spot different
edges as anomalies.

Table 2 contains execution time of the algorithms on 8 nodes of the cluster for the Gr graph.
Execution time of the LOF algorithm does not include time of the feature calculation stage.

The quality of the LOF algorithm based on the LSH approach is shown in Table 3. THR—threshold
for anomaly detection. If and only if LOF (a_point) > THR then the point is the anomaly object. FN—
false-negative objects, i.e. anomalies detected as normal points by approximate method. FP—false-
positive objects, i.e. normal objects detected as anomalies by approximate method. P—number of
anomalies, N—number of normal objects. The accurate LOF results were obtained on random 6000
data points from the Gr graph by the brute-force algorithm.

4.3. Scalability Issues
Figure 2 shows strong scaling of the feature calculation stage, LOF based on the LSH method, Fig. 3

shows their speedup. We use 8 cores on each computational node of the cluster. The implementations
show good scalability.
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Fig. 2. Strong scaling. Features calculation for Erdos–Renyi graph with 219 vertices and 222 edges. Approximate
LOF is on the Gr graph.
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Fig. 3. Speedup. Features calculation for Erdos–Renyi graph with 219 vertices and 222 edges. Approximate LOF is on
the Gr graph.

5. CONCLUSION

In this paper we have considered the graph anomaly detection problem. The problem was to find
anomalies in a real world graph and to obtain a scalable implementation using the Apache Spark
framework.

We use approach of spotting outliers in unstructured collections of multi-dimensional data points,
which can be obtained by graph analysis algorithms. We implement the OddBall algorithm for the
egonet analysis and the approximate LOF algorithm based on the LSH. For implementation we use
the Apache Spark framework. We apply the algorithms to the real world graph and obtain different sets
of edges as anomalies by each algorithm. The algorithms show good scalability on the 8-node cluster.

Research is being conducted with the finance support of the Ministry of Education and Science of
the Russian Federation Unique ID for Applied Scientific Research (project) RFMEFI57816X0218. The
data presented, the statements made, and the views expressed are solely the responsibility of the authors.
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