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Abstract—A positive definite differential eigenvalue problem with coefficients depending nonlinearly
on the spectral parameter is studied. The problem is formulated as a variational eigenvalue problem in
a Hilbert space with bilinear forms depending nonlinearly on the spectral parameter. The variational
problem has an increasing sequence of positive simple eigenvalues that correspond to a normalized
system of eigenfunctions. The variational problem is approximated by a finite element mesh scheme
on a uniform grid with Lagrangian finite elements of arbitrary order. Error estimates for approximate
eigenvalues and eigenfunctions are proved depending on the mesh size and the eigenvalue size. The
results obtained are generalizations of well-known results for differential eigenvalue problems with
linear dependence on the spectral parameter.
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INTRODUCTION

We study the positive definite differential eigenvalue problem −(p(λ, x)u′(x))′ + q(λ, x)u(x) =
λr(λ, x)u(x), λ ∈ (0,∞), x ∈ (0, 1), u(0) = u(1) = 0, with given coefficients p(μ, x), q(μ, x), r(μ, x),
μ ∈ (0,∞), x ∈ [0, 1]. For a fixed x ∈ [0, 1], the functions p(μ, x), q(μ, x), μ ∈ (0,∞), are nonincreasing,
while the function r(μ, x), μ ∈ (0,∞), is nondecreasing. The differential problem is equivalent to
the following variational eigenvalue problem: λ ∈ (0,∞), u ∈ V \ {0}, a(λ, u, v) = λb(λ, u, v) for any
function v ∈ V . Here, V = {v : v ∈ W 1

2 (0, 1), v(0) = v(1) = 0} is a Hilbert space with norm | · |1.
According to [1], this problem has an increasing sequence of positive simple eigenvalues λk, k =
1, 2, . . ., with a limit point at infinity: 0 < λ1 < λ2 < · · · < λk < · · · , λk → ∞ as k → ∞. This sequence
of eigenvalues is associated with a system of normalized eigenfunctions uk, k = 1, 2, . . ..

The variational eigenvalue problem is approximated by the following finite element mesh scheme:
λh ∈ (0,∞), uh ∈ Vh \ {0}, a(λh, uh, vh) = λhb(λh, uh, vh) for any function vh ∈ Vh. Here, Vh is the
space of Lagrangian finite elements of order n. For sufficiently small h, the mesh eigenvalue problem
has Nh positive simple eigenvalues λh

k , where Nh = dimVh, k = 1, 2, . . . , Nh, and 0 < λh
1 < λh

2 < · · · <
λh
Nh

. The eigenvalues λh
k , k = 1, 2, . . . , Nh, are associated with a system of normalized eigenfunctions

uhk , k = 1, 2, . . . , Nh. For sufficiently small h, we prove the error estimates

0 ≤ λh
k − λk ≤ ch2nλn+1

k , |uhk − uk|1 ≤ chnλ
(n+1)/2
k ,

where c is a constant independent of h and λk, the signs of the normalized eigenfunctions uhk and uk are
chosen according to the conditions b(λk, u

h
k , uk) > 0, b(λh

k , u
h
k , u

h
k) = 1, b(λk, uk, uk) = 1.
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Nonlinear eigenvalue problems arise in various areas of science and engineering, for example, in
plasma physics, structural mechanics, numerical algorithms for discrete equations, and the theory of
dielectric waveguides [1–5]. Computational methods for solving nonlinear matrix eigenvalue problems
were investigated in [5]. As applied to nonlinear differential eigenvalue problems, the finite element
method was addressed in [6], and the influence of numerical integration in finite element schemes was
studied in [1, 7, 8] with the help of the results from [9–12]. In [13] errors in approximate methods for
solving nonlinear eigenvalue problems in a Hilbert space were analyzed using general results for the
linear case [14–16]. Approximate methods for solving nonlinear boundary value problems and variational
inequalities arising in applications were investigated in [17–23].

1. VARIATIONAL FORMULATION OF THE PROBLEM

Let Ω = (0, 1), Ω = [0, 1], G be an interval of the number line R, and Λ = (0,∞). As usual, L2(G)
and Wm

2 (G) denote the real Lebesgue and real Sobolev spaces, respectively, equipped with the norms

|u|0,G =

⎛
⎝
∫

G

(u(x))2dx

⎞
⎠

1/2

, ||u||m,G =

(
m∑
i=0

|u|2i,G

)1/2

and seminorms |u|i,G = |u(i)|0,G, i = 0, 1, . . . ,m, where u(i) = diu(x)/dxi, i = 1, 2, . . . ,m, u(0) = u,
and m is a positive integer. Additionally, let W 0

2 (G) = L2(G). If G = Ω, then, for brevity, the domain
index is omitted from the notation of the norms and seminorms.

Let p(μ, x), q(μ, x), r(μ, x), μ ∈ Λ, x ∈ Ω, be given infinitely continuously differentiable functions.
Assume that p(μ, x) and r(μ, x), μ ∈ Λ, x ∈ Ω, are positive, while the function q(μ, x), μ ∈ Λ, x ∈ Ω,
is nonnegative. For fixed x ∈ Ω, the functions p(μ, x) and q(μ, x), μ ∈ Λ, are nonincreasing, while the
function r(μ, x), μ ∈ Λ, is nondecreasing. Assume that there exist positive constants p1, p2, p3, p4, q2,
q3, r1, r2, and r3 such that

p1 ≤ p(μ, x) ≤ p2, 0 ≤ q(μ, x) ≤ q2, r1 ≤ r(μ, x) ≤ r2,∣∣∣∣
∂p(μ, x)

∂μ

∣∣∣∣ ≤ p3,

∣∣∣∣
∂q(μ, x)

∂μ

∣∣∣∣ ≤ q3,

∣∣∣∣
∂r(μ, x)

∂μ

∣∣∣∣ ≤ r3,

∣∣∣∣
∂ip(μ, x)

∂xi

∣∣∣∣ ≤ p4,

∣∣∣∣
∂iq(μ, x)

∂xi

∣∣∣∣ ≤ q4,

∣∣∣∣
∂ir(μ, x)

∂xi

∣∣∣∣ ≤ r4

for any μ ∈ Λ, x ∈ Ω, i = 1, 2, . . ..
Consider the following differential eigenvalue problem: find numbers λ ∈ Λ and nonzero functions

u(x), x ∈ Ω, such that

−(p(λ, x)u′(x))′ + q(λ, x)u(x) = λr(λ, x)u(x), x ∈ Ω, u(0) = u(1) = 0.

We introduce the Hilbert space V = {v : v ∈ W 1
2 (Ω), v(0) = v(1) = 0} with norm | · |1. It is easy to

see that the Friedrichs inequality |v|0 ≤ |v|1 holds for any v ∈ V . For μ ∈ Λ and u, v ∈ V , we define the
bilinear forms

a(μ, u, v) =

1∫

0

(p(μ, x)u′v′ + q(μ, x)uv)dx, b(μ, u, v) =

1∫

0

r(μ, x)uvdx.

The generalized formulation of the differential eigenvalue problem is as follows: find λ ∈ Λ and
u ∈ V \ {0} such that

a(λ, u, v) = λb(λ, u, v) ∀v ∈ V. (1)

Consider an auxiliary linear eigenvalue problem for a fixed μ ∈ Λ: find functions γ = γ(μ) ∈ Λ and
y = y(μ) ∈ V \ {0} such that

a(μ, y, v) = γb(μ, y, v) ∀v ∈ V. (2)
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According to [24], problem (2) has a sequence of positive simple eigenvalues γk = γk(μ), k =
1, 2, . . ., arranged in increasing order: 0 < γ1 < γ2 < · · · < γk < · · · , γk → ∞ as k → ∞. These
eigenvalues are associated with an orthonormal system of eigenfunctions yk = yk(μ), k = 1, 2, . . ., such
that a(μ, yi, yj) = γiδij , b(μ, yi, yj) = δij , i, j = 1, 2, . . .. The eigenfunctions yk, k = 1, 2, . . ., form a
complete system in the space V . It is true that γk(μ) ≥ γk(η) for μ < η, where μ, η ∈ Λ.

Lemma 1. For any functions v ∈ V and any numbers μ, η ∈ Λ, it holds that

α1|v|21 ≤ a(μ, v, v) ≤ α2|v|21, |a(μ, v, v) − a(η, v, v)| ≤ α3|μ− η||v|21,
β1|v|20 ≤ b(μ, v, v) ≤ β2|v|20, |b(μ, v, v) − b(η, v, v)| ≤ β3|μ− η||v|20,

where α1 = p1, α2 = p2 + q2, β1 = r1, β2 = r2, α3 = p3 + q3, β3 = r3.
Proof. The required inequalities follow from the definitions of the bilinear forms and the properties of

the coefficients of the problem. The lemma is proved. �

Theorem 1. Problem (1) has a sequence of positive simple eigenvalues λk, k = 1, 2, . . .,
arranged in increasing order: 0 < λ1 < λ2 < · · · < λk < · · · , λk → ∞ as k → ∞. Each eigenvalue
λi, i ≥ 1, is a unique root of the equationμ− γi(μ) = 0, μ ∈ Λ, i ≥ 1. The sequence of eigenvalues
λk, k = 1, 2, . . ., is associated with a sequence of eigenfunctions uk, k = 1, 2, . . .. The eigenfunction
uk coincides with the eigenfunction yk corresponding to the eigenvalue γk(μ) of the linear
parametric eigenvalue problem (2) with μ = λk. The eigenfunctions uk, k = 1, 2, . . ., are infinitely

continuously differentiable and satisfy the estimates |uk|i ≤ siλ
i/2
k , k = 1, 2, . . . , i = 0, 1, 2, . . . ,

where si, i = 0, 1, 2, . . ., are constants independent of λk, k = 1, 2, . . ..
Proof. The theorem is proved using the results of [1, 13, 24]. The theorem is proved. �

2. MESH APPROXIMATION OF THE PROBLEM

The interval Ω is divided by equidistant points xi = ih, i = 0, 1, . . . ,m, into elements ei = [xi−1, xi],
i = 1, 2, . . . ,m, h = 1/m. Let Vh denote the space of Lagrangian finite elements consisting of
continuous functions vh on Ω that are polynomials of degree at most n on each element ei, i =
1, 2, . . . ,m, vh(0) = vh(1) = 0, Nh = dimVh = mn− 1.

The variational problem (1) is approximated by the following finite element mesh scheme: find λh ∈ Λ
and uh ∈ Vh \ {0} such that

a(λh, uh, vh) = λhb(λh, uh, vh) ∀vh ∈ Vh. (3)

Consider the following auxiliary linear eigenvalue problem with a fixed μ ∈ Λ: find functions γh =
γh(μ) ∈ Λ, yh = yh(μ) ∈ Vh \ {0} such that

a(μ, yh, vh) = γhb(μ, yh, vh) ∀vh ∈ Vh. (4)

Problem (4) has Nh positive simple eigenvalues γhk = γhk (μ), k = 1, 2, . . . , Nh, arranged in increasing
order: 0 < γh1 < γh2 < · · · < γhNh

. These eigenvalues are associated with an orthonormal system of

eigenfunctions yhk = yhk (μ), k = 1, 2, . . . , Nh, such that a(μ, yhi , y
h
j ) = γhi δij , b(μ, yhi , y

h
j ) = δij , i, j =

1, 2, . . . , Nh. The eigenfunctions yhk , k = 1, 2, . . . , Nh, form a complete system in the space Vh. The
inequalities γhk (μ) ≥ γhk (η) hold for μ < η, where μ, η ∈ Λ.

Theorem 2. Problem (3) has Nh positive simple eigenvalues λh
k , k = 1, 2, . . . , Nh, arranged

in increasing order: 0 < λh
1 < λh

2 < · · · < λh
Nh

. Each eigenvalue λh
i , i ≥ 1, is a unique root of the

equation μ− γhi (μ) = 0, μ ∈ Λ, i ≥ 1. The eigenvalues λh
k , k = 1, 2, . . . , Nh, are associated with

eigenfunctions uhk , k = 1, 2, . . . , Nh. The eigenfunction uhk coincides with the eigenfunction yhk
corresponding to the eigenvalue γhk (μ) of the linear parametric eigenvalue problem (4) with
μ = λh

k .
Proof. It is similar to the proof of Theorem 1 taking into account that problems (3) and (4) are finite-

dimensional. The theorem is proved. �
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3. ERROR ANALYSIS OF THE MESH SCHEME

Let uk be the eigenfunction of problem (1) corresponding to the eigenvalue λk, and let uhk be the
eigenfunction of problem (3) corresponding to the eigenvalue λh

k . Denote by c different positive constants
independent of h and λk.

For μ ∈ Λ, the orthogonal projectorPh(μ) : V → Vh is defined by the formula a(μ, u−Ph(μ)u, v
h) =

0 for any vh ∈ Vh, where u ∈ V . Define Ph = Ph(λk).
Lemma 2. The error of the orthogonal projector satisfies the estimates

|uk − Phuk|i ≤ chn+1−iλ
(n+1)/2
k , i = 0, 1.

Proof. The error estimates from the lemma are derived using the results of [25]. The lemma is proved.
�

Theorem 3. For sufficiently small h, we have the error estimate

0 ≤ λh
k − λk ≤ ch2nλn+1

k .

Proof. The required estimate follows from the relations

0 ≤ λh
k − λk = γhk (λ

h
k)− γk(λk) ≤ γhk (λk)− γk(λk),

the error estimate for approximate eigenvalues of the linear eigenvalue problem [12], and Lemmas 1 and
2. The theorem is proved. �

Theorem 4. For sufficiently small h, the following error estimate holds:

|uhk − uk|1 ≤ chnλ
(n+1)/2
k ,

where b(λk, u
h
k , uk) > 0, b(λh

k , u
h
k , u

h
k) = 1, and b(λk, uk, uk) = 1.

Proof. Let βh
i = b(λh

k , Phuk, y
h
i ), i = 1, 2, . . . , Nh, where yhi , i = 1, 2, . . . , Nh, are the eigenfunctions

of problem (4) with μ = λh
k and b(λk, uk, uk) = 1. Note that yhk = uhk . Since the eigenfunctions yhi ,

i = 1, 2, . . . , Nh, form an orthonormal basis in Vh, the element Phuk ∈ Vh can be represented in the
form of the decomposition Phuk = βh

ku
h
k + vhk + wh

k , where

vhk =

k−1∑
i=1

βh
i y

h
i , wh

k =

Nh∑
i=k+1

βh
i y

h
i .

Let

ξhk = sup
vh∈Vh\{0}

|a(λh
k , Phuk, v

h)− λkb(λ
h
k , Phuk, v

h)|
|vh|1

.

It is true that ξhk ≤ chn+1λ
(n+3)/2
k .

For k ≥ 1 and λ0 = 0, define

ρk =
λk−1

λk − λk−1
+

λk+1

λk+1 − λk
.

Theorem 3 implies that λh
i → λi as h → 0, i = 1, 2, . . . , k+1. Therefore, for sufficiently small h, we have

λk − λh
k−1 > 0 and λh

k+1 − λk > 0, where k ≥ 1 and λh
0 = 0; moreover, for a positive constant c,

λh
k−1

λk − λh
k−1

≤ cρk,
λh
k+1

λh
k+1 − λk

≤ cρk.

For k ≥ 1 we prove the estimate |vhk |1 ≤ cρkξ
h
k . Obviously, this estimate holds for k = 1. Let k ≥ 2.

Then

a(λh
k , Phuk, v

h
k ) = a(λh

k , v
h
k , v

h
k ), b(λh

k , Phuk, v
h
k ) = b(λh

k , v
h
k , v

h
k ),
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a(λh
k , v

h
k , v

h
k ) ≤ λh

k−1b(λ
h
k , v

h
k , v

h
k ).

Thus, we obtain the chain of inequalities

|vhk |1ξhk ≥ −a(λh
k , Phuk, v

h
k ) + λkb(λ

h
k , Phuk, v

h
k ) = −a(λh

k , v
h
k , v

h
k ) + λkb(λ

h
k , v

h
k , v

h
k )

≥ (λk − λh
k−1)b(λ

h
k , v

h
k , v

h
k ) ≥

λk − λh
k−1

λh
k−1

a(λh
k , v

h
k , v

h
k ) ≥

1

cρk
|vhk |21, k ≥ 2,

which yield the required estimate.

For k ≥ 1 we prove the estimate |wh
k |1 ≤ cρkξ

h
k . It is easy to see that

a(λh
k , Phuk, w

h
k ) = a(λh

k , w
h
k , w

h
k), b(λh

k , Phuk, w
h
k) = b(λh

k , w
h
k , w

h
k ),

a(λh
k , w

h
k , w

h
k ) ≥ λh

k+1b(λ
h
k , w

h
k , w

h
k ).

Then we have the relations

|wh
k |1ξhk ≥ a(λh

k , Phuk, w
h
k )− λkb(λ

h
k , Phuk, w

h
k)

= a(λh
k , w

h
k , w

h
k) + λkb(λ

h
k , w

h
k , w

h
k) ≥

λh
k+1 − λk

λh
k+1

a(λh
k , w

h
k , w

h
k ) ≥

1

cρk
|wh

k |21, k ≥ 1,

which lead to the required estimate.
Now, using the above-derived estimates, we have

|Phuk − βh
ku

h
k |1 ≤ |vhk |1 + |wh

k |1 ≤ cρkξ
h
k ≤ cρkh

n+1λ
(n+3)/2
k

for sufficiently small h.

Define ||v||2b = b(λk, v, v) and ||vh||2bh = b(λh
k , v

h, vh) for any v ∈ V and vh ∈ Vh. Then the relations

βh
k = ||βh

ku
h
k ||bh ≤ 1 + ||uk − Phuk||b + ||Phuk − βh

ku
h
k ||bh + |||Phuk||bh − ||Phuk||b|,

βh
k = ||βh

ku
h
k ||bh ≥ 1− ||uk − Phuk||b − ||Phuk − βh

ku
h
k ||bh − |||Phuk||bh − ||Phuk||b|

yield

|βh
k − 1| ≤ ||uk − Phuk||b + ||Phuk − βh

ku
h
k ||bh + c|||Phuk||2bh − ||Phuk||2b |,

|βh
ku

h
k − uhk |1 = |βh

k − 1||uhk |1 ≤ c
√

λk|βh
k − 1| ≤ cρkh

n+1λ
(n+4)/2
k

for sufficiently small h. Finally, we conclude that

|uk − uhk |1 ≤ |uk − Phuk|1 + |Phuk − βh
ku

h
k |1 + |βh

ku
h
k − uhk |1 ≤ chnλ

(n+1)/2
k .

The theorem is proved. �
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