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1. INTRODUCTION

In universal algebraic geometry some primal notions of classical algebraic geometry are applied to
arbitrary universal algebras and its varieties.

The foundations of algebraic geometry of universal algebras laid down in a series of works [1–7] by
B. Plotkin, V. Remeslennikov et al. They are connected with the ideas of the transfer of the basic concepts
and constructions of the classical algebraic geometry (see [8], for example) to arbitrary universal algebra.

The notion of algebraic set (or, as otherwise called, algebraically closed set) in a universal algebra
is one of the main concepts in the algebraic geometry of these algebras. There exist various equivalent
definitions of this notion. Let us recall some of them having the model-theoretical flavor.

Let A = 〈A;σ〉 be a universal algebra of signature σ with the base set A. Recall that B ⊆ An, where
n ∈ ω, is called an algebraic set of the algebra A if B is the set of solutions of some (possibly infinite)
system of term equations in A; i.e.

B = {a ∈ An|A |= T (a)},

where T (x) = {t1i (x) = t2i (x)|i ∈ I} and tij(x) are terms of the signature σ.

In this case, we say that B is an n-dimensional algebraic set of the algebra A. The family of all n-
dimensional algebraic sets of the algebra is a complete lattice under set-theoretical inclusion ⊆ denoted
in this paper by AlgnA.

The sequence of lattices AlgA = 〈AlgnA|n ∈ ω〉 is called the algebraic geometry of the algebra
A. We consider this sequence as a derived structure of the algebra A: similarly to the lattices SubA
(of subalgebras), ConA (of congruences), groups AutA (of automorphisms), semigroups EndA (of
endomorphisms), IsoA (inner isomorphisms), IhmA (inner homomorphisms), and so on.
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2. THE ALGEBRAIC GEOMETRY OF ALGEBRA AS ITS DERIVED STRUCTURE

Because the algebraic geometry we consider as a derived structure of algebra, then we have the
problem of determines the algebra (the functional clone, respectively) by its algebraic geometry. And
we have the classical problems of abstract and concrete descriptions of algebraic geometries of algebras
arise.

Problem 1. a) Let us consider a sequence of lattices 〈〈Dn;⊆〉|n ∈ ω〉, where Dn are some
collections of subsets of the sets An for some set A. Find necessary and sufficient conditions
for 〈〈Dn;⊆〉|n ∈ ω〉 to coincide with AlgA for some universal algebra A.

b) Let 〈Ln|n ∈ ω〉 be a sequence of complete lattices. Find some necessary and sufficient
conditions for Ln to be isomorphic to AlgnA (n ∈ ω) for some universal algebra A.

The following result gives a partial answer to the Problem 1b).
Theorem 1 [9]. For any complete lattice L there exists a universal algebra A such that

Alg1A � L.
Another natural problem regarding the algebraic sets of universal algebras is whether an algebra A is

characterized by its algebraic geometry AlgA.
Notice that the lattices AlgA are defined through the functional clone TrA of the term functions on the

base set of the algebra A (i.e., through the class of algebras rationally equivalent, in sense by A.I. Mal’cev,
to the algebra A) rather than by the collection of the signature functions of the algebra A. From this we
have the following definition [10].

Definition 1. a) For any functional clone F on the set A the algebraic geometry of the clone F is
the sequence of lattices AlgF = 〈AlgnF |n ∈ ω〉, for

AlgnF = 〈{B = {a ∈ An|t1i (a) = t2i (a), t
1
i , t

2
i ∈ Fn, i ∈ I};⊆}〉,

where Fn is the collection of the n-ary functions from F .
b) Two clones F1 and F2 on the set A are called algebraically equivalent (F1 ∼ F2) if AlgnF1 =

AlgnF2 for any n ∈ ω.
Two algebras A1 = 〈A;σ1〉 and A2 = 〈A;σ2〉 with the same base set are geometrically equivalent

if the clones of their term functions are algebraically equivalent, i.e. if AlgA1 = AlgA2.
Notice that the algebraic geometry of any functional clone F on the set A is the algebraic geometry of

the universal algebra AF = 〈A;F 〉 such that its signature functions are all the functions from F . Notice
that on any set A having more than one element there exist two different clones on A which are they are
algebraically equivalent.

Let us recall some results on relations between algebras (clones) having the same algebraic sets. First
of all, we formulate the following necessary condition for the coincidence of the algebraic geometries of
two algebras.

Theorem 2 [11]. Let universal algebras A0 = 〈A;σ0〉 and A1 = 〈A;σ1〉 with the same base set A
be such that AlgA0 = AlgA1 (and SubA0 = SubA1) then also EndA0 = EndA1 (IhmA0 = IhmA1).

Recall that Lω1ω is the generalization of the first order logic language Lωω obtained by admitting
countable conjunctions and disjunctions of sets of formulas having a common finite sets of free variables.
Let L+

ω1ω be the fragment of the language Lω1ω consisting of the formulas without implications and
negations.

Consider a formula

&
i∈I

(Φi(x1, x2, . . . xn)) → y = ti(x1, x2, . . . , xn),

where each ti is a term and Φi is a finite or countable conjunctions of term equations of the signature
σ. This formula said to be an explicit L+

ω1ω-scheme for the algebra A = 〈A;σ〉, if the formula
∀x1, x2, . . . , xn

(∨
i∈I Φi(x1, x2, . . . , xn)

)
and the formulas

∀x1, . . . , xn(Φi(x1, . . . , xn)&Φj(x1, . . . , xn) → ti(x1, . . . , xn) = tj(x1, . . . , xn))

(for any i 	= j in I) are true in the algebra A. An explicit L+
ω1ω-scheme for an algebra A is called a

positive conditional term for A [12] if the set I is finite and the formulas Φi are finite conjunctions of
term equations.
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A function f(x1, x2, . . . , xn) on the basic set A of an algebra A = 〈A;σ〉 is L+
ω1ω-definable (re-

spectively: definable by explicit L+
ω1ω-scheme) if there exists an L+

ω1ω-formula Φ(x1, x2, . . . , xn)

(respectively: there exists an explicit L+
ω1ω-scheme Φ) for the algebra A such that f(a1, a2, . . . , an) =

b ⇔ A |= Φ(a1, a2, . . . , an, b) for any a1, a2, . . . , an, b ∈ A.
The following propositions follows from Theorem 2.
Corollary 1 [11]. Suppose that algebras A0 = 〈A;σ0〉 and A1 = 〈A;σ1〉 with the same base set

are at most countable and their signatures are also at most countable. If these algebras have the
same algebraic geometry (AlgA0 = AlgA1) then σi-functions are L+

ω1ω-definable on the algebra
A1−i for i = 0, 1.

Corollary 2 [11]. Suppose that algebras A0 = 〈A;σ0〉 and A1 = 〈A;σ1〉 with the same base
set are at most countable and their signatures are also at most countable. If these algebras
have the same algebraic geometry (i.e. AlgA0 = AlgA1 and the same subalgebras lattices (i.e.
SubA0 = SubA1) then σi-functions are definable in the algebra A1−i by explicit L+

ω1ω-schemes,
for i = 0, 1. A universal algebra A = 〈A;σ〉 is called additive (respectively: an equitional domain), if
any union (respectively: any finite union) of its n-dimensional algebraic sets is also its algebraic set. For
additive algebras Corollary 2 can be specified as follows.

Corollary 3 [13]. Let A0 = 〈A;σ0〉 be an additive universal algebra. Then for any algebra A1 =
〈A;σ1〉 such that SubA1 = SubA0 the following conditions are equivalent: a) AlgA1 = AlgA0; b)
for i = 0, 1 any σi-function is defined in the algebra A1−i by some explicit L+

ω1ω-scheme.
Corollary 4 [13]. Let A0 = 〈A;σ0〉 be an infinitely generated free algebra. Then for any

universal algebra A1 = 〈A;σ1〉 such that SubA1 = SubA0 and AlgA1 = AlgA0 the algebras A0 and
A1 are rationally equivalent.

Corollary 5 [13]. Let A0 = 〈A;σ0〉 be a finite or uniformly locally finite (of finite signature)
algebra which is an equational domain. Then for any algebra A1 = 〈A;σ1〉 (of finite signature
σ1 if A is infinite) such that SubA1 = SubA0 the following conditions are equivalent: a) AlgA1 =
AlgA0; b) for i = 0, 1 any σi-function is a positive conditional term function on the algebra A1−i.
A functional cloneF on a setA is called equationally additive if the algebra AF = 〈A;F 〉 is additive.

Corollary 6 [14]. For every finite A cardinality of algebraically non-equivalent equationally
additive clones on A is finite.

3. THE ALGEBRAIC CLOSURE OPERATOR ON SUBSETS OF UNIVERSAL ALGEBRAS

The concept of algebraic set for a universal algebra A leads to the concept of algebraic closure
operator on a subset of direct powers of the set A.

Given B ⊆ An denote BA the algebraic closure of B in A, i.e. the least n-dimensional algebraic set
in A such that this set includes B. Thus, c ∈ BA for c ∈ An iff, for any termal equation t1(x) = t2(x)

such that any b ∈ B is its root, we have A |= t1(c) = t2(c). Obviously, the operator B → BA is a closure
operator on a subset of the set An. In Theorem 2 we have mentioned some relations between the
collection of algebraic sets of an algebra A and the semigroups EndA and IhmA.

Let us give a description of the algebraic closure operators B → BA on universal algebras in this
terminology. First of all, we recall the definition of the quasiorder relation �IhmA

on the base set A of a
universal algebra A = 〈A;σ〉 (see [15]). One defines a �IhmA

b for a, b ∈ A iff there exist ϕ ∈ IhmA such
that ϕ(b) = a, that is if and only if there exists an inner homomorphism ϕ of the algebra A such that this
homomorphism maps the algebra 〈b〉A onto the algebra 〈a〉A and ϕ(b) = a. Henceforth, for C ⊆ A the
subalgebra of the algebra A generated by the subset C of A is denoted by 〈C〉A and for a ∈ A the algebra
〈a〉A denotes with 〈{a}〉A.

Let us show that algebraic closure operator B → BA can be described using this quasiorder on some
extensions of the algebra A. We also define some series of quasiorders on basic sets of direct powers of
the algebra A = 〈A;σ〉. For any algebra A = 〈A;σ〉 and any natural n we define the quasiorder �IhmnA

on An as follows. One defines b �IhmnA a| for b = 〈b1, b2, . . . , bn〉, a = 〈a1, a2, . . . , an〉 ∈ An iff there
exists an inner homomorphism ϕ of the algebra A such that this homomorphism maps the algebra
〈{b1, b2, . . . , bn}〉A onto the algebra 〈{a1, a2, . . . , an}〉A in such a way that ϕ(ai) = bi for i � n.
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Let a be a tuple of elements of the algebra A. By D+
A,a(x) denote the positive diagram of the tuple a

in A, i.e. the collection of all term equations which they are true on the tuple a in the algebra A.
Obviously the following lemma holds.

Lemma. For a, b ∈ An the following conditions are equivalent: 1) b �IhmnA a; 2) A |= D+
A,a(b);

3) b ∈ {a}A.

An algebra A = 〈A;σ〉 is algebraically complete, if for any B ⊆ An there exists an element mB ∈
An such that BA = {a}A. An algebra A′ = 〈A′;σ〉 is called an n-algebraic completion of the algebra
A, if A′ is an extension of the algebra A, A′ is algebraically complete, and for any c ∈ (A′)n there exists
B ⊆ Ansuch that c = mB.

So, ifA′ = 〈A′;σ〉 is some n-algebraic completion of the algebraA = 〈A;σ〉, then AlgnA = {An ∩B|
B is some principal ideal in the quasiordered set 〈(A′)n;�IhmnA′ 〉 }. One of the examples of an n-
algebraic completion of the algebra A = 〈A;σ〉 is the algebra (An)A

n
.

We have the following assertion.
Theorem 3 [16]. Let A = 〈A;σ〉 be an algebra satisfying the following conditions: 1) its

cardinality ℵ is not less than continuum (ℵ � 2ℵ0); 2) its signature is at most countable.
Then for any natural n there exists an n-algebraic completion A′ of A such that A′ has the same
cardinality ℵ.

Notice, that the restriction ℵ � 2ℵ0 in this theorem is essential.
Let us give some criterion of n-algebraical completeness of a universal algebra. Let K be a class of

n-generated algebras of a signature σ with some fixed n-tuple 〈c1, c2, . . . , cn〉 of generators of such
algebra. By fixing n-tuple, one can consider the σ-algebras as algebras in the enriched signature
σ′ = σ ∪ 〈c1, c2, . . . , cn〉. The pseudo K-direct product of algebras Ai = 〈Ai, σi〉 in K (i ∈ I) is the
σ′-algebra A = 〈A;σ′〉 in K. We denote this as (A = P

i∈I
KAi) such that the following conditions hold:

(1) There exist homomorphisms πi from the algebra A onto the algebras Ai for i ∈ I.
(2) For any algebra B in K and any homomorphisms ϕi from B onto Ai, where i ∈ I there exists a

homomorphism ψ from B onto A such that πiψ = φi.
All these homomorphisms are homomorphisms in the signature σ′.
For an algebra A = 〈A;σ〉 let σ′ be an enrichment of σ by fixing of its generators. By SubngA denote

the class of all n-generated subalgebras of A in the signature σ′. We have the following criterion of
n-algebraical completeness of universal algebras.

Theorem 4 [16]. The algebra A is n-algebraically complete if and only if the class SubngA is
closed which relative to pseudodirect products.

Let us move to a study of �Ihm on A itself.
Definition 2. The quasiorder � on a set A is called Ihm-admissible (Ihm-forbidden, respec-

tively) if there exists a universal algebra A = 〈A;σ〉 such that the quasiorder � coincides with the
quasiorder �IhmA (if for any algebra A = 〈A;σ〉 its quasiorder �IhmA differs from the quasiorder
�, respectively).

The quasiorder set 〈A;�IhmA〉 is a derived structure for the algebra A = 〈A;σ〉. So, natural problems
of concrete and abstract descriptions of such quasiorders arise. The first problem is if there exist Ihm-
admissible and Ihm-forbidden quasiorders on various sets A. In the case of Ihm-admissible quasiorders
for any set this problem can be solved trivially while the case of Ihm-forbidden quasiorders is much more
complicated. We formulate here some results for this problem.

First of all, let us observe that any quasiorder on a set of cardinality at most three is Ihm-admissible.
Theorem 5 [17]. On any set of cardinality at least four there exists an Ihm-forbidden

quasiorder..
Theorem 6 [17]. a) For any lower semilattice 〈A;�〉 the quasiorder � is Ihm-admissible; b)

Any linear quasiorder is Ihm-admissible; c) The direct product of Ihm-admissible sets is an
Ihm-admissible quasiordered set; d) The class of Ihm-admissible quasiordered sets is closed
under ultraproducts.
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Corollary 7 [17]. Any quasiorder can be embedded in some Ihm-admissible quasiorder. Let us
formulate some results on relations among lattices AlgnA, SubA, the semigroup IhmA, and other
derived structures of universal algebras.

Proposition 1 [18]. a) There exist universal algebras A1 = 〈A;σ1〉 and A2 = 〈A;σ2〉 with the
same basic set A such that the quasiorders �IhmA1

and �IhmA2
coincide but the lattices Alg1A1

and Alg1A2 are different.
b) There exist universal algebras A1 = 〈A;σ1〉 and A2 = 〈A;σ2〉 with the same basic set A such

that the quasiorders �IhmA1
and �IhmA2

coincide but the lattices SubA1 and SubA2 are different.
c) There exist universal algebras A1 = 〈A;σ1〉 and A2 = 〈A;σ2〉 with the same basic set A such

that the quasiorders �IhmA1
and �IhmA2

coincide, the lattices SubA1 and SubA2 coincide but the
semigroups IhmA1 and IhmA2 are different.
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