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Abstract—This paper describes the parallel algorithm of the NOISEtte code for computational fluid
dynamics and aeroacoustics simulations. It is based on a family of higher-accuracy numerical
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1. INTRODUCTION

The evolution of high-performance computing (HPC) systems towards exascale computing imposes
challenging problems related with extreme levels of parallelism. The constantly growing numbers of
cores per processor and processors in a system require highly scalable parallel algorithms.

Multicore CPUs and manycore massively-parallel accelerators, such as Intel MIC (Many Integrated
Core), represent a shared-memory MIMD parallelism with SIMD extensions. The number of cores
per device keeps growing and each core can handle multiple threads (Intel Xeon 8180—28 cores, 56
threads; AMD EPYC 7601—32 cores, 64 threads; Intel Xeon Phi 7290—72 cores, 288 threads). This
trend makes the shared-memory parallelization indispensable.

At the same time, the number of double precision floating point (FP64) operations per tact the
core can perform is growing as well, mainly due to the widening of vector registers. Therefore, the
vectorization is becoming more important. However, the memory bandwidth is not growing that fast.
For instance, each core of Intel Xeon 8180 can do 32 FP64 operations per tact with its two FMA
(Fused Multiply-Add) AVX-512 (512-bit SIMD extension) units. Its overall peak performance (above
2 TFLOPS with 120 GB/s bandwidth) is nearly 10 times bigger compared to the previous CPU
generations while the memory bandwidth has increased less than twice (e.g., Intel Xeon E5-2680v3—
240 GFLOPS, 68 GB/s).

This quickly growing gap between the peak performance and the memory bandwidth is a sad
situation for most of computational fluid dynamics (CFD) algorithms which are typically memory-
bound. Therefore, the great majority of CFD algorithms can potentially reach only a minor fraction
of the peak performance (similarly to the HPCG Benchmark [1]), except for algorithms based on very
expensive high-order schemes, such as [2], that can demonstrate sustained performance near 50% of
peak.

In accordance with these trends the present work is focused on the MPI + OpenMP multilevel
MIMD parallelization that allows to engage efficiently a large number of cores. Additionally, the
vectorization by means of compiler directives is used at the lower parallelization level. However, it
currently plays a secondary role since the memory bandwidth is by far insufficient to gain a lot with
SIMD extensions.
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Such a parallelization that combines distributed and shared-memory models is a widely-used
approach for CFD solutions. Examples of thereof can be found, for instance, in [3] for rarified gas
flows, in [4] for incompressible flows, in [5] for multi-physics simulations. In the present paper, the
parallel algorithm of the NOISEtte code [6] is described. It is a code for CFD and aeroacoustics (CAA)
simulations of compressible flows using high-accuracy schemes on unstructured meshes [7].

The rest of the paper is organized as follows. The mathematical model and the numerical method are
briefly outlined in Sec. 2. The parallel algorithm is presented in Sec. 3. Sec. 4 illustrates the parallel
performance.

2. MATHEMATICAL MODEL AND NUMERICAL METHOD

2.1. Mathematical Model

The Navier–Stokes equations for a compressible ideal gas are used for modeling of a turbulent
flow. This basic system of equations is complemented with necessary source terms and additional
equations for turbulence modeling within one of the following approaches: Direct Numerical Simulation
(DNS), Reynolds-Averaged Navier–Stokes (RANS), including [8, 9]; Large Eddy Simulation (LES),
including [10, 11]; hybrid RANS-LES approaches, such as Detached Eddy Simulation (DES) [12, 13].

2.2. Numerical Method

A family of computationally-cheap higher-accuracy schemes based on a quasi-1D reconstruction is
used for the spatial discretization of the governing equations on an unstructured hybrid mesh. The set of
schemes includes the edge-based vertex-centered schemes [7] and the cell-centered schemes [14].

The numerical fluxes through faces of control volumes are computed using one of Riemann problem
solvers [15], depending on the flow parameters, including Roe for subsonic flows, HLLC for supersonic
flows.

The governing equations are discretizated in time using either an explicit Runge–Kutta scheme
(up to 4-th order) or an implicit Newton-based scheme (up to 2-nd order). The preconditioned Bi-
CGSTAB [16] is used for the Jacobi system in case of the implicit scheme. The solver is composed of
three operations: the sparse matrix-vector product (SpMV), the linear combination of two vectors, and
the dot product. The compressed sparse row (CSR) block representation of a sparse matrix is used.

The set of boundary conditions for exterior faces includes no-slip conditions for impermeable solid
walls (isothermal, adiabatic, constant heat flux), Dirichlet’s conditions, characteristic inflow/outflow
conditions [17].

3. PARALLEL ALGORITHM

3.1. Algorithm Outline

The computing domain given by an unstructured mesh consists of the set of cells (control volumes),
the set of internal faces (that have two adjacent cells), and the set of exterior faces (that have only one
adjacent cell). In the vertex-centered formulation the cells correspond to the mesh nodes, the faces
correspond to the mesh edges (exterior faces are constructed around boundary nodes from parts of
exterior faces of mesh elements). In the cell-centered case the cells coincide with the mesh elements.
The adjacency graph represents couplings between the cells: the graph nodes correspond to the cells
and the graph edges correspond to the common faces between cells. The list of faces stores for each
face the indices of its adjacent cells. The inverse topology stores for each cell the list of its faces and its
adjacent cells.

The set of primary variables (such as density, velocity components, pressure) is defined in each cell.
The simulation algorithm consists in successive advancing in time by sufficiently small time integration
steps. The new values of variables in cells are determined at every time step by computing the fluxes
through the faces of the cells. To that end, the variables stored in cells must be reconstructed at the
centers of faces. Such values from both sides of the face centers, so called left and right values, are
determined with a quasi-1D reconstruction [7, 14] (see Fig. 1).
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Fig. 1. Reconstruction of values at the center of the face f. The interpolation constructions around the edge line e
produce the values along this line in order to reconstruct values from the sides of the left (L) and right (R) cells.
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Fig. 2. Simplified diagram of the time step algorithm (an implicit Newton-based scheme).

Then, the Riemann problem is solved at each face in order to determine the flux using the left and
right values at the face centers. Finally, this fluxes are applied into cells giving the values at the new
temporal layer.

The simplified algorithm representation is shown in Fig. 2. The calculation of fluxes is composed
of several operations, including calculation of convective fluxes, viscous fluxes, turbulence model
contributions, source terms, etc. If the implicit scheme is used, the contributions to Jacobi matrix are
also computed when processing the set of faces. In this case the Jacobi system is solved in order to
determine the values in cells at the next Newton iteration (an iterative process inside each time step).

The algorithm of the time step is composed of several loops either over the set of cells or over the set
of faces (Fig. 2). Additionally, boundary conditions are calculated in loops over exterior faces. In the
MPI-parallel version halo update operations are required (explained further).

3.2. Distributed-Memory Parallelization

The workload is distributed among supercomputer nodes at the upper level using a traditional domain
decomposition approach with a distributed-memory MPI parallelization. Computing domain cells are
assigned to subdomains using a partitioning tool (e.g., ParMETIS [18]) that defines for each node of the
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Fig. 3. Example of domain decomposition.

adjacency graph to which subdomain it belongs according to load balancing constraints and minimizing
the number of edges cut. The cells inside each of these first-level subdomains are categorized into
two sets: the interface cells (which are coupled by the spatial scheme stencil with the cells from other
subdomains) and the inner cells (which are not). Furthermore, each sudbomain is supplemented with
the halo set that contains the cells from other subdomains which are coupled with at least one cell from
this subdmiain. An example of the first-level decomposition is shown in Fig. 3.

Communications between MPI processes are needed in order to update the data in the halo cells. The
updated halo is required for operations that involve access to adjacent cells. These operations are: the flux
calculation stage of the algorithm (up to 3 levels of adjacency—for a scheme with 2-level interpolation
constructions shown in Fig. 1); the SpMV operation inside the Bi-CGSTAB solver (only 1 level of
adjacency, since for time-accurate simulations the Jacobi matrix is filled only for the basic low-order
part of the scheme). Additionally, a group reduction MPI communication is needed to determine global
values, such as the global sum in the dot product used in the SLAE solver, or the global minimum in
the calculation of the time step value. Further details about the parallelization technology can be found
in [19].

3.3. Shared-Memory Parallelization

The OpenMP standard is used for the shared-memory parallelization. The first-level MPI subdo-
mains are decomposed further into second-level subdomains in order to distribute the workload among
parallel threads. The threads operate in a shared memory, hence no halo update is needed. This
decomposition is mainly needed for elimination of the data interdependency between the threads that
appears in loops over faces which involve writing data to adjacent cells. For instance, if two threads are
processing simultaneously two faces of the same cell at the flux calculation stage then the race condition
may appear when the threads add the fluxes into the cell (or add their contributions into the same Jacobi
matrix row).

To avoid that, a multistage processing of faces is used, similarly to [20]. The interface faces (that
are adjacent to cells from different second-level subdomains) are excluded from parallel processing
at the first stage. These interface faces and the cells adjacent to that faces undergo the third-level
decomposition. After all the inner faces of the first stage are processed the second stage begins. Again,
the interface faces that appear at this stage are excluded. This process goes on until no interface
faces remain. Such a multilevel decomposition is shown in Fig. 4. Further details and other OpenMP
parallelization options can be in [19].

3.4. Configuration of Parallel Execution

The total number of CPU cores engaged in a simulation is composed of the number of MPI processes
and the number of OpenMP threads: P = PMPI × PT . Usually, the distribution of one MPI process per
CPU socket (or per NUMA node) is used. The cores of multicore CPUs are engaged with the OpenMP
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Fig. 4. Decomposition of MPI subdomains for processing with two OpenMP threads.

parallelization. This way the number of communicating processes is reduced PT times (consequently,
the volume of MPI exchanges is reduced). A single MPI process can hardly saturate the network
bandwidth of a node. Furthermore, there is a notable overhead related with maintaining cache coherence
(and due to NUMA-factors) when multiple CPUs are engaged by a single MPI process. Therefore,
running one MPI process per CPU (instead of one per node) is optimal in most cases. More details
regarding the balance between MPI and OpenMP can be found in [21].

The thread pinning is used in order to avoid migration of threads between sockets. The affinity (the
list of virtual processors allowed) is automatically set for each thread according to particular execution
conditions and taking Hyper-threading (HT) into account. The configuration of nodes (how many
sockets, cores per socket, threads per core) is derived by parsing “/proc/cpuinfo” file (on Linux). This
allows to properly set the affinity and the number of threads even in cases when the cluster nodes are
configured differently (some may have HT enabled, some not, etc.). According to tests with two MPI
processes per node on a cluster with two 8-core CPUs per node there is a gain in performance up to
40% compared to the default affinity, when any thread can run on any core.

4. PERFORMANCE STUDY

The scalability of the parallel implementation has been demonstrated in various tests based on real
applications. The first two speedup tests evaluate the parallel efficiency for currently typical operating
conditions using EBR scheme [7] with implicit time integration, MPI + OpenMP mode with one MPI
process per socket.

Fig. 5 (left) shows the speedup obtained on MVS-10P supercomputer (2× 8-core Intel Xeon E5-
2690 per node, FDR InfiniBand) for the simulation of the flow around a backward-facing step in a
transonic flow (M = 0.9, Re = 7.2× 106, mesh with 13 million nodes). The instantaneous view of the
flow field kindly given by A. Duben is shown in Fig. 6. Further details about the simulation can be found
in [22].

A similar plot obtained on HPC4 supercomputer (2× 12-core Intel Xeon E5-2680v3 per node, FDR
InfiniBand) for the simulation of the flow around a helicopter rotor blade (M = 0.35 at the blade tip,
Re = 1.4× 106, mesh 22 million nodes) is shown in Fig. 5 (right). The instantaneous view of the flow
field kindly given by V. Bobkov is illustrated in Fig. 7.

The OpenMP parallel efficiency is shown in Fig. 8 (left). This test corresponds to the simulation of
a round subsonic jet on a coarsened mesh of 1 million nodes. The visualization of the flow kindly given
by A. Duben is shown in Fig. 9. These jet simulations are presented in [23]. The speedup in case of the
explicit scheme appears to be notably higher. This is because the implicit scheme involves a sparse linear
solver which consists of especially memory-bound operations, such as the SpMV (that process a large
amount of data with a low computing cost). Therefore, despite these operations are perfectly parallel, the
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Fig. 5. Speedups: MVS-10P, implicit scheme, IDDES [13], mesh 13 million nodes (left); HPC4, implicit scheme,
IDDES, 22 million nodes (right).
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Fig. 6. Instantaneous snapshot (Q-criterion) of the transonic flow around a wedge with a backward-facing step.
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Fig. 7. Flow around a helicopter rotor: acoustic field (left) and turbulence (Q-criterion., right).

solver saturates the memory bandwidth and slows down the acceleration. The weight of this operation
grows from 25% in the sequential mode to 44% on 24 cores.

Finally, the plot in Fig. 8 (right) shows the speedup on a bigger mesh (160 million nodes, 1 billion
of tetrahedrons) using up to 10240 cores of Lomonosov supercomputer (2× 4-core Intel Xeon X5570
perc node, QDR InfiniBand). This amount of resources is far beyond currently typical usage conditions.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 4 2018



530 GOROBETS

24

20

16

12

8

4

4 8 12 16 20 24

OMP explicit
OMP implicit
100%

MPI + OpenMP
100%
90%

CPU cores
2560 5120 7680 10240

CPU cores

Sp
ee

du
p

4

3

2

1

Sp
ee

du
p
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Fig. 9. Round jets: supersonic jet flow in mid-span section (left) and subsonic jet turbulence (Q-crit., right).

The case corresponds to the flow around a 3D cavity studied in [24] but with a mesh that was uniformly
refined for the test.

5. CONCLUSIONS

The parallel structure of the NOISEtte CFD/CAA simulation code [6] has been described. The
main attention was focused on the MIMD parallelization for both the distributed-memory and the
shared-memory models. The multilevel MPI + OpenMP parallelization fits well modern csystems with
multicore CPUs and manycore accelerators. The parallel efficiency of doubling the number of cores at
typical operational conditions in real applications appears to be above 95%.

The operations that form the algorithm are fully compatible with cSIMD and stream processing.
This potentially allows us to use hybrid GPU-based systems. However, the research nature of
the code requires fast and easy ways to implement new schemes and methods, to modify existing
implementations. Therefore, it appears unduly difficult to maintain both versions of code for CPUs
and GPUs. For this reason porting the code to GPUs is postponed until the numerical methods and
implementations that are being developed become mature enough and, consequently, the intensity of
the research work related with significant code modifications goes down. Meanwhile, a fully-portable
heterogeneous computing technology with the MPI + OpenMP + OpenCL parallelization has been
developed on a base of a simplified CFD code with a particular cell-centered scheme. This CFD solution
for simulation of compressible turbulent flows on a wide range of computing architectures, including
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CPUs, MICs, GPUs, is presented in [25]. This approach is to be applied in future to the NOISEtte’s
computing algorithm.
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