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1. INTRODUCTION

In the papers [1] and [2] the following two notions were introduced as a computability analog of Borel
embedding.

Definition 1. Let K0, K1 be classes of structures in finite languages (for each class the language is
the same).

1) We say that K0 is computably embeddable via an e-operator into K1 (and write K0 ≤c K1) iff
there are a function f : K0 → K1 and an e-operator Φ such that D(f(A)) = Φ(D(A)) for any A ∈ K0

and and for any A1,A2 ∈ K0

A0
∼= A1 ⇔ f(A0) ∼= f(A1).

2) We say that K0 is computably embeddable via an Turing operator into K1 (and write K0 ≤tc

K1) iff there are a function f : K0 → K1 and a Turing operator ϕe such that χD(f(A)) = ϕ
D(A)
e for any

A ∈ K0 and and for any A1,A2 ∈ K0

A0
∼= A1 ⇔ f(A0) ∼= f(A1).

It follows from the next proposition then K0 ≤c K1 implies K0 ≤tc K1.
Proposition 2. K0 ≤tc K2 iff there are a function f : K0 → K1 and an integer e ∈ ω such that

D(f(A)) = W
D(A)
e for any A ∈ K0 and for any A1,A2 ∈ K0

A0
∼= A1 ⇔ f(A0) ∼= f(A1).

Proof. (=⇒) Obvious.

(⇐=) Without loss of generality we can assume that card(WX
e,s+1 −We,s)

X ≤ 1 for all s and X. We
denote via T (a) the atomic sentence a = a for each a ∈ ω.

Suppose that A ∈ K0 is given. Define

S = {s ∈ ω : (∃a)[T (a) ∈ W
D(A)
e,s+1 −WD(A)

e,s ]}
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and T (as) ∈ W
D(A)
e,s+1 −W

D(A)
e,s for each s ∈ S. Let SA be the structure with universe S such that SA ∼=

Φ(A) via the isomorphism s 
→ as. It is easy to see that there is an index i such that D(SA) = ϕ
D(A)
i for

each A ∈ K0. �

Corollary 3. If K0 ≤c K1 then K0 ≤tc K1.
To see that the reverse implication is not true we can note that for the case when K0 = {X : X ∼= A}

and K1 = {X : X ∼= B} the embedding K0 ≤tc K1 is equivalent to the Medvedev reducibility (the
uniform Turing reducibility ) B ≤uT A, and the embedding K0 ≤c K1 is equivalent to B ≤ue A (the
uniform enumeration reducibility). It follows from [3] that there are structures A and B such that B ≤uT

and B �≤ue B. But such structures A and B should not have a computable presentation, while the
embeddings ≤c and ≤tc are more interesting for the classes of computable and even finite structures.

2. EMBEDDING OF CLASSES WITH FINITELY MANY ISOMORPHIC TYPES

The following two theorem give a full descriptions of c- and tc-embeddings of classes with finitely
many isomorphic types. These will give an easy example of classes of computable structures for which
the c- and tc-embeddings differ.

Theorem 4. Let a class of finite structures K0 contains only finitely many different isomorphic
types. Then K0 ≤c K1 iff there is a function f from K0 into a subclass of K1 containing only
computable structures such that for any A,B ∈ K0 f(A) ∼= f(B) =⇒ A ∼= B, and

A is embeddable into B =⇒ f(A) ⊆ f(B).

Theorem 5. Let a class of finite structures K0 contains only finitely many different isomorphic
types. Then K0 ≤tc K1 iff there is a function f from K0 into a subclass of K1 containing only
computable structures such that for any A,B ∈ K0

A ∼= B ⇔ f(A) ∼= f(B) ⇔ f(A) = f(B), and

A is embeddable into B =⇒ Th∃(f(A)) ⊆ Th∃(f(B)).

Corollary 6. Let a class of finite structures K0 contains only finitely many different isomorphic
types. Then for all classes of finite structures K1 we have K0 ≤c K1 ⇔ K0 ≤tc K1.

Corollary 7. There are classes K0 and K1 such that K0 ≤tc K1 and K0 �≤c K1.

Proof of Corollary 7. Let K0 consists from the empty linear ordering and all one-element orderings,
and let K1 consists from all linear orderings isomorphic either to ω, or to ω∗. By Theorem 4 K0 �≤c K1.
Since all infinite linear orderings have one existensional theory we have K0 ≤tc K1 by Theorem 5. �

Proof of Theorem 4. (=⇒) Let K0 ≤c K1 via an e-operator Φ. Since K0 contains only finitely many
different isomorphic types there is a finite collection I0 of structures from K0 such that any structure
from K0 has an isomorphic copy in I0 and such that from any A0,A1 ∈ K0 and any C0, C1 ∈ I0

A0
∼= C0 &A1

∼= C1 &A0 is embeddable into A1 =⇒ C0 ⊆ C1.

For any A ∈ K0 we define f(A) as the structure from K1 such that D(f(A)) = Φ(D(CA)), where
CA ∈ I0 and CA ∼= A.

(⇐=) Suppose that such function f : K0 → K1 exists. We define an e-operator Φ via the c.e. set of
all axioms 〈ϕ,D(A)〉, where A ∈ K0 and ϕ ∈ D(f(A)). Then K0 ≤c K1 via the e-operator Φ. �

Proof of Theorem 5. (=⇒) Let K0 ≤tc K1 via a Turing operator ϕe and let I0 be as in the proof
of Theorem 4. For any A ∈ K0 we define f(A) as the structure from K1 such that D(f(A)) =

ϕ
D(CA)
e , where CA ∈ I0 and CA ∼= A. Then the implications A ∼= B ⇔ f(A) ∼= f(B) ⇔ f(A) = f(B)

are obvious. Suppose that A ∈ K0 is embeddable into B ∈ K0 and f(A) |= θ for some existensional
sentence θ. Let F be a finite substructure of f(A) such that F |= θ and let n be such integer that

ϕ
D(CA)�n
e (ψ) ↓= 1 for all ψ ∈ D(F). Since A is embeddable into B there is a structure B′ ∼= B such that

ψ ∈ D(CA) ⇔ ψ ∈ D(B′) for all atomic sentences with code < n. Then ϕ
D(B′)
e (ψ) = 1 for all ψ ∈ D(F)

so that F ⊆ B′ and hence f(B) |= θ.
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(⇐=) Let f : K0 → K1 be such function. For any C ∈ I0 and any finite consistent set of atomic
sentences Δ in the language of class K1 we denote via EC

Δ a structure isomorphic to f(C) such that
Δ ⊆ D(EC

Δ).

Since f(C) is always a computable structure, for each C ∈ I0 the correspondence Δ 
→ EC
Δ can be

chosen partial computable in the sense that knowing a canonical index of a finite set Δ we can effectively
determine membership of any atomic sentence ψ in D(EC

Δ) if EC
Δ exists, and the last condition is c.e.

Let A ∈ K0 be given. Let s0 < s1 < s2 < . . . be all integers s ∈ ω such that for some A′ ∈ K0 we
have D(A) � s = D(A′). Then for any n ∈ ω we denote via Cn the structure from the finite collection I0
such that for some A′ ∼= Cn we have D(A) � sn = D(A′). Note that Cn ⊆ Cn+1 for each n ∈ ω.

Now we inductively construct a sequence {Δn}n∈ω of finite consistent sets of atomic sentences in
the language of class K1:

Δ0 = ∅,

Δn+1 = D(ECn+1

Δm
) � n, where m ≤ n is the least integer such that Ck = Cn+1 for all k, m < k ≤ n.

Note that ECn+1

Δm
always exists since Cm ⊆ Cn+1 and hence Th∃(f(Cm)) ⊆ Th∃(f(Cn+1)). Moreover,

⋃
nΔn = D(B) for some B ∼= f(A). It remains to note that D(B) = W

D(A)
e for some e and apply

Proposition 2. �

3. EMBEDDING OF CLASSES WITH FINITELY MANY ISOMORPHIC TYPES

The following two theorem give a full descriptions of c- and tc-embeddings of classes with finitely
many isomorphic types. These will give an example of classes of finite structures for which the c- and
tc-embeddings differ.

Theorem 8. FLO ≤c K iff there is a computable Friedberg numbering {Xn}n∈ω of a subclass
of K such that Xn ⊆ Xn+1 for each n.

Theorem 9. FLO ≤tc K iff there is a computable Friedberg numbering {Xn}n∈ω of a subclass
of K such that Th∃(Xn) ⊆ Th∃(Xn+1) for each n.

Theorem 10. There is a class K of undirected finite graphs with such that
a) there is a computable Friedberg numbering {Xn}n∈ω of the class K such that each graph Xn,

n ∈ ω, is embeddable into the graph Xn+1, and
b) there is no computable Friedberg numbering {Yn}n∈ω of a subclass of K such that Yn ⊆

Yn+1 for each n.
Corollary 11. There is a class K of undirected finite graphs such that FLO ≤tc K and

FLO �≤c K.

Proof of Theorem 8. (=⇒) Suppose that FLO ≤c K via an e-operator Φ. Let Ln be the standard
linear ordering of natural numbers < n. Then for each n ∈ ω Φ(D(Ln)) = D(Xn) for some Xn ∈ K. It
is easy to check that {Xn}n∈ω is the computable Friedberg numbering such that Xn ⊆ Xn+1 for each n.

(⇐=) Let there exists such computable Friedberg numbering {Xn}n∈ω . We define an e-operator Φ
via the c.e. set of all axioms 〈ϕ,D(A)〉, where A is a linear ordering with n elements and ϕ ∈ D(Xn),
n ∈ ω. Then FLO ≤c K via the e-operator Φ. �

Proof of Theorem 9. (=⇒) Let FLO ≤tc K via a Turing operator ϕe and let Ln be the standard
linear ordering of natural numbers < n. For any n ∈ ω we define Xn as the structure from K such that

D(Xn) = ϕ
D(Ln)
e . It is easy to see that {Xn}n∈ω is the computable Friedberg numbering.

We prove that Th∃(Xn) ⊆ Th∃(Xn+1) for each n. Let Xn |= θ for some existensional sentence θ.

Let F be a finite substructure of Xn such that F |= θ and let k be such integer that ϕD(Ln)�k
e (ψ) ↓= 1

for all ψ ∈ D(F). We choose a linear ordering L′
n+1 with n+ 1 elements such that ψ ∈ D(Ln) ⇔ ψ ∈

D(L′
n+1) for all atomic sentences with code < k. Then ϕ

D(L′
n+1)

e (ψ) = 1 for all ψ ∈ D(F) and hence
Xn+1 |= θ.

(⇐=) Let there exists such computable Friedberg numbering {Xn}n∈ω . For any n ∈ ω and any finite
consistent set of atomic sentences Δ in the language of class K we denote via En

Δ a structure isomorphic
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to Xn such that Δ ⊆ D(En
Δ). As in the proof of Theorem 5 we can choose a partially computable

correspondence (n,Δ) 
→ En
Δ.

Let a finite linear ordering L be given. Let s0 < s1 < s2 < . . . be all integers s ∈ ω such that D(L) � s
is a diagram of some linear ordering. We denote via c(n) the number of elements in the linear ordering
with the diagram D(L) � sn. Note that c(n) ≤ c(n + 1) for each n ∈ ω.

We inductively construct a sequence {Δn}n∈ω of finite consistent sets of atomic sentences in the
language of class K:

Δ0 = ∅,

Δn+1 = D(Ec(n+1)
Δm

) � n, where m ≤ s is the least integer such that c(k) = c(n+ 1) for all k, m <
k ≤ n.

Note that Ec(n+1)
Δm

exists since Th∃(Xc(m)) ⊆ Th∃(Xc(n+1)). Moreover,
⋃

sΔs = D(B) for some

B ∼= Xcard(L). It remains to note that D(B) = W
D(L)
e for some e and apply Proposition 2. �

Proof of Corollary 11. Let the language of undirected graphs contain one binary predicate R
(R(a, b) means that vertices a and b are connected by an arc). For each m ≥ 4 define the following
finite undirected graphs:

Am is the graph with vertices a1, . . . , am+1

and with arcs {a1, a2}, {a2, a3}, {a3, a4}, . . . {am−1, am}, {am, a1}, {am, am+1};
Bm is the graph with vertices a1, . . . , am+2

and with arcs {a1, a2}, {a2, a3}, {a3, a4}, . . . {am−1, am}, {am, a1}, {am, am+1}, {am+1, am+2};
Cm is the graph with vertices a1, . . . , am+2 and with arcs

{a1, a2}, {a2, a3}, {a3, a4}, . . . {am−1, am}, {am, a1}, {am, am+1}, {am+1, am+2}, {am, am+2};
Dm is the graph with vertices a1, . . . , am+4 and with arcs

{a1, a2}, {a2, a3}, {a3, a4}, . . . {am−1, am}, {am, a1}, {am, am+1}, {am+1, am+2}, {am, am+2},
{am, am+3}, {am+3, am+4}.
Then for each i, j ∈ ω we set Fi,j = C〈i,j〉+4 and Gi,j = D〈i,j〉+4 if there are integers x1, . . . , x〈i,j〉+6

such that
1) 〈i, R(xk, xk+1)〉 ∈ Wi for each k, 1 ≤ k ≤ 〈i, j〉 + 3, and
2) 〈i, R(x1, x〈i,j〉+4)〉 ∈ Wi;

3) 〈i, R(x〈i,j〉+4, x〈i,j〉+5)〉 ∈ Wi;

4) 〈i+ 1, R(x〈i,j〉+5, x〈i,j〉+6)〉 ∈ Wi and 〈i+ 1,¬R(x〈i,j〉+4, x〈i,j〉+6)〉 ∈ Wi.

Otherwise we set Fi,j = A〈i,j〉+4 and Gi,j = B〈i,j〉+4.

Let finite undirected graphHn, n ∈ ω, be the disjoint and disconnected union of all graphsFi,n, i ≤ n,
and all graphs Gi,j , i ≤ j < n. It is easy to see that for all n the graph Hn is finite and Hn is embeddable
into Hn+1 since each Am is embeddable into Bm and each Cm is embeddable into Dm. Moreover, there is
a computable Friedberg numbering of finite undirected graphs {Xn}n∈ω such that Xn

∼= Hn for each n
since the conditions 1)–4) are Σ1 and since each Am is embeddable into Cm and each Bm is embeddable
into Dm.

Let K be the class containing all graphs isomorphic to Hn for some n ∈ ω. Then K satisfies the
condition a) of the theorem. Suppose that there is a computable Friedberg numbering {Yn}n∈ω of a
subclass of K such that Yn ⊆ Yn+1 for each n. Then there is a c.e. set Wi of pairs 〈n,ϕ〉, where n ∈ ω,
ϕ is either atomic sentence, or its negation, such that D(Yn) = {ϕ : 〈n,ϕ〉 ∈ Wi}.

Since Yn � Yn+1 for each n we have Yi
∼= Hj for some j ≥ i and Yi+1

∼= Hj′ for some j′ > j. Then
Yi contains a subgraph Y ′

i isomorphic to Fi,j and Yi+1 contains a subgraph Y ′
i+1 isomorphic to Gi,j such

that Y ′
i ⊆ Y ′

i+1.

If Fi,j = A〈i,j〉+4 and Gi,j = B〈i,j〉+4 then obviously there are integers x1, . . . , x〈i,j〉+5 ∈ Supp(Y ′
i)

and x〈i,j〉+6 ∈ Supp(Y ′
i+1) satisfying the conditions 1)-4), and hence Fi,j = C〈i,j〉+4, Gi,j = D〈i,j〉+4,

contradiction.
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Thus, Y ′
i
∼= Fi,j = C〈i,j〉+4 and Y ′

i+1
∼= Gi,j = D〈i,j〉+4. Hence there are integers x1, . . . , x〈i,j〉+6 sat-

isfying the conditions 1)-4). Then x1, . . . , x〈i,j〉+5 ∈ Supp(Y ′
i) and x〈i,j〉+6 ∈ Supp(Y ′

i+1). Since Y ′
i
∼=

C〈i,j〉+4, there is an integer y ∈ Supp(Y ′
i) such that the atomic sentences R(x〈i,j〉+4, y), R(x〈i,j〉+5, y)

belong to D(Y ′
i) ⊆ D(Y ′

i+1). By the condition 4) we have R(x〈i,j〉+5, x〈i,j〉+6) ∈ D(Y ′
i+1) and

¬R(x〈i,j〉+4, x〈i,j〉+6) ∈ D(Y ′
i+1) so that y �= x〈i,j〉+6, and we get a contradiction with Y ′

i+1
∼= D〈i,j〉+4.
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