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Abstract—In our paper we give theoretical and practical estimations of the error probability in the
well-known Miller–Rabin probabilistic primality test. We show that a theoretical probability of error
0.25 for a single round of the test is very overestimated and, in fact, error is diminishing with the
growth of length of numbers involved by a rate limited with lnn/

√
n.
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1. INTRODUCTION

The Miller–Rabin primality test MRT has a wide application in Cryptography to distinguish com-
posite numbers from primes ones. Garry Miller in [1] suggested a deterministic polynomial test which
was based on the unproved Riemann Hypothesis while Michael Rabin [2] refused from the use of the
RH and obtained a modern version of the test which became probabilistic. The error probability α in
the MRT depends on the number of iterations (called rounds) each of which is diminishing α in 4 times.
More exactly, let n be an odd integer which we need to check for primality, and n− 1 = 2st, where t is
odd. At each iteration an individual integer a is chosen to check if some Boolean expression R(a, n)
holds:

R(a, n) : nmoda �= 0 & atmodn = 1, or, at2
i ≡ −1modn, 0 ≤ i < s.

This a is called the base of iteration. If after k rounds with different bases a1, a2, . . . , ak all counted
values R(a1, n), R(a2, n), . . . , R(ak, n) are true, then n is called probable prime (that is, prime with a
possibility of small error not exceeding 1/4k). But if a base a is found such that R(a, n) is false, then the
testing n is definitely composite. The MRT improved some previous known primality test of Fermat and
Solovay–Strassen [3, 4] but contrary to the last it was able to check correctly Carmichael integers that
were composite but defined by error as prime [5]. Our investigation concerns the possible probability
of the MRT errors. Practical experiments show a diminishing number of false application of the MRT
for larger and larger integers involved. The real probability of error is much lesser that 0,25 in a single
iteration and this probability is diminishing with the growth of considered integers. In our paper we show
that the real probability of composite n to be defined as prime is less that 10−6 when n > 109. This allows
us to reduce the number of rounds required to successfully separate composite numbers from primes at
an essentially lesser number of rounds.

The latter plays an important role in connection with the grow length of primes used in Cryptograph-
ical Protocols like as the RSA Ciphering Algorithm [6] and Elliptic Curves Algorithm [7, 8].
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Our investigation closely interacts with the study of strong pseudoprime integers that are exactly
those integers that are composite but pass successfully the MRT at a fixed set of bases contain-
ing first prime integers [10–12]. Let ψk be a least odd composite integer for which requirements
R(2, n), R(3, n), . . . , R(pk, n) hold. The study of this sequence allows the cryptographers to transform
a probabilistic test into a deterministic one. Indeed, if a tested number n does not exceed ψk for some
k, then it is sufficient to perform only k iterations with bases 2, 3, 5, . . . , pk. Then if n passes all checks
successfully, then it can be composite only it is equal to ψk. The values of already calculated ψk are
growing very quickly so to find each next value is a hard computational task. The last two values ψk at
k = 12 and k = 13 are predicted by Zang [12] and checked by Sorenson and Weber [13]. Some relevant
information can be found in Ishmukhametov and Mubarakov [14].

2. NOTATIONS AND DEFINITIONS

We begin with notations and definitions. Let for a natural n odd(n) denote the maximal odd factor
of n and bin(n) denote the maximal power of 2 dividing n. Let n be an odd natural, n > 9. An integer
a, 1 ≤ a < n, co-prime to n, is called a primality witness for n if the following condition R(a, n) holds:

atmodn = 1, or, at2
i ≡ −1modn, 0 ≤ i < s,

where t = odd(n − 1), s = bin(n− 1) (we replaced original Rabin’s definition of the compositeness
witnesses by the opposite relation).

For generality, we consider 1 and n− 1 as primality witnesses and we call them trivial witnesses since
they satisfy MR condition R(a, n) for any n. Let W (n) be a set of primality witnesses of n. Rabin [1]
proved the following theorem estimating number of primality witnesses:

Theorem 1. If odd number n is prime then |W (n)| = n− 1. If odd n ≥ 5 is composite, then
|W (n)| ≤ ϕ(n)/4, where ϕ(n) is Euler’s totient function.

As a corollary of Rabin’s theorem one can deduce that for composite n the probability of random
number a < n, be a primality witness is less than or equal to 0.25. So in order to check if a given odd
number n is composite we may repeatedly choose numbers a, 2 ≤ a < n, and check if they are primality
witnesses for n. If we succeed to find an a that is not a primality witness for n, then n is definitely
composite. But if we repeated this procedure k times with different a, and all them appeared to be
primality witnesses, then n is probable prime with a probability error not exceeding 4−k.

3. METHODS AND ALGORITHMS

We introduce a function Fr, defined at natural numbers as Fr(n) = |W (n)|/ϕ(n), which charac-
terizes the probability error of a random number a to appear in the set of primality witnesses of n. We
call it the frequency function. By Rabin’s theorem, Fr(p) = 1 for prime p, and Fr(n) ≤ 0.25 for any
composite n. So, Fr(n) can be considered as a measure of primality of number n.

We note that there exist infinitely many composite integers with maximal Fr(n) = 0.25, so we can
not find an upper border B for integers n with Fr(n) = 0.25. But we can show that an average value
Fr(n) is decreasing with the growth of numbers n involved.

Below we estimate frequency of numbers of form n = p1p2, . . . , pk, where all pi are different prime
numbers. Beginning with k = 2 such numbers can have a maximum measure of primality while for n
divided by a prime power this measure takes sufficiently less values. So studying only such integers
we can reduce the number of experiments but preserving the upper bound for the average frequency
measure valid for all n exceeding investigated bounds. For example, we can deduce that for any n > 109

the average frequency measure does not exceed the value 10−6, which is essentially less than 0.25, the
upper bound given by Rabin’s theorem.

In our practical experiments we group considered numbers in segments of form σ = [Aσ , Bσ]. For
each segment σ, we take the average ratio among all products of k different primes located in such
segments. Let S(k)(σ) = {p1p2 . . . pk | pi < pi+1, p1p2 . . . pk ∈ σ} be the set of products of k different
primes locating in the considered segment σ. We wish to compute an average frequency of numbers
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locating in intervals σ for different k = 2, 3, . . .. The average frequency of class S(k) is defined as a sum
of frequencies of all elements in S(k) divided by the number of such elements:

Fr(S(k)) =
1

|S(k)|
∑

n∈S(k)

Fr(n).

Segments are defined as follows: σ0 = [1; 27), σi = [2i; 2i+1), i ≥ 7. Due to such definition, length of
segments grows by exponent, and, as we show further, it is convenience to present data of average
frequency.

In order to find frequency of a product of k primes we use a formula proved by Ishmukhametov and
Mubarakov in the forthcoming paper [15].

Let n be the product of k different odd primes p1p2 . . . pk, and

di = GCD

⎛

⎝pi − 1;
∏

j �=i

pj − 1

⎞

⎠ , ui = odd(di), si = bin(di), i = 1, 2, . . . , k.

Then, the number of all witnesses of n is calculated as |W (n)| = u1u2 . . . uk

(
1 +

∑s−1
i=0 2

ik
)

.

4. EXPERIMENTAL CALCULATIONS

We performed two series of experimental calculation. In the first series we counted an exact average
frequency for segments σi and different k.

In the second series (for larger segments) we calculated average frequency for a representative
sampling of integers which was chosen so large that an additional adding of new composites into the
sampling does not change first significant decimal digits. So we can ensure that our average ratings
differ from exact no more than in 0.1 percent.

5. EXACT CALCULATIONS

We computed exact values of average frequencies up to i = 28. So the upper bound for exacts
calculations was 229 ≈ 109. Each calculation was performed with k taking values from 2 to 5.

Let us consider the case k = 2. At this case considered numbers have a form n = pq, where p and q
are different primes. The common algorithm is transforming to the following ones.

Algorithm of counting Fr(n) for n = pq

1. Compute d = GCD(p− 1; q − 1) and find u = odd(d) and s = bin(d).

2. Compute the number of witnesses of n: |W (n)| = u2
(
1 +

∑s−1
i=0 4

i
)
= u2 (4s − 1) /3.

3. Find Fr(n): Fr(n) = |W (n)|/ϕ(n) = |W (n)|/[(p − 1)(q − 1)].

Algorithm of counting average frequency at segment σ = [A,B]

1. Define variables s and count setting their values to 0.
2. Arrange a double cycle over set of odd prime integers P = {3, 5, 7, . . .} considering n = pq ∈ σ.
3. For each pair of primes 〈p, q〉 compute Fr(n) and add it to s. Set count = count+ 1.
4. After the cycle finished compute average frequency as Frσavg = s/count.

A similar procedure works for other k. We gathered all obtained results at Fig. 1. It can be noted
that the average frequency is diminishing by a line low. For each k the frequency line corresponding to
(k + 1)-tuples is located below the k-tuple line. That means that when integer n has many factors its
primality measure Fr(n) takes a smaller value.

The latter implies that if we count an average frequency only for semiprimes n = pq located in a
segment σ, this value can serve as an upper bound for the average frequency for all odd numbers in the
considered segment.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 7 2018



THE ERROR PROBABILITY 1013

6. APPROXIMATE CALCULATIONS

We continue our investigation by approximate estimations of the average frequency. At this section
we continue our investigation up to 1015 and give a prognosis up to 1030 and further. Remind that prime
integers used in Cryptography begins with length 160 bits for the Elliptic Curves which equivalent to
about 1050. So our prognosis is close to the below boundary of the Cryptography integers.

Nevertheless, due to fact that the average frequency of all numbers in the interval is much less that
the average frequency of semiprimes in the same interval, our upper boundary remains valid to all prime
numbers used in Cryptography.

In our approximate experiments we step by step refine previous estimations for a chosen segment till
an extra addition of integers preserve first three significant digits, then we stop the calculation and print
the result (see Fig. 2 and Fig. 3).

10�5

10�4

10�3

10�2

10�6

103 105

k = 2
k = 3
k = 4
k = 5

107 109

Fig. 1. Average frequency for n = p1p2 . . . pk.

10�8

10�7

10�6

10�5

10�4

10�3

10�2

10�1

103

Exact
Approximate

105 107 109 1011 1013

Fig. 2. Case k = 2.

10�1

10�4

10�7

10�10

10�13

10�16

Fitted
Approximate

105 10151010 1020 1025 1030

Fig. 3. Prognosis at k = 2.
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In the next section we give some theoretical basics on these prognosis values.

7. THEORETICAL ESTIMATIONS FOR AN AVERAGE FREQUENCY

Let B be some integer. We give estimations for an upper boundary for the average frequency of
semiprime integers in interval [1;B]. A distribution law of such integers was studied in [17].

Theorem 2. The average frequency at interval [1;B] of semiprimes n = pq tends to 0 when B is
tending to infinity with speed bounded by

B−1/2 lnB. (1)

Proof. Let B be given. We divide set [1;B] into the parts Mp consisting of numbers n = pq,
p < q < B/p.

1. First we consider p = 3 and q, p < q < B/3. Then d = GCD(p− 1; q − 1) = 2. The number
of witnesses of n = 3q does not depend on q and equal to 2. The number of such pair is equal to
π(B/3) − 2, where π(x) is the prime-counting function. So, average frequency of numbers 3q < B
can be estimated as

Fr(p = 3) ≈ 1

π(B/3)

∑

5≤q<B/3

2

ϕ(3q)
=

1

π(B/3)

∑

5≤q<B/3

1

q − 1

≈ 3 ln(B/3)

B
(ln ln(B/3) − 1/2 − 1/3) <

3 lnB ln lnB

B
.

We used here approximate formulas ([18], p. 352): π(x) ≈ x/ ln x,
∑

q<x q
−1 ≈ ln lnx. Clearly,

limB→∞ Fr(p = 3) = 0.

2. Let p = 5, and 7 ≤ q < B/5. The GCD of p− 1 and q − 1 is equal either 2/ or 4, depending on if
q ≡ 3mod4 is valid. In the first case the number of witnesses is equal to two and in the second case to
six. We can assume that the frequency of both cases are equal, so the average number of witnesses is
four. The number of n = 5q < B is π(B/5)− 3. The average frequency can be evaluated now as above
with replacement everywhere 3 by 5:

Fr(p = 5) ≈ 1

π(B/5)

∑

7≤q<B/5

4

ϕ(5q)
=

1

π(B/5)

∑

7≤q<B/5

1

q − 1

≈ 5 ln(B/5)

B

(
ln ln(B/5)− 1

2
− 1

3
− 1

5

)
.

3. For arbitrary p <
√
B we have the formula

Fr(p) =
pwp

π(B)

(
ln ln(B/p)− 1

2
− 1

3
− . . .− 1

p

)
≈ pwp

π(B)
(ln ln(B/p)− ln ln p) ,

where wp is average frequency in the set {pqi | p < qi < B/p}. Most part of qi are co-prime to p, and
|W (pqi)| = 2. Function |W (pqi)| takes its maximum at qi = k(p − 1) + 1, k ≥ 2, but even at such
integers the average frequency is diminishing when B → ∞. Indeed, let Hp be set

Hp = {p(k(p − 1) + 1) | 2 ≤ k <
√

B/k}.
Then,

Fravg(Hp) =
1√
B/p

∑

q=k(p−1)+1

|W (pq)|
ϕ(pq)

=
1√
B/p

∑

q=k(p−1)+1

p− 1

k(p− 1)2

<
1√

B/p(p− 1)

∑

q=k(p−1)+1

1

k
<

ln
√

B/p+ γ√
B/p(p− 1)

→ 0 at B → ∞

(we used a formula for the partial sum of Harmonic Series
∑

k<=x 1/k = lnx+ γ + ε).
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Table

k 3 4 5 6

Fr(k) 0.0247 0.0064 0.0017 0.0004

We see that the average frequency Fr(p) has a limit= 0 at B → ∞. Since, frequency of other
numbers of form pq (fixed p) have lesser number of witnesses, then function Fr(p) is bounded by the
function Fravg(Hp). This completes the proof of the theorem.

In the next table we presented experimental values of the average values of Fr(n) counted at intervals
[1, 10k ] for k = 3, . . . , 6:

By our theoretical estimate (1), we wait for a reduction rate bounded approximately by
√
10 ≈ 3.16 at

each next k. Real values show even larger reduction an the rate equal approximately to 4.

8. FINAL SECTION

In our paper we gave theoretical and practical reasons of the need of improving the Miller–Rabin
primality test. Estimations of diminishing of the probability errors of MRT lead us to more effective
algorithms of primality testing. This is an important for Cryptography and its applications to the
Information Security.
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