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INTRODUCTION
The thesis about the application of functional analysis to problems of computational mathematics

advanced by Academician S.L. Sobolev in 1974 still remains topical: “. . . the estate of new mathematics
includes also computation theory, which is presently as hard to imagine without Banach spaces as
without electronic computing machines” [1, p. 7]. This paper considers questions related to the uniform
convexity of periodic function spaces. Having proved this property for a space, we can solve various
extremal problems requiring the proof of the uniqueness of the sought element of the space. Uniform
convexity is proved by verifying Clarkson’s inequalities or their generalizations [1–9]. The initial form for
such a problem is the form of the norm of a function in the space under examination.

Sobolev normed the spaces W
(m)
p by means of projection operators [1, 3] in the most general form.

However, in [1], a special form of a norm was also given, which was called the simplest form and
expressed in terms of integrals of the function and its higher-order derivatives. The function and its
generalized partial derivatives up to order m are p-integrable on a certain domain Ω such that G ⊂ Ω,
and
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Examples of norms are also found in other researches. In accordance with the theory of elliptic
differential equations, Agranovich [10] considers Sobolev spaces as special cases of more general spaces.
The difference between these spaces is in the order of partial differentiation, which is nonnegative and
integer for Sobolev spaces and real for general spaces. The norms are defined without specifying the
coefficients of the derivatives:
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CLARKSON’S INEQUALITIES FOR PERIODIC SOBOLEV SPACE 1147

Concerning this norm, the author of [10] made the remark that, in the integrands, it suffices to retain
only α = (0, . . . , 0) and α = (m, 0, . . . , 0), . . ., (0, . . . , 0,m), which we consider important. In this
respect, Maz’ya’s book [11] is also interesting for our study, in which function space normed by
means of derivatives of intermediate orders were introduced. In [11], Maz’ya considered embedding
theorems under various conditions imposed on the domain of integration. Spaces normed with the use
of derivatives of intermediate orders, which he denoted by V m

p (Ω), appear in all fundamental theorems
together with the spaces Lm

p (Ω) and Wm
p (Ω). The notation Wm

p (Ω) Maz’ya uses for spaces with norm
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The norm on V m
p (Ω) is defined by
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Next, in studies concerned with the problem of estimating error functionals of cubature formulas, various

normings of the spaces W
(m)
p of both periodic and nonperiodic functions are used. Shoinzhurov [12]

normed the space of periodic functions in a special way by means of the operator Laplace
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This norming has made it possible of solve problems posed in [12] for any real m. For positive integer
m, norms containing improper integrals over Rn of a function and its derivatives of all orders were used
in [13, 14]:
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The normings listed above do not exhaust all normings of the Sobolev space. Note that the expression
for the norm of a function must necessarily contain the function itself and all of its partial derivatives of
given highest order. Derivatives of intermediate orders, as well as coefficients multiplying them, may
be or be not included. It is seen from the examples given above that, in some studies, the norm can be
defined in terms of the inverse Fourier transform of a fundamental solution of some differential equation.

In this paper, we norm the space W̃ (m)
p (Q) in the spirit of [13–15]. Here, m takes only positive integer

values, but our norm is not a special case of any of the norms given above. The author applied such norms
to weighted spaces in [16, 17].

Various normings of a space determine the corresponding settings of extremal problems. In [18,
19], the uniform convexity properties of Hilbert spaces were used for substantiating the uniqueness of
an extremal function for a linear functional. We also mention papers [20–22] devoted to the proof of
Clarkson’s inequalities and their analogues in spaces with certain specific features.

In our paper, the integrability exponent p ∈ (1,∞) renders the Sobolev space under consideration
non-Hilbert, except for the only value p = 2.
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1148 KORYTOV

1. SPACES, NORMS, AND INITIAL INEQUALITIES

We norm the space W̃
(m)
p (Q) of periodic functions of period 1 with respect to each independent

variable as follows:
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where Q is the unit cube with identified opposite faces and p ∈ (1,∞). Note the binomial coefficient

multiplying the kth partial derivatives. Each derivative Dαf(x) of a function in W̃
(m)
p (Q) belongs to the

periodic function space L̃p(Q) with norm
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Clarkson’s inequalities and their generalization were proved in [1–4] for the spaces Lp(Ω) of nonperiodic
p-integrable functions defined on a bounded domain Ω ⊂ Rn with norm

||f |Lp(Ω) || =

⎡
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|f |p dx
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1/p

.

Clarkson [2] gave inequalities for the spaces Lp(Ω) of functions on a bounded domain Ω. At present,
inequalities named after Clarkson are usually given in a different form (see, e.g., [3]). Clarkson’s first
inequality is valid for p ≥ 2:
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Clarkson’s second inequality is valid for p in the interval specified below:
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In the present paper, we use this form.
The role of a bounded domain of integration is played in our paper by the unit n-cube with identified

opposite faces. This means that the faces and edges containing the origin belong to the domain, while
those opposite to them do not. The cube is open on the side of faces containing the point of n-space
all of whose coordinates are 1. The translates for such a cube by integer vectors cover the entire space;
therefore, this is a fundamental domain for periodic functions with unit matrix of periods.

We do not check the equivalence of norms or use embedding theorems. Our starting point in
obtaining the main results are known inequalities for arbitrary variable quantities [3]. We give these
inequalities below in the form of lemmas.

Lemma 1 (Sobolev). For p ≥ 2 and 0 ≤ x ≤ 1,
(
1 + x

2

)p

+
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1− x

2

)p
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2
(1 + xp) . (5)

Lemma 2 (Sobolev). For p ≤ 2 and any x and y,
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The proofs of the main statements also use the inverse Minkowski inequalities
(
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(for sums) and
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|fk(x)|r dx
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(for integrals).

2. THE PERIODIC SOBOLEV SPACE

Sobolev identification [1] is the following equivalence relation between points of Euclidean n-space
Rn: two points x′ and x′′ are considered equivalent if the differences between the respective coordinates
of these points are integer, i.e., x′1 − x′′1 ∈ Z, . . . , x′n − x′′n ∈ Z. This relation is indeed an equivalence,
because it is reflexive (x ∼ x), symmetric (x′ ∼ x′′ ⇒ x′′ ∼ x′), and transitive (x′ ∼ x′′, x′′ ∼ x′′′ ⇒ x′ ∼
x′′′). The quotient {Rn/ ∼} by this relation is, geometrically, the n-torus Θn.

Given x ∈ Rn, the points equivalent to (or identified with) x have the new coordinates tj = {xj} =
xj − [xj], j = 1, . . . , n, t = U(x), where U(x) is the fractional part operator. The inverse map is one-
to-infinite: U−1(t) = {x : xj = tj + βj}, where 0 ≤ tj < 1 and the βj are the components of any integer
vector for j = 1, . . . , n. The manifold thus obtained is the n-torus Θn = {t : 0 ≤ tj < 1, j = 1, . . . , n},
which can be treated as the unit n-cube with identified opposite faces.

The spaces of periodic functions on Rn are related to functions decreasing at infinity faster than
any negative degree of |x| and to spaces of functions on the torus Θn. Namely, let D = D(Ω) be
the space of infinitely differentiable compactly supported functions on Ω with convergence fk → f ,
k → ∞, defined as the uniform convergence of derivatives: Dαfk(x) ⇒ Dαf(x), k → ∞, α = 0, 1, 2, . . .,
x ∈ Ω, suppfk ⊂ Ω′, Ω′ : Ω ⊂ Ω. Next, let S = S(Rn) be the Schwartz space of infinitely differentiable
functions on Rn such that all their derivatives (including the functions themselves) satisfy the condition

|Dαf | ≤ K
1

1 + |x|s , s > 0. Convergence in S is defined as the convergence of products: xsDαfk(x) ⇒
xsDαf(x), s > 0, k → ∞, α = 0, 1, 2, . . ., x ∈ Rn. The spaces S and D with these convergences are
complete, that is, any fundamental sequence in each of these spaces converges to an element of the
space. The functions from D belong to S; thus, D ⊂ S.

According to a definition in [1], a function of n variables is said to be periodic with period matrix A if
it satisfies the condition f(x+Aβ) = f(x) for any integer vector β. Let S̃(Q) be the space of infinitely
differentiable periodic functions with unit period matrix and convergence Dαfk(x) ⇒ Dαf(x), k → ∞,
α = 0, 1, 2, . . ., x ∈ Q, where Q = {x : 0 ≤ xj < 1, j = 1, . . . , n} is the unit cube.

The map of Euclidean n-space Rn to the n-torusΘn that was considered above takes the space S̃(Q)
of periodic functions to the space T = T (Θn) of infinitely differentiable periodic functions on the torus
Θn. Convergence in T is again defined as the uniform convergence of all derivatives: Dαfk(t) ⇒ Dαf(t),
k → ∞, α = 0, 1, 2, . . ., t ∈ Θn.

Given any function f ∈ S, we can construct an infinitely differentiable periodic function in the form
of a series as φ̃(x) =

∑

β

f(x+ Eβ). A direct verification proves that φ̃(x) is periodic. The definition of a

periodic function with unit period matrix implies

φ̃(x+ Eγ) =
∑

β

f(x+ Eγ + Eβ)

=
∑

β

f(x+ E(γ + β)) =
∑

γ′

f(x+ Eγ′) = φ̃(x). (9)
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In the next to last relation, we made the change γ′ = γ + β, where γ′ and γ are integer vectors. Each
term of the series is a function belonging to the Schwartz space and, therefore, infinitely differentiable.
Moreover, the function series

∑

β f(x+ Eβ) is bounded above by the convergent number series
∑

|β′|�=0

1

|Eβ′|s with s > 1:

|f(x+ Eβ)| ≤ K
1

1 + |x+ Eβ|s ≤ K
1

1 + |Eβ′|s ≤ K
1

|Eβ′|s ,

x ∈ Q, β′ = (β′
1, . . . , β

′
n)

T : β′
j =

{

1 + βj , βj < 0,

βj , βj ≥ 0,
j = 1, . . . , n. (10)

Therefore, series (9) converges to an infinitely differentiable function, which we denote by φ̃(x). Thus,
φ̃(x) ∈ S̃. To the periodic function φ̃(x) of period 1 with respect to each variable xj , j = 1, . . . , n, there
corresponds a smooth function φ(t) ∈ T (Θ) such that φ̃(x) = φ(t) for x = t. Moreover, x ∈ Rn and
t ∈ Θn are equal up to an integer multiplier E.

Our main space is the space of periodic functions with unit period matrix integrable to the pth power
together with their derivatives of order up to m. Differentiation is understood in the generalized sense.

Such functions form the Sobolev space W̃
(m)
p (Q). This is the closure of the set of smooth periodic

functions in norm (1). The limit elements in the sense of convergence in this norm cannot be smooth
functions; therefore, adding them to the space extends the stock of main functions. The functions from

S̃(Q) are included in W̃
(m)
p (Q), because the generalized derivatives of functions infinitely differentiable

in the ordinary sense are p-integrable.

3. CLARKSON’S INEQUALITIES FOR PERIODIC P-INTEGRABLE FUNCTIONS

Let us prove the validity of Clarkson’s inequalities for the space L̃p(Q) with norm (2). We begin with
the first inequality. Following [3], given functions f, g ∈ L̃p(Q), p ≥ 2 (for definiteness, we assume that
|g| ≤ |f | and, hence, |g/f | ≤ 1), we transform the sum
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Integrating both sides of (13) over Q (the integrals exist by assumption), we obtain
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Imposing the condition of periodicity with respect to each variable and passing to an expression in terms
of norms (2), we obtain Clarkson’s first inequality for the space L̃p(Q):
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In order to prove Clarkson’s second inequality in the space L̃p(Q) of periodic functions p-integrable
on the period, to the left-hand side of inequality (6) in Lemma 2, that is,
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∣
∣

f + g

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣

p/(p−1)
)p−1

dx ≤ 1

2

⎛

⎜
⎝

∫

Q

|f |pdx+

∫

Q

|g|pdx

⎞

⎟
⎠ , 1 < p ≤ 2.

We raise both sides to the power 1/(p − 1) > 0:
⎡

⎢
⎣

∫

Q

(∣
∣
∣
∣

f + g

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣

p/(p−1)
)p−1

dx

⎤

⎥
⎦

1/(p−1)

≤

⎡

⎢
⎣
1

2

⎛

⎜
⎝

∫

Q

|f |pdx+

∫

Q

|g|pdx

⎞

⎟
⎠

⎤

⎥
⎦

1/(p−1)

, 1 < p ≤ 2.

Taking into account (16), we obtain
⎡

⎢
⎣

∫

Q

∣
∣
∣
∣

f + g

2

∣
∣
∣
∣

p

dx

⎤

⎥
⎦

1/(p−1)

+

⎡

⎢
⎣

∫

Q

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣

p

dx

⎤

⎥
⎦

1/(p−1)

≤

⎡

⎢
⎣
1

2

⎛

⎜
⎝

∫

Q

|f |pdx+

∫

Q

|g|pdx

⎞

⎟
⎠

⎤

⎥
⎦

1/(p−1)

, 1 < p ≤ 2.
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Passing to an expression in terms of norms (2), we obtain Clarkson’s second inequality for the space
L̃p(Q):

∣
∣
∣
∣

∣
∣
∣
∣

f + g

2

∣
∣
∣
∣
L̃p(Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣
L̃p(Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

≤
(
1

2

∣
∣
∣

∣
∣
∣f

∣
∣
∣L̃p(Q)

∣
∣
∣

∣
∣
∣

p
+

1

2

∣
∣
∣

∣
∣
∣g

∣
∣
∣L̃p(Q)

∣
∣
∣

∣
∣
∣

p
)1/(p−1)

, 1 < p ≤ 2. (17)

Thus, we have obtained Clarkson’s first inequality (14) and second inequality (17) for the periodic
function space L̃p(Q), which are similar to inequalities (3) and (4). The space L̃p(Q) contains the
derivatives of the functions considered in the next section.

4. CLARKSON’S INEQUALITIES FOR PERIODIC FUNCTIONS
IN THE SOBOLEV SPACE

First, we prove Clarkson’s first inequality. By definition, periodic functions f, g ∈ W̃
(m)
p (Q) in the

Sobolev space satisfy the condition Dαf,Dαg ∈ L̃p(Q), |α| ≤ m. Since the derivatives belong to the
space L̃p(Q), it follows that each of them satisfies the inequality

∫

Q

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p

dx+

∫

Q

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p

dx

≤ 1

2

⎛

⎜
⎝

∫

Q

|Dαf |p dx+

∫

Q

|Dαg|p dx

⎞

⎟
⎠ , 2 ≤ p < ∞, |α| ≤ m.

This inequality remains valid after the summation of all derivatives with a common constant multiplier:
∑

|α|=k

k!

α!

∫

Q

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p

dx+
∑

|α|=k

k!

α!

∫

Q

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p

dx

≤ 1

2

⎛

⎜
⎝

∑

|α|=k

k!

α!

∫

Q

|Dαf |p dx+
∑

|α|=k

k!

α!

∫

Q

|Dαg|p dx

⎞

⎟
⎠ ,

2 ≤ p < ∞, k = 0, 1, . . . ,m.

Summation over k with the binomial coefficients
(
m

k

)

preserves this inequality as well:

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∫

Q

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p

dx

+
m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∫

Q

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p

dx ≤ 1

2

⎡

⎢
⎣

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∫

Q

|Dαf |p dx

+

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∫

Q

|Dαg|p dx

⎤

⎥
⎦ , 2 ≤ p < ∞. (18)

The passage to expression (18) in terms of norm (1) yields Clarkson’s first inequality for the periodic

Sobolev space W̃
(m)
p (Q):

∣
∣
∣
∣

∣
∣
∣
∣

f + g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p

+

∣
∣
∣
∣

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p
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≤ 1

2

(∣
∣
∣

∣
∣
∣f

∣
∣
∣W̃ (m)

p (Q)
∣
∣
∣

∣
∣
∣

p
+

∣
∣
∣

∣
∣
∣g

∣
∣
∣W̃ (m)

p (Q)
∣
∣
∣

∣
∣
∣

p)

, 2 ≤ p < ∞. (19)

To derive Clarkson’s second inequality, we introduce derivatives of functions into inequality (15):
(∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p/(p−1)
)p−1

≤ 1

2
(|Dαf |p + |Dαg|p) , |α| ≤ m, 1 < p ≤ 2. (20)

We sum both sides of (20) with a common multiplier and binomial coefficients, as it was done for (18):
m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

(∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p/(p−1)
)p−1

≤ 1

2

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!
(|Dαf |p + |Dαg|p) , 1 < p ≤ 2.

Then, we integrate over Q:
∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

(∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p/(p−1)
)p−1

dx

≤ 1

2

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!
(|Dαf |p + |Dαg|p) dx, 1 < p ≤ 2.

Let us raise this expression to the power 1/(p − 1) > 0:
⎛

⎜
⎝

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

(∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p/(p−1)
)p−1

dx

⎞

⎟
⎠

1/(p−1)

≤

⎛

⎜
⎝
1

2

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!
(|Dαf |p + |Dαg|p) dx

⎞

⎟
⎠

1/(p−1)

, 1 < p ≤ 2. (21)

To the sum over the multi-index α under the integral sign on the left-hand side of (21) we apply the
inverse Minkowski inequality (7) with exponent r = p− 1:

⎛

⎝

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

(∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p/(p−1)
)p−1

⎞

⎠

1/(p−1)

≥

⎛

⎝

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p
⎞

⎠

1/(p−1)

+

⎛

⎝

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p
⎞

⎠

1/(p−1)

.

Next, we return the sum under the sign of integral and apply the inverse Minkowski inequality (8) to
the whole integral:

⎛

⎜
⎝

∫

Q

⎛

⎜
⎝

⎛

⎝

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p
⎞

⎠

1/(p−1)
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+

⎛

⎝

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p
⎞

⎠

1
p−1

⎞

⎟
⎠

p−1

dx

⎞

⎟
⎟
⎠

1/(p−1)

≥

⎛

⎜
⎝

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf +Dαg

2

∣
∣
∣
∣

p

dx

⎞

⎟
⎠

1/(p−1)

+

⎛

⎜
⎝

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣

Dαf −Dαg

2

∣
∣
∣
∣

p

dx

⎞

⎟
⎠

1/(p−1)

.

Since the differentiation operator Dα is linear, we can pass to an expression in terms of norms (4):
⎛

⎜
⎝

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣
Dα

(
f + g

2

)∣
∣
∣
∣

p

dx

⎞

⎟
⎠

1/(p−1)

+

⎛

⎜
⎝

∫

Q

m∑

k=0

(
m

k

)
∑

|α|=k

k!

α!

∣
∣
∣
∣
Dα

(
f − g

2

)∣
∣
∣
∣

p

dx

⎞

⎟
⎠

1/(p−1)

=

∣
∣
∣
∣

∣
∣
∣
∣

f + g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

.

We have obtained Clarkson’s second inequality for the periodic Sobolev space W̃
(m)
p (Q):

∣
∣
∣
∣

∣
∣
∣
∣

f + g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

+

∣
∣
∣
∣

∣
∣
∣
∣

f − g

2

∣
∣
∣
∣
W̃ (m)

p (Q)

∣
∣
∣
∣

∣
∣
∣
∣

p/(p−1)

≤
(
1

2

∣
∣
∣

∣
∣
∣f

∣
∣
∣W̃ (m)

p (Q)
∣
∣
∣

∣
∣
∣

p
+

1

2

∣
∣
∣

∣
∣
∣g

∣
∣
∣W̃ (m)

p (Q)
∣
∣
∣

∣
∣
∣

p
)1/(p−1)

, 1 < p ≤ 2. (22)

Thus, we have obtained inequalities (19) and (22), which are similar to (3) and (4), for the space

W̃
(m)
p (Q).

CONCLUSION

The validity of Clarkson’s inequalities between the norms of any two elements of the periodic Sobolev
space means that the unit sphere fulfillment property uniform convexity in the space with non-Hilbert
integrability exponent p ∈ (1,∞). The proof is based on number inequalities applied to the values
of functions at points of the unit n-cube with identified opposite faces, over which integration was
subsequently performed. The result is intended for application to problems in which it is necessary to
represent periodic generalized functions in terms of integrable periodic functions on spaces normed
without the use of pseudodifferential operators.
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