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Abstract—Chow and Lou in 2003 had shown that the analogue of the Hamilton Ricci flow on
surfaces in the combinatorial setting converges to the Thruston’s circle packing metric. The
combinatorial setting includes weights defined for edges of a triangulation. Crucial assumption in
the paper of Chow and Lou was that the weights are nonnegative. We show that the same results on
convergence of Ricci flow can be proved under weaker condition: some weights can be negative and
should satisfy certain inequalities. As a consequence we obtain theorem of existence of Thurston’s
circle packing metric for a wider range of weights.
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1. INTRODUCTION

We start from the basic definitions. Consider a closed surface M with a triangulation T . Let
V = {A1, . . . , AN} be the set of verticies of T . Denote by E and F the sets of all edges and faces of
the triangulation T . A weight is a function w : E → [−1, 1], w(AiAj) = wij = wji. For a fixed triple
(M,T,w) define a metric on M in the following way: (1) the metric is flat on each face of T ; (2) the
metric depends on parameters r = {ri > 0|i = 1, . . . , N} ∈ R

N
+ ; (3) the length lij of an edge AiAj ∈ E

is given by

lij =
√

r2i + r2j + 2rirjwij. (1)

Clearly these conditions determine a metric on M in a unique way provided for any face AiAjAk ∈ F
the lengths lij , ljk, lik satisfy the triangle inequalities. Hence it is natural to consider the subspace
R ⊆ R

N
+ of those r which define {lij |AiAj ∈ E} satisfying the triangle inequalities on each face of F .

This combinatorial setting has very simple geometrical meaning. Namely, consider on the Euclidean
plane circles Ci, Cj of radii ri, rj . Assume θij is the intersection angle of the circles (θij is chosen in
such a way that θij = 0 for externally tangent circles). Then the distance between Ai and Aj is given
by (1) where wij = cos θij .

The curvature of such a metric is concetrated in the vertices of the triangulation. The curvature
at the vertex Ai is defined to be Ki = 2π −

∑
AiAjAk∈F

∠AjAiAk. The combinatorial Ricci flow is the

differential equation dri/dt = −Kiri which defines the evolution of the metric in terms of the evolution
of the parameters r = {ri > 0|i = 1, . . . , N}. Hence it is natural to consider the Ricci flow on the space
R. This definition of a combinatorial Ricci flow is taken from [1] and is inspired by papers [2, 3].
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For surfaces of genus g ≥ 2 it is also natural to discuss metrics on (M,T,w) which are not flat on
each face but has constant negative curvature. So we consider another type of metrics which are defined
in the following way:

(1) the metric on each face of the triangulation T has constant curvature −1;
(2) the metric depends on parameters r = {ri > 0|i = 1, . . . , N} ∈ R

N
+ ;

(3) the length lij of an edge AiAj ∈ E is given by cosh lij = cosh ri cosh rj +wij sinh ri sinh rj .
It has the same geometrical meaning as described above but instead of circles on the Eucledean plane

one considers circles on the hyperbolic plane. In this case the combinatorial Ricci flow is the differential
equation dri/dt = −Ki sinh ri.

In [1] Chow and Lou proved that under certain conditions on weights and combinatorics of a
triangulation T the Ricci flow for any initial r(0) = (r01, . . . , r

0
N ) converges exponentially fast to the

metric of constant curvature Ki = 2πξ(M)/N in the euclidean background and to the metric with
Ki = 0 in the hyperbolic background. For the precise statements see Theorems 1.1 and 1.2 in [1].

Most important assumption on weights {wij} in the paper [1] is the inequality wij ≥ 0 for all i, j such
that AiAj ∈ E. For other conditions (on combinatorics of the triangulation T ) and for discussion of the
Ricci flow for spherical background also see [1]. Detailed analysis of the arguments from [1] shows that
assumptions wij ≥ 0 were used to prove two statements on which other arguments are based.

(A) The space R coincides with R
N
+ .

(B) For any triangle �AiAjAk ∈ F denote by θi, θj and θk the internal angles at the corre-
sponding vertices. Then one has ∂θi/∂ri < 0, ∂θj/∂ri > 0 for all i �= j. Also ∂(θi + θj + θk)/∂ri = 0
in the Eucledean plane and ∂(θi + θj + θk)/∂ri < 0 in the hyperbolic plane.

The purpose of our paper is to weaken assumptions on the weights w = {wij} in such a way that
these two statements still hold. As a consequence we obtain theorem of existence of Thurston’s circle
packing metric for a wider range of weights than it was proved for example in [1, 4].

Let us make important remark on extremal values of weights (|wij | = 1). The case wij = wik =
wjk = 1 correspond to pairwise external tangent circles Ci, Cj , Ck. This case was considered in [1, 5].

In other cases of |wij | = |wik| = |wjk| = 1 points Ai, Aj , Ak belong to some line hence the triangle
�AiAjAk degenerates to a line segment for any ri, rj , rk. Though this case could have some geometrical
meaning we exclude it from our consideration. So in what follows the case when |wij | = |wik| = |wjk| =
1 and at least one of the weights is negative is not considered and we will not mention it in assumptions
of statements.

2. EUCLIDEAN GEOMETRY

First of all we investigate the space R. Fix a triple (M,T,w). Consider a triangle of the triangula-
tion T . To simplify notation suppose this is the triangle �A1A2A3. For positive numbers r1, r2, r3 define
l3 = l12, l1 = l23, l2 = l13 by formula (1). In [6, Lemma 13.7.2] it was shown that for w ≥ 0 numbers
l1, l2, l3 satisfy triangle inequalities for any positive r1, r2 and r3. We generalize this statement in two
following Lemmas for more general assumptions. Three triangle inequalities on l1, l2, l3 are equivalent
to one inequality (l1 + l2 + l3)(−l1 + l2 + l3)(l1 − l2 + l3)(l1 + l2 − l3) > 0, which can easily be written
in squares of l1, l2, l3:

−(l21 + l22 + l23)
2 + 4l21l

2
2 + 4l21l

2
3 + 4l22l

2
3 > 0. (2)

Lemma 1. Let w13 = β, w12 = γ and w23 = α. Assume β = γ ≥ 0 > α. Then for any r1, r2, r3 > 0
lengths l1, l2, l3 satisfy the inequality (2).

Proof. Expressing squares of l1, l2, l3 by (1) we obtain the condition on r1, r2, r3:

4(1− γ2)r21r
2
2 + 4(1− γ2)r21r

2
3 + 4(1 − α2)r22r

2
3 + 8r1r2r3((α+ γ2)r1

+ (γ + αγ)r2 + (αγ + γ)r3) > 0.

All the summands are positive except 8r1r2r3(α+ γ2)r1. Divide the inequality by 4 and transform it to

(1− α2)r22r
2
3 + 2(1 + α)γr1r2r3(r2 + r3) + r21((1 − γ2)r22 + 2(α+ γ2)r2r3 + (1− γ2)r23) > 0.
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The left hand side can be transformed to

(1− α2)r22r
2
3 + 2(1 + α)γr1r2r3(r2 + r3) + r21(1− γ2)(r2 − r3)

2 + 2r21(1 + α)r2r3,

which is obviously positive. �

Lemma 2. Let w13 = β, w12 = γ and w23 = α. Assume β and γ are positive, α is negative,
and βγ + α ≥ 0, and γ or β or |α| �= 1. Then for any r1, r2, r3 > 0 numbers l1, l2, l3 satisfy the
inequality (2).

Proof. Expressing in (2) squares of l1, l2, l3 by (1) we obtain

4(1 − γ2)r21r
2
2 + 4(1 − β2)r21r

2
3 + 4(1− α2)r22r

2
3 + 8r1r2r3((α + βγ)r1

+ (β + αγ)r2 + (αβ + γ)r3) > 0.

This inequality is satisfied for any r1 > 0, r2 > 0, r3 > 0, since from our assumption βγ + α ≥ 0 it
follows that β + αγ ≥ 0 and αβ + γ ≥ 0. �

Remark 1. It is not difficult to show that (2) cannot be proved for any positive r1, r2, r3 for
positive β, γ and negative α without additional assumptions. Namely for α = −0.6, β = 0.9,
γ = 0.1 the inequality (2) is satisfied not for all positive r1, r2, r3.

Now we address the question (B) from the introduction. Consider the triangle �A1A2A3. For given
positive numbers r1, r2, r3 denote by θ1, θ2, θ3 the internal angles at the corresponding vertices of the
triangle (provided l1, l2, l3 satisfy the inequality (2)).

Theorem 1. Assume the weights α, β, γ satisfy one of the following conditions: (i) all three
weights are nonnegative; (ii) two weights β and γ are nonnegative, α is negative, and βγ + α > 0
(or βγ + α = 0 but β and γ are not equal to 1). Then (a) ∂θi/∂ri < 0 for all i; (b) ∂θj/∂ri > 0 for all
j �= i; (c) ∂(θi + θj + θk)/∂ri = 0.

Proof. The statements under the assumption (i) were proved in [6, Lemma 13.7.3].
We address the assumptions (ii). Note that our arguments also apply to the assumption (i). From

Thurston’s proof [6] it follows that the inequalities (a) and (b) can be deduced from the fact that radical
center of three circles with radii r1, r2, r3 and the centers in the corresponding vertices of the triangle
�A1A2A3 belongs to interior of the triangle.

Consider in the Euclidean plane the cartesian coordinate system with origin at A1. Choose the
axes in such a way that the vertex A2 has coordinates (l3, 0), and the vertex A3 has coordinates
(l2 cos θ1, l2 sin θ1). Then coordinates of the radical center can be found from the system of equations

x2 + y2 − r21 = (x− l3)
2 + y2 − r22, x2 + y2 − r21 = (x− l2 cos θ1)

2 + (y − l2 sin θ1)
2 − r23.

From the first equation one has x = (r21 + r1r2γ)/l3. Substitute it for x in the second equation and

obtain the equation on y: 2yl2 sin θ1 = 2r21 + 2r1r3β − l22 + l23 − l21
l23

(r21 + r1r2γ). We need to prove than

under assumptions (ii) one has y > 0. This means that the radical center and the vertex A3 belong to the
same halfplane with respect to the line A1A2. For this purpose we need to check that for all r1, r2, r3 > 0
one has l23(2r

2
1 + 2r1r3β)− (l22 + l23 − l21)(r

2
1 + r1r2γ) > 0. Substituting for l1, l2, l3 their expressions in

terms of weights and r1, r2, r3 we reduce the inequality to

2r1r2((1 − γ2)r1r2 + (α + βγ)r1r3 + (β + αγ)r2r3) > 0. (3)

From the assumptions (ii) it follows that β + αγ ≥ 0. Hence (3) is satisfied for all r1, r2, r3 > 0.
The radical center and the vertex A2 are checked to belong to the same halfplane with respect to the

line A1A3 in the same way. It is left to check that the radical center and the vertex A1 belong to the same
halfplane with respect to the line A2A3. In previous calculations change the indices (1, 2, 3) → (2, 3, 1)
and correspondingly change the weights: (α, β, γ) → (β, γ, α). Then instead of (3) we need to check
that

2r2r3((1− α2)r2r3 + (β + γα)r2r1 + (γ + βα)r2r1) (4)

is positive for all r2, r2, r3 > 0. Under assumptions (ii) one has β + γα ≥ 0 and γ + βα ≥ 0, hence (4)
is positive for all r1, r2, r3 > 0. �
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Remark 2. It is not possible to prove the statements of Theorem 1 for γ = β ≥ 0 > α without
assumption γ2 + α > 0. Indeed, in this case the inequality (4) is satisfied for all r1, r2, r3.
Nevertheless the inequality (3) can be reduced to

2r1r2((1− γ2)r1r2 + (α+ γ2)r1r3 + (γ + αγ)r2r3) > 0,

and for α+ γ2 < 0 one can easily find positive r1, r2, r3 which do not satisfy this inequality.
Indeed, one should fix some r1 and r3, and choose sufficiently small r2 > 0.

3. HYPERBOLIC GEOMETRY

In hyperbolic geometry let w23 = α, w13 = β and w12 = γ. When for lengths l12, l13, l23 one has

cosh l12 = cosh r1 cosh r2 + γ sinh r1 sinh r2, cosh l13 = cosh r1 cosh r3 + β sinh r1 sinh r3,

cosh l23 = cosh r2 cosh r3 + α sinh r2 sinh r3 (5)

Lemma 3. Assume β = γ ≥ 0 ≥ α. Then for any r1, r2, r3 ∈ R
3
+ there exists a triangle with

edges l12, l13, l23 defined by formulas (5).
Proof. It is enough to prove the inequalities l13 + l12 > l23, l13 + l23 > l12. Indeed, arguments for

l13 + l23 > l12 are easily applied for l12 + l23 > l13 by interchanging weights β and γ, and the indices 1
and 2. Since cosh t is strictly increasing for t ∈ [0,∞) one needs to prove the inequalities

cosh(l13 + l12) > cosh l23, (6)

cosh(l13 + l23) > cosh l12. (7)

We start with the inequality (6).
Expanding the lefthand side we obtain cosh l13 cosh l12 + sinh l13 sinh l12 > cosh l23. We are going to

prove stronger inequality

cosh l13 cosh l12 > cosh l23 (8)

Substitute l12, l13, l23 from (5) and reduce (8) to

(cosh r1 cosh r3 + γ sinh r1 sinh r3)(cosh r1 cosh r2 + γ sinh r1 sinh r2)

> cosh r2 cosh r3 + α sinh r2 sinh r3. (9)

Using assumption on α and γ now we obtain (9):

(cosh r1 cosh r3 + γ sinh r1 sinh r3)(cosh r1 cosh r2 + γ sinh r1 sinh r2)

≥ (cosh r1 cosh r3)(cosh r1 cosh r2) > cosh r1 cosh r3 ≥ cosh r2 cosh r3 + α sinh r2 sinh r3.

The inequality (7) is more involved. Rewrite it as

cosh l13 cosh l23 + sinh l13 sinh l23 > cosh l12. (10)

First of all we need to estimate cosh l13 cosh l23 − cosh l12:

cosh l13 cosh l23 − cosh l12 = cosh l13(cosh r2 cosh r3 + α sinh r2 sinh r3)− cosh l12

≥ cosh l13(cosh r2 cosh r3 − sinh r2 sinh r3)− cosh l12 = (cosh r1 cosh r3 + γ sinh r1 sinh r3)

× (cosh r2 cosh r3 − sinh r2 sinh r3)− (cosh r1 cosh r2 + γ sinh r1 sinh r2)

= (sinh r1 cosh r3 + γ sinh r3 cosh r1)(sinh r1 cosh r2 − cosh r1 sinh r2)

= (cosh r1 sinh r3 + γ cosh r3 sinh r1) sinh(r3 − r2). (11)

If r2 ≤ r3 then (10) clearly follows from (11). For r3 > r2 we obtain (10) from two estimates:

sinh l13 > cosh r1 sinh r3 + γ cosh r3 sinh r1, (12)

sinh l23 > | sinh(r3 − r2)|. (13)

For (12) note that

cosh2 l13 − (cosh r1 sinh r3 + γ cosh r3 sinh r1)
2 = cosh2 r1 − γ2 sinh2 r1 ≥ cosh2 r1 − sinh2 r1 = 1,
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hence cosh r1 sinh r3 + γ cosh r3 sinh r1 ≤
√

cosh2 l13 − 1 = sinh l13. Further

cosh l23 = cosh r2 cosh r3 + α sinh r2 sinh r3 ≥ cosh r2 cosh r3 − sinh r2 sinh r3 = cosh(r2 − r3).

Hence sinh l23 =
√

cosh2 l23 − 1 ≥
√

cosh2(r2 − r3)− 1 = | sinh(r2 − r3)|, and (13) is proved. �

Lemma 4. Let β ≥ 0, γ ≥ 0, and 0 > α. Assume βγ + α > 0 (or βγ + α = 0 but β �= 1 and
γ �= 1). Then for any positive r1, r2, r3 there exists a triangle with edges l12, l13, l23 defined by
formulas (5).

Proof. We need to check two inequalities

cosh(l13 + l12) > cosh l23, (14)

cosh(l13 + l23) > cosh l12. (15)

since the equality cosh(l12 + l23) > cosh l13 can be proved by the same argument as the last one.
We start with the inequality (14). As in the proof of previous Lemma 3 we are going to prove the

stronger inequality

cosh l13 cosh l12 > cosh l23. (16)

Substitute for l12, l13, l23 their expressions from (5) and reduce (16) to

(cosh r1 cosh r3 + β sinh r1 sinh r3)(cosh r1 cosh r2 + γ sinh r1 sinh r2)

> cosh r2 cosh r3 + α sinh r2 sinh r3. (17)

Using assumption on α, β and γ one has

(cosh r1 cosh r3 + β sinh r1 sinh r3)(cosh r1 cosh r2 + γ sinh r1 sinh r2)

≥ (cosh r1 cosh r3)(cosh r1 cosh r2) > cosh r2 cosh r3 ≥ cosh r2 cosh r3 + α sinh r2 sinh r3.

The inequality (15) is more difficult. Assume β ≥ γ and substitute γ for β in (15). Then the lefthand
side of the inequality decreases but is still greater than righthand side by the proof of (7), see the proof of
Lemma 3.

Now assume γ > β. Then it is enough to check the inequality (15) for γ = 1 and α = −β, which can
be written as

sinh l13 sinh l23 > cosh r1 cosh r2 + sinh r1 sinh r2

− (cosh r1 cosh r3 + β sinh r1 sinh r3)(cosh r2 cosh r3 − β sinh r2 sinh r3). (18)

The righthand side can be transformed to

A = − cosh r1 cosh r2 sinh
2 r3 + sinh r1 sinh r2(1 + β2 sinh2 r3)− β cosh r3 sinh r3(sinh(r1 − r2)).

Note that for (18) it is enough to prove stronger inequality B2 > A2, where B = sinh l13 sinh l23. Let
uj = erj , j = 1, 2, 3. Then one has

16u1u2u
2
3A = −(u21 + 1)(u22 + 1)(u23 − 1)2 + (u21 − 1)(u22 − 1)(4u23 + β2(u23 − 1)2)

+ β(u23 + 1)(u23 − 1)((u21 + 1)(u22 − 1)− (u21 − 1)(u22 + 1)).

Also one has

B2 = (cosh2 l13 − 1)(cosh2 l23 − 1) =
[(u21 + 1)(u23 + 1) + β(u21 − 1)(u23 − 1)]2 − 16u21u

2
3

16u21u
2
3

× [(u22 + 1)(u23 + 1)− β(u22 − 1)(u23 − 1)]2 − 16u22u
2
3

16u22u
2
3

.

To finish the proof one can show by cumbersome but straightforward computation that

(16u1u2u
2
3)

2(B2 −A2) = 16(1 − β2)(u21u
2
2 − 1)2u23(u

2
3 − 1)2 > 0.

�

Before we address the question (B) for the hyperbolic geometry we need to remind some useful
notions and facts. Consider on the hyperbolic plane a point P and a circle C of radius r with the center
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in the point O. Consider a geodesic line which contains P and intersects the circle in the points A and
B. The degree of the point P with respect to the circle C is degC P = d(lAP )d(lBP ). Here lMN is
the distance between points M and N of the hyperbolic plane, and d(l) = (el − 1)/(el + 1). It can be
shown that the degree degC P does not depend on the choice of the line. Hence if the distance from P to
the center of the circle C is equal to l then

degC P = d(l + r)d(l − r) =
el+r − 1

el+r + 1

el−r − 1

el−r + 1
. (19)

For circles C1 and C2 the set of all points P such that degC1
P = degC2

P is a geodesic line, which is
called the radical axis of the circles C1 and C2. For two intersecting (but not coinciding) circles C1 and
C2 the radical axis contains their common points. For any three circles the radical axes of every pair of
the circles pass through certain point. This point is called the radical center of three circles. For details
of the proofs of these results see for example [7].

It is suitable to perform calculations in the Klein model of the hyperbolic plane. Remind that in this
model the points are the points of the open unit disk Λ = {z ∈ C : |z| < 1}, lines are the chords and the
diameters of the disk Λ. The distance between two points A,B ∈ Λ is defined as one half of the logarithm
of the cross ratio:

lAB =
1

2
ln

(
B − P

B −Q
:
A− P

A−Q

)
, (20)

where P and Q are the points of intersection of the line AB and the unit circle |z| = 1 such that the order
of the points on the line AB is PABQ.

We need a particular case of this formula then A coincides with the origin (0, 0) and B = (x, 0) is a
point on the real axis. Then P = (−1, 0), Q = (1, 0), and

lAB =
1

2
ln

(
x+ 1

x− 1
:
0 + 1

0− 1

)
=

1

2
ln

1 + x

1− x
, x =

e2l − 1

e2l + 1
= tanh l. (21)

Lemma 5. Consider the circle C1 of a radius r1 with center in the origin and the circle C2 of a
radius r2 with the center at a point (x, 0). Then the radical axis of the circles C1 and C2 is given
by the equation x = p, where p = cosh r1 cosh l−cosh r2

cosh r1 sinh l .

Proof. It is clear that the radical axis is perpendicular to the real axis Ox. Hence it is enough to find
the point P = (p, 0) on the real axis such that degC1

P = degC2
P . Calculate degC1

P by formulas (21)
and (19):

degC1
P =

e
1
2
ln

(
1+p
1−p

)
+r1 − 1

e
1
2
ln

(
1+p
1−p

)
+r1 + 1

· e
1
2
ln

(
1+p
1−p

)
−r1 − 1

e
1
2
ln

(
1+p
1−p

)
−r1 + 1

=
1−

√
1− p2 cosh r1

1 +
√
1− p2 cosh r1

. (22)

Now calculate degC2
P by formulas (19) and (20):

degC2
P =

e
1
2
ln

(
1+x
1−x

· 1−p
1+p

)
+r2 − 1

e
1
2
ln

(
1+x
1−x

· 1−p
1+p

)
+r2 + 1

e
1
2
ln

(
1+x
1−x

· 1−p
1+p

)
−r2 − 1

e
1
2
ln

(
1+x
1−x

· 1−p
1+p

)
−r2 + 1

=
(1− xp)− cosh r2

√
1− x2

√
1− p2

(1− xp) + cosh r2
√
1− x2

√
1− p2

. (23)

From (22) and (23) we obtain the equation on p:

1−
√

1− p2 cosh r1

1 +
√

1− p2 cosh r1
=

(1− xp)− cosh r2
√
1− x2

√
1− p2

(1− xp) + cosh r2
√
1− x2

√
1− p2

.

From this one can deduce that p = cosh r1 cosh l−cosh r2
cosh r1 sinh l . �

Theorem 2. Assume the weights α, β and γ satisfy one of the conditions (i) all three weights
are nonnegative; (ii) two weights β and γ are nonnegative, the weight α is negative, βγ + α > 0
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(or βγ + α = 0, but β �= 1 and γ �= 1). Then (a) ∂θi
∂ri

< 0 for all i; (b)
∂θj
∂ri

> 0 for all j �= i; (c)
∂(θi+θj+θk)

∂ri
< 0 for all i.

Proof. For (c) note that ljk does not depend on ri, while ∂θj
∂ri

> 0 and ∂θk
∂ri

> 0. Hence
∂Area(�AiAjAk)

∂ri
> 0, so

∂(θi + θj + θk)

∂ri
=

∂(π −Area(�AiAjAk))

∂ri
< 0.

The statements of Lemma under assumptions (i) were proved in [6].
We address the assumptions (ii) but our arguments also apply for (i). As in proof of Lemma 1 the

inequalities (a) and (b) follow from the fact that radical center Ω of the circles C1, C2, C3 of radii r1, r2, r3
with centers at the corresponding vertices of the triangle �A1A2A3 belongs to the interior of �A1A2A3.
Hence we need to check that Ω and the vertex Ak belong to the same halfplane with respect to the line
AiAj for k = 1, 2, 3 and {i, j} = {1, 2, 3} \ {k}. We start from k = 3. In the Klein model we consider the
following configuration of points A1, A2, A3. Namely, the vertex A2 coincides with the origin, the vertex
A1 belongs to the positive direction of the Ox axis, and the vertex A3 belongs to the upper halfplane. By
Lemma 5 the radical axis of C2 and C1 is given by the equation x = p, where p = cosh r2 cosh l12−cosh r1

cosh r2 sinh l12
.

The angle ∠A1A2A3 = θ can be found from the cosine theorem: cos θ = cosh l23 cosh l12−cosh l13
sinh l12 sinh l23

.

The radical axis of the circles C2 and C3 can be obtained by rotating the line x = q, where by Lemma 5

q =
cosh r2 cosh l23 − cosh r3

cosh r2 sinh l23
,

by angle θ counterclockwise. Hence the radical axis of the circles C2 and C3 is given by the equation
x cos θ + y sin θ = q. Thus the coordinates of the radical center Ω can be found from the system of
equations x = p, x cos θ + y sin θ = q. Now it is clear that y > 0 if and only if q − p cos θ > 0.

In the inequality q − p cos θ > 0 substitute for p, q and cos θ their expressions in terms of ri, lij :

cosh r2 cosh l23 − cosh r3
cosh r2 sinh l23

− cosh r2 cosh l12 − cosh r1
cosh r2 sinh l12

cosh l23 cosh l12 − cosh l13
sinh l12 sinh l23

> 0.

Multiply by positive expression cosh r2 sinh l23 sinh
2 l12 = cosh r2 sinh l23(cosh

2 l12 − 1) and reduce the
inequality to (cosh r2 cosh l23 − cosh r3)(cosh

2 l12 − 1)− (cosh r2 cosh l12 − cosh r1)(cosh l23 cosh l12 −
cosh l13) > 0. This one can be transformed to

cosh r1(cosh l23 cosh l12 − cosh l13) + cosh r2(cosh l12 cosh l13 − cosh l23)

+ cosh r3(1 − cosh2 l12) > 0.

Using expressions (5) for l12, l13, l23 reduce the inequality to

sinh r1 sinh r2((1− γ2) cosh r3 sinh r1 sinh r2

+ (α+ βγ) cosh r2 sinh r1 sinh r3 + (β + αγ) cosh r1 sinh r2 sinh r3) > 0.

Under our restriction on α, β and γ all the summands are positive for all r1, r2, r3 ∈ R+.
The case k = 2 is similar. To be precise one needs to interchange the indices 2 and 3 in the previous

formulas.
For k = 1 we need to check the inequality p− q cos θ > 0. Substitute for p, q and cos θ their

expressions in terms of ri and lij :

cosh r2 cosh l12 − cosh r1
cosh r2 sinh l12

− cosh r2 cosh l23 − cosh r3
cosh r2 sinh l23

· cosh l12 cosh l23 − cosh l13
sinh l23 sinh l12

> 0.

Multiply it by the positive quantity cosh r2 sinh l12 sinh
2 l23 = cosh r2 sinh l12(cosh

2 l23 − 1) and reduce
the inequality to

(cosh r2 cosh l12 − cosh r1)(cosh
2 l13 − 1)− (cosh r2 cosh l23 − cosh r3)

× (cosh l23 cosh l12 − cosh l13) > 0.
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This one can be transformed to the inequality

cosh r2(cosh l23 cosh l13 − cosh l12) + cosh r3(cosh l12 cosh l23 − cosh l13)

+ cosh r1(1 − cosh2 l23) > 0.

Using expressions (5) for l12, l13, l23 reduce the inequality to

sinh r2 sinh r3((αγ + β) cosh r3 sinh r1 sinh r2

+ (αβ + γ) cosh r2 sinh r1 sinh r3 + (1− α2) cosh r1 sinh r2 sinh r3).

Under our assumptions on α, β and γ all the summands are positive for all r1, r2, r3 ∈ R+. �
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