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Abstract—The paper is devoted to the development of a calculation technique for elasto-plastic
solids with regard to finite strains. The kinematics of elasto-plastic strains is based on the
multiplicative decomposition of the total deformation gradient into elastic and inelastic (plastic)
components. The stress state is described by the Cauchy stress tensor. Physical relations are
obtained from the equation of the second law of thermodynamics supplemented with a free energy
function. The free energy function is written in an invariant form of the left Cauchy–Green elastic
strain tensor. An elasto-plasticity model with isotropic strain hardening is considered. Based on an
analog of the associated rule of plastic flows and the von Mises yield criterion, we develop the method
of stress projection onto the yield surface (known as the radial return method) with an iterative
refinement of the current stress-strain state. The iterative procedure is based on the introduction
of additional virtual stresses to the resolving power equation. The constitutive relations for the rates
and increments of the true Cauchy stresses are constructed. In terms of the incremental loading
method, the variational equation is obtained on the basis of the principle of possible virtual powers.
Spatial discretization is based on the finite element method; an octanodal finite element is used. We
present the solution to the problem of tension of a circular bar and give a comparison with results of
other authors.
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INTRODUCTION

The present paper is a continuation of [1], where the principal kinematic and constitutive relations
were given. The multiplicative decomposition of the deformation gradient into elastic and inelastic
(plastic) components is used. To separate elastic and inelastic strains, the method of stress projection
onto the yield surface, referred to as the radial return algorithm, is applied. An analog of the associated
flow rule is obtained. The problem is solved in terms of the incremental loading method using the
variational equation of the principle of virtual powers. The numerical discretization is based the finite
element method.

1. KINEMATICS

The kinematics of finite elasto-plastic strains is described by means of the deformation gradient F,
which can be represented in the form of the multiplicative expansion [1–8]:

F = Fe · Fp,

where Fe is the gradient of elastic deformations and Fp is the gradient of inelastic (plastic) deformations.
The stress state is described by the Cauchy stress tensor σ [1, 9]:

σ = 2ρBe ·
∂ψ

∂Be
=

2ρ0
J

Be ·
∂ψ

∂Be
, (1)
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where Be = Fe
T · Fe is the left Cauchy–Green elastic strain tensor, J = ρ0/ρ is the relative variation of

the volume, ρ0 is the density of a medium in the initial state, ρ is the density of the medium in the current
state, ψ is the free energy function, which is defined as a scalar function of the tensor Be of the elastic
strain measure.

As the plastic yield condition, we take
Φp (σ, χ) = 0, (2)

where Φp the yield function and χ is the hardening parameter. We use the expression for the generalized

rate
∇
Be, which is obtained from the condition for the minimum of the generalized functional [1]:

∇
Be = −2λ̇

∂Φp

∂σ
·Be. (3)

Linearizing the constitutive relations (1) and using (3), we obtain the Cauchy stress rate tensor [1]:

σ̇ = Λe · ·d+ h · σ + σ · hT − I1d
kσ

− λ̇4ρ

{
∂Φp

∂σ
·Be ·

∂ψ

∂Be
+Be ·

∂2ψ

∂Be∂Be
:
∂Φp

∂σ
Be

}

= Λe · ·d+ h · σ + σ · hT − λ̇

{
2
∂Φp

∂σ
· σ +Λe · ·

∂Φp

∂σ

}
= σ̇e + σ̇p, (4)

where

σ̇e = Λe · ·d+ h · σ + σ · hT − I1d
kσ, σ̇p = −λ̇

{
2
∂Φp

∂σ
· σ +Λe · ·

∂Φp

∂σ

}
,

Λe =
4ρ0
J

Be ·
∂2ψ

∂Be∂Be
·Be.

2. ALGORITHM OF INTEGRATION OF THE CONSTITUTIVE RELATIONS
We will use the method of stress projection onto the yield surface [6, 10–14]. To this end, we write the

Cauchy stress rate (4) in the kth state
kσ̇ = kΛe · ·kd+ kh · kσ + kσ · khT − I1kd

kσ

− kλ̇

{
2

∂Φp

∂k+1σ
· k+1σ + k+1Λe · ·

∂Φp

∂k+1σ

}
. (5)

Knowing the parameters of the kth state and using (5), we determine the (k+ 1)th state by the following
formula:

k+1σ = kσ + kσ̇Δt

= kσ +

[
kΛe · ·kd+ kh · kσ + kσ · khT − I1d

kσ − kλ̇

(
2
∂Φp

∂kσ
· kσ + kΛe · ·

∂Φp

∂kσ

)]
Δt

= kσ +
[
kΛe · ·kd+ kh · kσ + kσ · khT − I1d

kσ
]
Δt− λ̇

(
2
∂Φp

∂kσ
· kσ + kΛe · ·

∂Φp

∂kσ

)
Δt

= k+1σ̃ − λ̇

(
2
∂Φp

∂kσ
· kσ + kΛe · ·

∂Φp

∂kσ

)
Δt. (6)

Introducing the trial stress tensor into consideration
k+1σ̃ = kσ +

[
k+1Λe · ·kd+ kh · kσ + kσ · khT − I1kd

kσ
]
Δt,

from (6) we obtain the equation for determining the true stresses

k+1σ = k+1σ̃ − kλ̇

(
2

∂Φp

∂k+1σ
· σ̃ + k+1Λe · ·

∂Φp

∂k+1σ

)
Δt. (7)

The calculation algorithm consists in finding the tensor of true stresses and the plastic strain rate
from the yield criterion (2) and relation (7).
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3. INTEGRATION OF THE MOTION EQUATION

We represent the deformation process in the form of a sequence of stress-strain states of the studied
body, which are realized at certain points of time (time layers). A similar strategy for solving nonlinear
problems is prevalent at present and is successfully used in problems of both statics (the incremental
loading method) and dynamics (a step-by-step integration method) [13–15]. In accordance with this
technique, we assume that we know all parameters of the process at a certain time kt, including the
configuration, stress state, the magnitude of the elastic and plastic strains, and so on. A problem is to
determine the stress-strain states at the time k+1t = kt+Δt.

As the starting point, we take the equation of virtual powers in the current state [9, 16, 17]. We write
it as the operator equation G = 0. The equation kG = 0 must be satisfied in the kth time layer. A similar
equation in the next time layer can be represented in the form k+1G = kG+ kĠΔt = 0. In our case, the
equation of virtual powers in the current state (at t = k+1t) takes the form⎧⎪⎨

⎪⎩
∫
Vk

kσ · ·δkddV −
∫
Sσ
k

ktnδυdS −
∫
Vk

kFδυdV

⎫⎪⎬
⎪⎭

+
d

dt

⎧⎪⎨
⎪⎩
∫
Vk

kσ · ·δkddV −
∫
Sσ
k

ktn · δυdS −
∫
Vk

kF · δυdV

⎫⎪⎬
⎪⎭Δt = 0. (8)

Linearizing (8) and taking into account relation (5), we obtain the resolving equation∫
Vk

{
kd · ·kΛe · ·δd +

1

2
kσ · ·

[
δhT·kh+khT · δh

]
−

[
k∇ · kυ

]
kF · δυ

− λ̇

[
2
∂Φp

∂σ
· σ +Λe :

∂Φp

∂σ

]}
dV −

∫

S
σ
k

{
ktn · khT −

[
k∇ · kυ

]
ktn

}
δυdS

=

∫
Sσ
k

kΔtn · δυdS +

∫
Vk

kΔF · δυdV

− 1

Δt

⎧⎪⎨
⎪⎩
∫
Vk

kσ · ·δkddV −
∫
Sσ
k

ktn · δυdS −
∫
Vk

kF · δυdV

⎫⎪⎬
⎪⎭ . (9)

Since quasistatic problems are solved, we may pass from rates to increments, for example, by putting
υ = Δu/Δt.

Solving equation (9), we obtain the displacement vector u that determines the configuration at the
next step of loading

k+1x = kx+ υΔt.

In statics problems, the time increment is a loading parameter, which is usually assumed to be
equal to unity. When plastic strains occur, the method of stress projection with iterative refinement is
used, which consists in the following. By solving the elastic problem (9), we find the increment of the
displacement field along which we determine the trial stress field at the next step of loading

σ̃ = kσ +
[
k+1Λe · ·kd+ kh · kσ + kσ · khT − I1kd

kσ
]
.

Then we apply the method of projection of stresses onto the yield surface, which consists in solving the
system of nonlinear equations

k+1σ = σ̃ −Δλ

(
2

∂Φp

∂k+1σ
· σ̃ + k+1Λe · ·

∂Φp

∂k+1σ

)
= 0, (10)

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 9 2018



ANALYSIS OF FINITE ELASTO-PLASTIC STRAINS 1481

Φp

(
k+1σ, χ (Δλ)

)
= 0. (11)

Having solved the system of nonlinear equations (10), (11) by the Newton method, we obtain the
tensor of true stresses k+1σ and the increment of the rate of plastic strains Δλ. Due to the fact that the
true stress state thus obtained does not satisfy the equilibrium equation (9), we construct an iterative
procedure for refinement of the obtained stress-strain states, which is based on the introduction, into the
resolving system of equations (9), of the power of additional stresses on the possible rate distortions∫

Vk

{
k
md · ·kΛe · ·δd+

1

2
kσ · ·

[
δhT · kmh+ k

mhT · δh
]
−

[
k∇ · kυ

]
kF · δυ

− Δk
mλ

[
2
∂Φp

∂k
mσ

· kmσ+kΛe · ·
∂Φp

∂k
mσ

]}
dV −

∫

S
σ
k

{
ktn · kmhT −

[
k
m∇ · kmυ

]
ktn

}
δυdS

=

∫
Sσ
k

Δktn · δυdS +

∫
Vk

ΔkF · δυdV

−

⎧⎪⎨
⎪⎩
∫
Vk

kσ · ·δkddV −
∫
Sσ
k

ktn · δυdS −
∫
Vk

kF · δυdV

⎫⎪⎬
⎪⎭+

∫
Vk

k
mσad · ·δkddV,

where k+1
m σad = k+1

m σ − σ̃.

4. NUMERICAL EXAMPLE

Consider the problem of tension of a circular bar with the following characteristics: cross-section
radius R = 6.413 mm and bar length L = 53.334 mm. Note that to specify the location of the neck in the
center of the bar, we reduce the radius by 1.8% [2–4]. The free energy function is given as follows:

ρ0ψ =
λ+ 2μ

8
(I1B − 3)2 + μ (I1B − 3)− μ

2
(I2B − 3) ,

where λ and μ are the Lame coefficients. As a plastic yield criterion, we take the Huber-Mises condition,
which admits the following generalization for an isotropic medium:

Φ = σint − σT (χ) ≤ 0.
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Fig. 1. Force–displacement graph. Solid line is the dependence obtained with the help of the developed algorithm,
� — [2], � — [3].
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Fig. 2. Plastic strain intensity.

Here σint =

√
3

2
σ′ · ·σ′ is the stress intensity, σT (χ) is the hardening function, χ is the hardening

parameter, and σ′ is the deviator of the stress tensor.
The nonlinear isotropic hardening function has the form [2–4]

σT (χ) = σT + hχ+ (σ∞ − σT )(1− e−δχ).

The parameters of a material are as follows: E = 206900 MPa, ν = 0.29, σ∞ = 715 MPa, σT =
450 MPa, h = 0.129, and δ = 16.93. The numerical implementation is based on the finite element
method. An octanodal 3D finite element is used. Figure 1 displays a graph of the dependence of the
force arising at the end of the bar upon the displacement. The solid line shows the dependence obtained
by the above-described technique, tiny square— by [2], blacktriangle—by [3]. It is seen that our
results are in good agreement with the results of other authors. Figure 2 depicts the deformed state of
the bar with the field of intensity of plastic strains. The intensity of plastic strains takes the maximum
value in the neck formation region.

CONCLUSION

The paper presents a technique for solving deformation problems with finite elasto-plastic strains.
The multiplicative decomposition of the strain gradient is used. The constitutive relation is written in the
real state in the form of the dependence of the Cauchy stress tensor on the left Cauchy–Green strain
tensor. To take plastic strains into account, we use the method of stress projection onto the yield surface
with an iterative refinement of the current stress-strain state. In terms of the incremental loading method,
the resolving equation is obtained. The numerical implementation is based on the finite element method.
As a demonstration of the working capacity of the developed technique, the problem of tension of a bar
with the neck formation has been solved and the results of the solution have been compared with the
solutions of other authors.
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3. J. Schröder, F. Gruttmann, and J. Löblein, “A simple orthotropic finite elasto-plasticity model based on
generalized stress-strain measures,” Comput. Mech. 30, 48–64 (2002). doi 10.1007/s00466-002-0366-3

4. J. S. Simo, “A framework for finite strain elastoplasticity based on maximum plastic dissipation and the
multiplicative decomposition: Part I. Continuum formulation,” Comput. Methods Appl. Mech. Eng. 66, 199–
219 (1988). doi 10.1016/0045-7825(88)90076-X

5. C. Miehe, “A theory of large-strain isotropic thermoplasticity based on metric transformation tensors”, Arch.
Appl. Mech. 66, 45–64 (1995). doi 10.1007/BF00786688

6. Y. Basar and M. Itskov, “Constitutive model and finite element formulation for large strain elasto-plastic
analysis of shell,” Comput. Mech. 23, 466–481 (1999). doi 10.1007/s004660050426

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 9 2018



ANALYSIS OF FINITE ELASTO-PLASTIC STRAINS 1483

7. A. Meyers, P. Schievbe, and O. T. Bruhns, “Some comments on objective rates of symmetric Eulerian tensors
with application to Eulerian strain rates,” Acta Mech. 139, 91–103 (2000). doi 10.1007/BF01170184

8. H. Xiao, O. T. Bruhns, and A. Meyers, “A consistent finite elastoplasticity theory combining additive and
multiplicative decomposition of the stretching and deformation gradient”, Int. J. Plasticity 16, 143–177
(2000). doi 10.1016/S0749-6419(99)00045-5

9. J. Bonet and R. D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge
Univ. Press, Cambridge, 1997).

10. M. Rouainia and D. M. Wood, “Computational aspects in finite strain plasticity analysis of geotechnical
materials,” Mech. Res. Commun. 33, 123–133 (2006). doi 10.1016/j.mechrescom.2005.06.014

11. J. S. Simo and M. Ortiz, “A unified approach to finite deformation elastoplastic analysis lased on the
use of hyperelastic constitutive equations,” Comput. Methods. Appl. Mech. Eng. 49, 221–245 (1985). doi
10.1016/0045-7825(85)90061-1

12. A. L. Eterovic and K.-J. Bathe, “A hyperelastic-based large strain elasto-plastic constitutive formulation with
combined isotropic-kinematic hardening using the logarithmic stress and strain measures,” Int. J. Numer.
Meth. Eng. 30, 1099–1114 (1990). doi 10.1002/nme.1620300602

13. R. L. Davydov and L. U. Sultanov, “Numerical algorithm of solving the problem of large elastic-plastic
deformation by FEM,” Vestn. Perm. Politekh. Univ., Mekh., No. 1, 81–93 (2013).

14. R. L. Davydov and L. U. Sultanov, “Numerical algorithm for investigating large elasto-plastic deformations”,
J. Eng. Phys. Thermophys. 88, 1280–1288 (2015). doi 10.1007/s10891-015-1310-7

15. A. I. Golovanov and L. U. Sultanov, “Numerical investigation of large elastoplastic strains of three-
dimensional bodies,” Int. Appl. Mech. 41, 614–620 (2005). doi 10.1007/s10778-005-0129-x

16. A. I. Abdrakhmanova and L. U. Sultanov, “Numerical modelling of deformation of hyperelastic
incompressible solids,” Mater. Phys. Mech. 26, 30–32 (2016).

17. A. I. Golovanov, Yu. G. Konoplev, and L. U. Sultanov, “Numerical investigation of finite deformations of
hyperelastic bodies. IV. Finite-element implementation. Examples of the solution of problems,” Uch. Zap.
Kazan. Univ., Ser. Fiz.-Mat. Nauki 152, 115–126 (2010).

Translated by I. Tselishcheva

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 9 2018


