About Orthogonal Systems of One Kind of Functions

A. N. Barmenkov* and N. A. Barmenkov

(Submitted by A. M. Elizarov)

National Research Nuclear University "MEPhI", Kashirskoe sh. 31, Moscow, 115409 Russia Received February 26, 2017

Abstract—We present an algorithm for construction complete, orthogonal sequences special kind. This systems of functions depend on parameter and may be used for modeling of physical processes.

DOI: 10.1134/S1995080218020038

Keywords and phrases: *completeness, minimality, orthogonality systems of functions special kind.*

1. INTRODUCTION

In 1953 K. Shaidukov [1] proved by the method of theory of functions of real variable completeness in $L_2[0;2\pi]$ of sequence

$$
\left\{\cos(nt+bt);\sin(nt+bt)\right\}_{n=0}^{\infty},\tag{1}
$$

when $b \leq 2/3$ and start of a whole direction of research of such systems. In [2], [3] by the methods of the monograph [4] it is shown that completeness and minimality in $L_p[0; 2\pi]$ in a more general system of functions

$$
\left\{\cos(nt+\alpha(t));\,\sin(nt+\alpha(t))\right\}_{n=0}^{\infty} \tag{2}
$$

depends only on the difference of values of the $\alpha(t)$ at the endpoints of the segment $[0; 2\pi]$, $\alpha(t) \in$ $Lip_{\nu}[0;2\pi] \cap Var[0;2\pi], 0 < \nu \leq 1.$ Where $f(t) \in Lip_{\nu}[0;2\pi]$ if $|f(t_1) - f(t_2)| \leq L|t_1 - t_2|^{\alpha}, 0 < \alpha \leq 1$ 1, for arbitrary $t_1, t_2 \in [0; 2\pi]$ and any constant $L; f(t) \in Var[0; 2\pi]$ if $\sup(\sum_{k=1}^{n-1} |f(t_{k+1}) - f(t_k)|) <$ ∞ for arbitrary $0 < t_1 < t_2 < ... < t_n < 2\pi$. So that the sequence (2) is complete in $L_p[0; 2\pi]$, $p > 1$, when $(2\pi)^{-1}[\alpha(2\pi) - \alpha(0)] \leq 1/2 + 1/(2p)$. That system (1) is complete in $L_2[0; 2\pi]$ for $\alpha(t) = bt$ when $b \leq 3/4$. Moreover if $\alpha(t) \neq const, t \in [0, 2\pi]$, then system (2) is complete and minimality in $L_p[0; 2\pi]$, $1 < p < \infty$, if and only if $(2p)^{-1} < (2\pi)^{-1}[\alpha(2\pi) - \alpha(0)] \leq 1/2 + (2p)^{-1}$. It is interesting to describe the complete and orthogonal sequence of the following type

$$
\left\{e^{\beta(t)}\cos(nt+\alpha(t));\ e^{\beta(t)}\sin(nt+\alpha(t))\right\}_{n=0}^{\infty},\tag{3}
$$

where $\alpha(t)$, $\beta(t)$ are real functions on [0; 2π].

^{*} E-mail: anbarmenkov@mail.ru

2. BASIC CONCEPTS

The definition of completeness and minimality of the sequence is given in ([5], p. 73). It is also shown there that this sequence is a basis in some space.

Theorem 1. *Let* $\alpha(t)$, $\beta(t)$ *are real functions of bounded variation on the segment* [0; 2π], $(\alpha(t), \beta(t) \in Lip_\nu[0; 2\pi] \cap Var[0; 2\pi], 0 < \nu \leq 1$, and $\alpha(t)$ is different from constant. Let

$$
B_a(z) = (|a|/a)(a - z)/(1 - \bar{a}z)
$$
 if $a \in \mathbb{C}, |a| < 1$ and $a \neq 0$; $B_0(z) = z$.

Then there is not complete and orthogonal sequence of type (3) in $L_2[0; 2\pi]$ *which is different from system*

$$
\{R\cos\left[nt + (1/2)\arg[B_a(e^{it})]\right];\ R\sin\left[nt + (1/2)\arg[B_a(e^{it})]\right]\}_{n=0}^{\infty},\tag{4}
$$

when $1/4 < (2\pi)^{-1}[\alpha(2\pi) - \alpha(0)] < 3/4$, $R > 0$ *is arbitrary real number.* If $a = 0$ then this $sequence$ has the form $\{R\cos(nt+t/2+r)\,;\,\, R\sin(nt+t/2+r)\}_{n=0}^{\infty}$, where r is arbitrary real *number.*

The result of Theorem 1 leads to one of the methods for constructing complete orthogonal sequences of the form (3) in the space $L_2[0; 2\pi]$.

Theorem 2. *Let real function* $\alpha(t) \in Lip_{\nu}[0; 2\pi] \cap Var[0; 2\pi], 0 < \nu \leq 1$. *The system* (2) forms *orthonormal basis in* $L_2[0; 2\pi]$

$$
\left\{ \left[\pi(1+|a|) \right]^{-1/2} \cos \alpha(t); \left[\pi(1-|a|) \right]^{-1/2} \sin \alpha(t) \right\} \bigcup \left\{ \pi^{-1/2} \cos(nt + \alpha(t));
$$

$$
\pi^{-1/2} \sin(nt + \alpha(t)) \right\}_{n=1}^{\infty},
$$

if and only *if* $\alpha(t) = \arg[B_a(e^{it}))}/2$ *for* $a \neq 0$, $a \in \mathbb{C}$, $|a| < 1$; $\alpha(t) = t/2 + r$ *for* $a = 0$.

Proof. Orthogonality of complete and minimal sequence (3) in $L_2[0; 2\pi]$ for $n = 1, 2, 3, \ldots$ to function $e^{\beta(t)}\cos\alpha(t)$ equals to

$$
\int_{0}^{2\pi} e^{2\beta(t)} \cos \alpha(t) \cos(nt) + \alpha(t) dt = 0, \quad \int_{0}^{2\pi} e^{2\beta(t)} \cos \alpha(t) \sin(nt) + \alpha(t) dt = 0.
$$

Hence we obtain equality 2 J π 0 $e^{2\beta(t)+i[\alpha(t)+nt]} \cos \alpha(t)dt = 0$, $n = 1, 2, \dots$. Similarly for $e^{\beta(t)} \sin \alpha(t)$

we get

$$
\int_{0}^{2\pi} e^{2\beta(t) + i[\alpha(t) + nt]} \sin \alpha(t) dt = 0, \quad \int_{0}^{2\pi} e^{2\beta(t) + i[2\alpha(t) + nt]} dt = 0, \quad n = 1, 2, \tag{5}
$$

The orthogonality of the pair $e^{\beta(t)} \cos \alpha(t)$; $e^{\beta(t)} \sin \alpha(t)$ leads to the equality

$$
\int_{0}^{2\pi} e^{2\beta(t)} \sin 2\alpha(t) dt = 0.
$$
\n(6)

Equation (5) leads to the existence of a function $\phi(z)$ of Hardy H_1 class ([5], p. 102), for angular bounded values of which is right equation

$$
\exp 2[\beta(t) + i\alpha(t)] = \phi(e^{it}), \quad t \in [0; 2\pi]. \tag{7}
$$

Since $\alpha(t)$, $\beta(t) \in Lip_{\nu}[0;2\pi] \cap Var[0;2\pi]$, $0 < \nu \leq 1$, then by Theorem F. and M. Riesz (see [5], p. 103), it follows from (5) that $\Phi(z)$ is continuous in the disk $|z| \leq 1$ and absolutely continuous on the unit circle (that is, for $z = 1$ the point is not a jump). This means that the change in the function argument $\phi(z)$ on the unit circle should be integer multiple of 2π .

As it shown in [2, 3] for functions $\alpha(t) \in Lip_{\nu}[0;2\pi] \cap Var[0;2\pi]$, $0 < \nu \leq 1$, conditions of completeness and minimality in spaces $L_p[0; 2\pi]$, $p > 1$, of sequences (2) and (3) and some of their generalizations depends only on values $\alpha(t)$ on the ends of segment $[0; 2\pi]$, $(2\pi)^{-1}Var_{[0:2\pi]}arg(\phi(e^{it}))$ =

 $(\pi)^{-1}[\alpha(2\pi) - \alpha(0)] = n$, where n is integer. According to Theorem 1 we have $1/2 < \pi^{-1}[\alpha(2\pi) - \alpha(0)]$ $\alpha(0)$ < 3/2 what is possible only if $n = 1$. Therefore, according to argument principle, function $\phi(z)$ analytical in $|z| < 1$ and continuous in $|z| \le 1$ has only one zero at some point $a \in \mathbb{C}$, $|a| < 1$ and $\phi(a)=0$. Then there exists function $\psi(z)$, analytic in $|z| < 1$ and continuous in $|z| \leq 1$, $\psi(z) \neq 0$ in $|z|$ < 1, for which equation (7) takes the form $e^{2[\beta(t)+i\alpha(t)]}/B_a(e^{it}) = \psi(e^{it})$. So, if the sequence (3) is complete and orthogonal in $L_2[0,2\pi],$ then there is a point $a\in\mathbb{C},$ $|a|< 1,$ and there is a function $\psi(z)$ analytical in $|z| < 1$ and continuous in $|z| \leq 1$, and $\psi(z) \neq 0$, where $|z| < 1$, and right the equation $e^{2[\beta(t)+i\alpha(t)]} = \phi(e^{it}) = B_a(e^{it})\psi(e^{it}), t \in [0; 2\pi]$. Equation (6) means $\int_0^{2\pi} e^{2\beta(t)} \sin 2\alpha(t)dt = 0$. Then we obtain

$$
\int_{0}^{2\pi} \phi(e^{it}) dt = 2\pi \phi(0), \quad \phi(e^{it}) = B_a(e^{it}) \psi(e^{it}), \quad B_a(0) = |a|.
$$

It means that $\psi(0)$ is real value. Similarly to (5), we have

$$
0 = \int_{0}^{2\pi} e^{2\beta(t) + i[\alpha(t) + int]} [\cos \alpha(t) - i \sin \alpha(t)] dt = \int_{0}^{2\pi} e^{2\beta(t) + int} dt, \quad n = 1, 2, ...
$$

Since $e^{2\beta(t)}$ is real function, it means that $e^{\beta(t)} = const$, $t \in [0; 2\pi]$. Taking $e^{\beta(t)} = R$, $t \in [0; 2\pi]$, in the ratio (7), we get $R^2e^{2i\alpha(t)} = \phi(e^{it}) = R^2B_a(e^{it})\tilde{\psi}(e^{it}), \quad t \in [0; 2\pi]$. Consequently, $\tilde{\psi}(e^{it}) =$ $e^{2i\alpha(t)}/B_a(e^{it})$, where the function $\tilde{\psi}(z)$ analytic in $|z| < 1$ and continuous in $|z| \leq 1$, $\tilde{\psi}(z) \neq 0$, $|z| < 1$. Obviously, $|\tilde{\psi}(e^{it})| = 1$, $t \in [0; 2\pi]$ ($\alpha(t)$ is real function) then $\ln[e^{2i\alpha(t)}/B_a(e^{it})] = \ln \tilde{\psi}(e^{it})$. Therefore ln $\tilde{\psi}(z)$ is analytic function in $|z| < 1$ and in view the fact, that $\ln \tilde{\psi}(z)$ on the unit circle takes only imaginary values. It implies $\ln \tilde{\psi}(z) \equiv ir, r$ is arbitrary real number. Since $B_a(0) = |a|$, we get $R^{-2}\phi(0) = B_a(0)\tilde{\psi}(0) = |a|e^{ir}$. On the other hand $\phi(0)$ must be real value. It is obvious that if $a \neq 0$, then $r = \pi k$ (k is integer number, $e^{i\pi k} = (-1)^k$) from periodicity of the sequence (4) shout be put $r = 0$. If $a = 0$ then $B_a(0) = 0$ and condition, that $\phi(0)$ is real value, according to the ratio $R^{-2}\phi(0) = B_a(0)e^{ir}$ is performed when r is arbitrary real number. The ratio $e^{2i\alpha(t)}/B_a(e^{it})=e^{ir},\,t\in[0;2\pi],$ means that $\alpha(t) = \arg(B_a(e^{it}))/2$ if $a \neq 0, a \in C, |a| < 1$ and $\alpha(t) = t/2 + r$ if $a = 0$ for arbitrary real r.

The proof of orthogonality of system (4) follows from computing:

$$
\int_{0}^{2\pi} \cos(nt + \alpha(t)) \cos(kt + \alpha(t)) dt = \frac{1}{2} \int_{0}^{2\pi} \cos(n - k)t dt + \frac{1}{2} \int_{0}^{2\pi} \cos((n + k)t + 2\alpha(t)) dt = D_{n,k} \delta_n^k,
$$

 $n,k\geq 0,$ $n+k\geq 1,$ $\delta_{n}^{k}=1,$ if $n=k$ and $\delta_{n}^{k}=0,$ if $n\neq k,$ $D_{n,k}>0$ are any const. This equality occurs, because the function $B_a(z)$ is analytic in $|a| < 1$ and continuous in $|z| \leq 1$:

$$
\int_{0}^{2\pi} \cos((n+k)t + 2\alpha(t))dt = \Re \int_{0}^{2\pi} e^{2i\alpha(t)} e^{i(n+k)t} dt = \Re \int_{0}^{2\pi} B_a(e^{it}) e^{i(n+k)t} dt = 0,
$$

where $\Re z$ is the real part of complex number z. Similarly test the other pairs of functions. This means that complete and orthogonal sequences of kind (3) in $L_2[0; 2\pi]$ it is systems (4). This completely proves the Teorem 1.

For the proof of Theorem 2 let us calculate the norms of elements of systems (2) in case orthogonality: $D_{0,0} = \int_0^{2\pi} \cos^2 \alpha(t) dt = \pi + (1/2) \int_0^{2\pi} \cos 2\alpha(t) dt$. Because the condition orthogonality of the sequence (2) is $e^{2i\alpha(t)} = B_a(e^{it})$, we obtain $\int_0^{2\pi} \cos 2\alpha(t)dt = \Re \int_0^{2\pi} B_a(e^{it})dt = 2\pi |a|$. Then we get $D_{0,0} = || \cos \alpha(t) ||_{L_2[0;2\pi]}^2 = \pi(1+|a|).$ Similarly

$$
\|\sin \alpha(t)\|^2_{L_2[0;2\pi]} = \pi - (1/2) \int_0^{2\pi} \cos 2\alpha(t) dt, \quad \|\sin \alpha(t)\|^2_{L_2[0;2\pi]} = \pi (1 - |a|).
$$

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 39 No. 2 2018

For $n = 1, 2, ...$ we get $D_{n,n} = || \cos(nt + \alpha(t)) ||_{L_2[0;2\pi]}^2 = \pi + (1/2) \int_0^{2\pi} \cos[2nt + 2\alpha(t)]dt = \pi$, $\int_0^{2\pi} \cos^2(nt + \alpha(t)) dt = \pi$, i.e. $\|\cos(nt + \alpha(t))\|_{L_2[0;2\pi]}^2 = \pi$. Similarly $\|\sin(nt + \alpha(t))\|_{L_2[0;2\pi]}^2 = \pi$.

So it is proved that sequence of the Theorem 2 is complete, orthogonal and its elements have norms in $L_2[0; 2\pi]$ equal one. It means that system is orthonormal basis in this space, according [6] (see p. 85). This completely proves the Theorem 2.

3. APPLICATION

The previously obtained relation for $\alpha(t)$ allow to obtain simples examples of complete and orthogonal sequences of the form (2) depending on the choice of the parameter $a, a \in C, |a| < 1$.

Example 1. If $a \neq 0$ then $\alpha(t) = (1/2) \arg[B_a(e^{it})]$ and complete orthogonal sequence of the form (2) in $L_2[0; 2\pi]$ is $\{\cos\left(nt + (1/2)\arg[B_a(e^{it})]\right]$; $\sin\left(nt + (1/2)\arg[B_a(e^{it}))]\right]\}_{n=0}^{\infty}$.

Example 2. If $a = 0$ (in $B_a(z)$) then $\alpha(t) = t/2$ and complete orthogonal sequence of the form (2) in $L_2[0;2\pi]$ is $\{\cos(nt+t/2+r)\,;\,\sin(nt+t/2+r)\}_{n=0}^{\infty}$ for arbitrary real number r.

Moreover, these examples are described all complete and orthogonal sequences of the form (2) in $L_2[0;2\pi]$, if real function $\alpha(t) \sqsubseteq Lip_\nu[0;2\pi] \cap Var[0;2\pi]$, $0 < \nu \leq 1$.

REFERENCES

- 1. K. Shaidukov, "About the completeness of trigonometric system," Usp. Mat. Nauk **6**, 143–153 (1953).
- 2. A. Barmenkov and J. Kazmin, "About the completeness of two systems of functions," in *Theory of Mappings, its Display and Applications, Collection of Scientific Works* (Naukova Dumka, Kiev, 1982), p. 29–43 [in Russian].
- 3. A. Barmenkov, "About approximation properties of some systems of functions," Cand. Sci. (Phys. Math.) Dissertation (Moscow, 1983).
- 4. I. Danyluk, *Irregular Boundary Value Problems on the Plane* (Nauka, Moscow,1975) [in Russian].
- 5. I. Privalov, *Boundary Properties of Analytic Functions* (Gostekhizdat, Moscow, 1950) [in Russian].
- 6. *Functional Analysis,* Ed. by C. Krein (Nauka, Moscow, 1964) [in Russian].