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Abstract—The problem of finding the minimal eigenvalue corresponding to a positive eigenfunction
of the nonlinear eigenvalue problem for the ordinary differential equation with coefficients depending
on a spectral parameter is investigated. This problem arises in modeling the plasma of radio-
frequency discharge at reduced pressures. A necessary and sufficient condition for the existence of
a minimal eigenvalue corresponding to a positive eigenfunction of the nonlinear eigenvalue problem
is established. The original differential eigenvalue problem is approximated by the finite element
method on a uniform grid. The convergence of approximate eigenvalue and approximate positive
eigenfunction to exact ones is proved. Investigations of this paper generalize well known results for
eigenvalue problems with linear dependence on the spectral parameter.
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1. INTRODUCTION

In the present paper, we investigate the following differential nonlinear eigenvalue problem: find
minimal eigenvalue λ ∈ Λ, Λ = [0,∞), corresponding to a positive eigenfunction u(x), x ∈ Ω, Ω =

(0, π), Ω = [0, π], satisfying the following equations

−(p(λs(x))u′)′ = r(λs(x))u, x ∈ Ω, u(0) = u(π) = 0. (1)

We assume that p(μ), r(μ), μ ∈ Λ, and s(x), x ∈ Ω are continuous positive functions. We also assume
that the function p(μ), μ ∈ Λ is bounded and the function r(μ), μ ∈ Λ is unbounded. Note that the
differential equation of problem (1) is treated in the weak sense.

Nonlinear eigenvalue problems of the form (1) arise in modeling the plasma of radio-frequency
discharge at reduced pressures. An inductive coupled radio-frequency discharge has found broad
applications in diverse technological plasma processes, such as processing textiles and leather-fur half-
finished products, metals, hydrogen accumulation by silicon powders, synthesis of oxygen-free ceramic
materials, and obtaining carbide and boride materials for nuclear and processing industry [1–5]. A more
effective and qualitative choice of constructive solutions in designing inductive coupled radio-frequency
devices requires mathematical models, because some technological characteristics of the plasma cannot
be measured.

In the present paper, a necessary and sufficient condition for the existence of a minimal eigenvalue
corresponding to a positive eigenfunction of the nonlinear eigenvalue problem is established. The
original nonlinear differential eigenvalue problem is approximated by the finite element method with
numerical integration on a uniform grid. The convergence of approximate minimal eigenvalue and
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approximate positive eigenfunction to exact ones is proved. Investigations of this paper generalize well
known results for eigenvalue problems with linear dependence on the spectral parameter.

Nonlinear eigenvalue problems also arise in various fields of science and technology [6–23]. Nu-
merical methods for solving matrix eigenvalue problems with nonlinear dependence on the parameter
were constructed and investigated in the papers [24–36]. Error of the finite difference methods for
solving differential nonlinear eigenvalue problems was studied in [37, 38]. Finite element method for
solving nonlinear eigenvalue problems was investigated in [2, 11, 39], and estimations of the effect
of numerical integration in finite element eigenvalue approximations were established in [40–42] with
help the results [43–46]. The investigations of approximate methods for solving nonlinear eigenvalue
problems in a Hilbert space were carried out in the papers [11, 47] with using general results for linear
eigenvalue problems [48–52]. In the papers [53–58], numerical methods for solving applied nonlinear
boundary value problems and variational inequalities have been studied.

2. VARIATIONAL STATEMENT OF THE PROBLEM

Let H = L2(Ω) be the real Lebesgue space with norm

|v|0 =

⎛
⎝

π∫

0

(v(x))2dx

⎞
⎠

1/2

∀v ∈ H.

By V = {v : v, v′ ∈ H,u(0) = u(π) = 0} we denote the real Sobolev space with norm

|v|1 =

⎛
⎝

π∫

0

(v′(x))2dx

⎞
⎠

1/2

∀v ∈ V.

Put K = {v : v ∈ V, u(x) > 0, x ∈ Ω}. For fixed μ ∈ Λ, we introduce the following bilinear forms

a(μ, u, v) =

π∫

0

p(μs(x))u′v′dx, b(μ, u, v) =

π∫

0

r(μs(x))uvdx,

where u, v ∈ V. For fixed μ ∈ Λ, we define the Rayleigh functional by

R(μ, v) =
a(μ, v, v)

b(μ, v, v)
∀v ∈ V \ {0}.

The differential nonlinear eigenvalue problem (1) is equivalent to the following variational nonlinear
eigenvalue problem: find the minimal number λ ∈ Λ and a function u ∈ K, b(λ, u, u) = 1, such that

a(λ, u, v) = b(λ, u, v) ∀v ∈ V. (2)

For fixed μ ∈ Λ, we introduce the linear variational parametric eigenvalue problem: find the minimal
number γ(μ) ∈ Λ and a function u = uμ ∈ K, b(μ, u, u) = 1, such that

a(μ, u, v) = γ(μ)b(μ, u, v) ∀v ∈ V. (3)

The minimal eigenvalue of problem (3) satisfies the following variational representation

γ(μ) = min
v∈V \{0}

R(μ, v).

Hence, the minimal eigenvalue λ of problem (2) is the minimal root of the equation

γ(μ) = 1, μ ∈ Λ. (4)

Put

(u, v)0 =

π∫

0

u(x)v(x)dx, (u, v)1 =

π∫

0

u′(x)v′(x)dx ∀u, v ∈ V.
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Formulate the auxiliary linear variational eigenvalue problem: find the minimal number κ ∈ Λ and a
function u ∈ K, (u, u)0 = 1, such that

(u, v)1 = κ(u, v)0 ∀v ∈ V. (5)

The eigenvalue and eigenfunction of problem (5) is defined by κ = 1, u(x) =
√

π/2 sinx, x ∈ Ω.

Moreover, the following variational property holds κ = minv∈V \{0}
(v,v)1
(v,v)0

. For μ, η ∈ Λ, we denote

δp(μ, η) = max
x∈Ω

|p(μs(x))− p(ηs(x))|, δr(μ, η) = max
x∈Ω

|r(μs(x))− r(ηs(x))|.

We also set p1 = infμ∈Λ p(μ), p2 = supμ∈Λ p(μ), r1 = infμ∈Λ r(μ).

Theorem 1. For μ, η ∈ Δ, the following estimate is valid |γ(μ)− γ(η)| ≤ c(δp(μ, η) + δr(μ, η)),
where c is a positive constant independent of μ, η ∈ Δ, Δ = [α, β] ⊂ Λ.

Proof. Using the definition of bilinear forms, we obtain

|a(μ, v, v) − a(η, v, v)| =

∣∣∣∣∣∣

π∫

0

(p(μs(x))− p(ηs(x)))(v′)2dx

∣∣∣∣∣∣
≤ δp(μ, η)|v|21

for μ, η ∈ Δ, v ∈ V ,

|b(μ, v, v) − b(η, v, v)| =

∣∣∣∣∣∣

π∫

0

(r(μs(x))− r(ηs(x)))v2dx

∣∣∣∣∣∣
≤ δr(μ, η)|v|20

for μ, η ∈ Δ, v ∈ H . Consequently, for v = uη, μ, η ∈ Δ, we have

|R(μ, v) −R(η, v)| ≤ |a(μ, v, v) − a(η, v, v)|
b(μ, v, v)

+
|b(η, v, v) − b(μ, v, v)|

b(μ, v, v)

a(η, v, v)

b(η, v, v)

≤ δp(μ, η)
1

r1

|v|21
|v|20

+ δr(μ, η)
1

r1
R(η, v) ≤ δp(μ, η)

σ2
r1p1

R(η, v) + δr(μ, η)
1

r1
R(η, v)

= δp(μ, η)
σ2
r1p1

γ(η) + δr(μ, η)
1

r1
γ(η) ≤ δp(μ, η)

p2σ2
r21p1

+ δr(μ, η)
p2
r21

≤ c(δp(μ, η) + δr(μ, η)),

where c = (p2/r
2
1) (σ2/p1 + 1), σ2 = maxμ∈Δ, x∈Ω r(μs(x)),

γ(μ) = min
v∈V \{0}

R(μ, v) = min
v∈V \{0}

⎧⎨
⎩

⎡
⎣

π∫

0

p(μs(x))(v′)2dx

⎤
⎦ /

⎡
⎣

π∫

0

r(μs(x))v2dx

⎤
⎦
⎫⎬
⎭ ≤ p2/r1.

Thus, we derive the relations

γ(μ) = min
v∈V \{0}

R(μ, v) ≤ R(μ, uη) = R(η, uη) +R(μ, uη)−R(η, uη)

≤ γ(η) + |R(μ, uη)−R(η, uη)| ≤ γ(η) + c(δp(μ, η) + δr(μ, η)),

which imply the desired result. �

Theorem 2. The convergence δp(μ, η) → 0, δr(μ, η) → 0, as η → μ holds.
Proof. Assume that μ, η ∈ Δ, Δ = [α, β] ⊂ Λ. Let us prove δp(μ, η) → 0 as η → μ. Since the

function p(μ), μ ∈ Δ, is uniformly continuous, for any ε > 0 there exists δ1 such that for any ν1, ν2 ∈ Δ,
|ν1 − ν2| < δ1, the inequality |p(ν1)− p(ν2)| < ε holds.

Suppose that x ∈ Ω, μ ∈ Λ, μs(x) ∈ Δ, s2 = max
x∈Ω

s(x). Then for any ε > 0 there exists δ > 0, δ ≤

δ1/s2, such that for any η ∈ Λ, ηs(x) ∈ Δ, |μ− η| < δ, |μs(x)− ηs(x)| < δ1, the inequality |p(μs(x))−
p(ηs(x))| < ε holds. Therefore, for any ε > 0 there exists δ > 0 such that for any η ∈ Λ, |μ− η| < δ,
the inequality |δp(μ, η)| < ε holds. Hence δp(μ, η) → 0 as η → μ. Similarly, we prove δr(μ, η) → 0 as
η → μ. �

Denote σ(μ) = minx∈Ω r(μs(x)).
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Theorem 3. A minimal simple eigenvalue of problem (2) exists if and only if γ(ξ) > 1 for some
ξ ∈ Λ.

Proof. According to Theorems 1 and 2, γ(μ), μ ∈ Λ, is a continuous function. Using the variational
properties of the minimal eigenvalues of the problems (3) and (5), we derive

γ(μ) = min
v∈V \{0}

⎧⎨
⎩

⎡
⎣

π∫

0

p(μs(x))(v′)2dx

⎤
⎦ /

⎡
⎣

π∫

0

r(μs(x))v2dx

⎤
⎦
⎫⎬
⎭ ≤ p2

σ(μ)
κ =

p2
σ(μ)

→ 0

as μ → ∞, since σ(μ) = r(μs(xμ)) → ∞ as μ → ∞ for some xμ ∈ Ω. Hence, a minimal root λ ∈ Λ of
equation (4) exists if and only if γ(ξ) > 1 for some ξ ∈ Λ. The minimal root λ ∈ Λ of equation (4) defines
the minimal eigenvalue of problem (2). The eigenvalue λ ∈ Λ is simple and corresponds to a positive
eigenfunction, since γ(μ) is the simple eigenvalue of the parametric problem (3) for μ = λ corresponding
to a positive eigenfunction. �

3. APPROXIMATION OF THE PROBLEM

Let us partition the interval [0, π] by equidistant points xi = ih, i = 0, 1, . . . , N , into the elements
ei = [xi−1, xi], i = 1, 2, . . . , N , h = π/N . By Vh we denote the subspace of the space V , consisting of
continuous functions vh, linear on each element ei, i = 1, 2, . . . , N . Set

Kh = {vh : vh ∈ Vh, u
h(x) > 0, x ∈ Ω}.

For μ ∈ Λ, uh, vh ∈ Vh, we introduce the approximate bilinear forms

ah(μ, u
h, vh) =

N∑
i=1

hp(μs(xi − h/2))(uh(xi − h/2))′(vh(xi − h/2))′,

bh(μ, u
h, vh) =

N∑
i=1

h(r(μs(xi−1))u
h(xi−1)v

h(xi−1) + r(μs(xi))u
h(xi)v

h(xi))/2.

For fixed μ ∈ Λ, we define the Rayleigh functional by

Rh(μ, v
h) =

ah(μ, v
h, vh)

bh(μ, vh, vh)
∀vh ∈ Vh \ {0}.

The variational nonlinear eigenvalue problem (2) is approximated by the following finite dimensional
problem: find the minimal number λh ∈ Λ and a function uh ∈ Kh, bh(λh, uh, uh) = 1, such that

ah(λ
h, uh, vh) = bh(λ

h, uh, vh) ∀vh ∈ Vh. (6)

For fixed μ ∈ Λ, we introduce linear parametric eigenvalue problem: find the minimal number γh(μ)
and a function uh = uhμ ∈ Kh, bh(μ, uh, uh) = 1, such that

ah(μ, u
h, vh) = γh(μ)bh(μ, u

h, vh) ∀vh ∈ Vh. (7)

The following variational property for the minimal eigenvalue of problem (7) is valid

γh(μ) = min
vh∈Vh\{0}

Rh(μ, v
h).

Denote yi = uh(xi), i = 0, 1, . . . , N , pi(μ) = p(μs(xi − h/2)), ri(μ) = r(μs(xi)), μ ∈ Λ, yx,i =
(yi+1 − yi)/h, yx,i = (yi − yi−1)/h. Then the finite dimensional problem (6) is equivalent to the finite
difference problem: find the minimal number λh ∈ Λ and a positive grid function yi, i = 1, 2, . . . , N − 1,
N−1∑
i=1

ri(λ
h)y2i = 1, such that

−(p(λh)yx)x,i = ri(λ
h)yi, i = 1, 2, . . . , N − 1, y0 = yN = 0. (8)
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Similarly, we represent the finite dimensional problem (7) for fixed μ ∈ Λ in finite difference form: find
the minimal number γh(μ) and a positive grid function yi, i = 1, 2, . . . , N − 1,

∑N−1
i=1 ri(μ)y

2
i = 1, such

that

−(p(μ)yx)x,i = γh(μ)ri(μ)yi, i = 1, 2, . . . , N − 1, y0 = yN = 0. (9)

Put

(uh, vh)1,h =
N∑
i=1

h(uh(xi − h/2))′(vh(xi − h/2))′,

(uh, vh)0,h =

N∑
i=1

h(uh(xi−1)v
h(xi−1) + uh(xi)v

h(xi))/2.

Introduce the auxiliary linear eigenvalue problem: find the minimal number κh and a function uh ∈ Kh,
(uh, uh)0,h = 1, such that

(uh, vh)1,h = κ
h(uh, vh)0,h ∀vh ∈ Vh. (10)

The following variational property holds κ
h = minvh∈Vh\{0}

[
(vh, vh)1,h/(v

h, vh)0,h
]
. As above, we

write the finite dimensional problem (10) in finite difference form: find the minimal number κh and a
positive grid function yi, i = 1, 2, . . . , N − 1,

∑N−1
i=1 y2i = 1, such that

−yx,x,i = κ
hyi, i = 1, 2, . . . , N − 1, y0 = yN = 0. (11)

The solutions of problem (11) are defined by the following formulas κ
h = 4

h2 sin
2 h

2 , yi =
√

π/2 sinxi,
i = 0, 1, . . . , N. It is easy to show that 1 ≥ κ

h → 1 as h → 0. The minimal eigenvalue λh of the finite
dimensional problem (6) (or the finite difference problem (8)) is the minimal root of the equation

γh(μ) = 1, μ ∈ Λ, (12)

where γh(μ) is the minimal eigenvalue of the finite dimensional problem (7) (or the finite difference
problem (9)).

Theorem 4. For μ, η ∈ Δ, the following estimate is valid |γh(μ)− γh(η)| ≤ c(δp(μ, η) +
δr(μ, η)), where c is a positive constant independent of μ, η ∈ Δ, Δ = [α, β] ⊂ Λ.

Proof. The proof of this theorem is similar to that of Theorem 1. �

Theorem 5. A minimal simple eigenvalue of problem (6) exists if and only if γh(ξ) > 1 for
some ξ ∈ Λ.

Proof. By Theorems 4 and 2, γh(μ), μ ∈ Λ, is a continuous function. Applying the variational
properties of the minimal eigenvalues of the problems (7) and (10), we get

γh(μ) = min
vh∈Vh\{0}

Rh(μ, v
h) ≤ p2

σ(μ)
κ
h → 0

as μ → ∞, since σ(μ) = r(μs(xμ)) → ∞ as μ → ∞ for some xμ ∈ Ω. Hence, a minimal root λh ∈ Λ

of equation (12) exists if and only if γh(ξ) > 1 for some ξ ∈ Λ. The minimal root λh ∈ Λ of equation
(12) defines the minimal eigenvalue of problem (6). The eigenvalue λh ∈ Λ is simple and corresponds to
a positive eigenfunction, since γh(μ) is the simple eigenvalue of the parametric problem (7) for μ = λh

corresponding to a positive eigenfunction. �

By c we denote various positive constants independent of h. For fixed μ ∈ Λ, we introduce the
operator Ph(μ) : V → Vh defined by the rule a(μ, u− Ph(μ)u, v

h) = 0 for any vh ∈ Vh, where u ∈ V ,
Ph(μ)u → u in V as h → 0. Put Ph = Ph(λ).

Theorem 6. The following convergence holds λh → λ, uh → u in V as h → 0.

Proof. Since γh(μ) → γ(μ) as h → 0 [10, 39, 44] for fixed μ ∈ Λ, we derive λh → λ as h → 0.
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Taking into account the normalization bh(λ
h, uh, uh) = 1, we get p1|uh|21 ≤ ah(λ

h, uh, uh) =

γh(λh) = 1, that is |uh|1 ≤ c, where c = 1/p
1/2
1 . Therefore, any sequence h′ → 0 has a subsequence

h′′ → 0 such that uh ⇀ w in V as h = h′′ → 0, where w ∈ V .

For any element v ∈ V choose vh = Phv. Then we have [10, 39, 44]: ah(λ
h, uh, vh) → a(λ,w, v),

bh(λ
h, uh, vh) → b(λ,w, v) as h = h′′ → 0. Passing to the limit as h = h′′ → 0 in the equation

ah(λ
h, uh, vh) = bh(λ

h, uh, vh), we get a(λ,w, v) = b(λ,w, v) for any v ∈ V . We have 1 = bh(λ
h, uh,

uh) → b(λ,w,w) as h = h′′ → 0, that is b(λ,w,w) = 1 and w ∈ K, since assuming that −w ∈ K,
we obtain w = −u, b(λh, uh, u) → −b(λ, u, u) = −1 as h = h′′ → 0, u ∈ K, but this contradicts the
inequality b(λh, uh, u) > 0. Therefore, λ and w = u are the minimal eigenvalue and corresponding
positive eigenfunction of problem (2). Let us prove the strong convergence uh → u in V as h = h′′ → 0.
We have

p1|uh − Phu|21 ≤ ah(λ
h, uh − Phu, u

h − Phu)

= ah(λ
h, uh, uh)− 2ah(λ

h, uh, Phu) + ah(λ
h, Phu, Phu) → 0

as h = h′′ → 0. Here, we have taken into account the relations

ah(λ
h, uh, uh) = 1, ah(λ

h, uh, Phu) → a(λ, u, u) = 1, ah(λ
h, Phu, Phu) → a(λ, u, u) = 1,

as h = h′′ → 0. Consequently, we obtain |uh − u|1 ≤ |uh − Phu|1 + |u− Phu|1 → 0 as h = h′′ → 0.

Suppose that a sequence h′ → 0 is such that |uh − u|1 ≥ c as h = h′ → 0. Then, as above, there
exists a subsequence h′′ → 0 such that |uh − u|1 → 0 as h = h′′ → 0. But this contradicts the preceding
inequality. Thus, for any sequence h′ → 0 we have uh → u in V as h = h′ → 0, that is uh → u in V as
h → 0. �
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