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Abstract—It is well-known that the constructions and classification of non-Desarguesian projec-
tive planes are closely connected with ones for quasifields. We consider the problems on structure
of finite quasifields and semifields: automorphisms and autotopisms, maximal subfields and their
orders, the spectrum of orders of non-zero elements and hypotheses about generated subsets of the
multiplicative loop.
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1. INTRODUCTION

The failure from properties of commutativity and associativity of fields leads to concept of semifield
(or quasitelo , by Kurosh [1, II.6.1]). It is a (simple) ring, where non-zero elements form a multiplicative
loop, i.e., a group without property of associativity. The weakening also of two-sided distributivity to
one-sided one gives a general concept of quasifield .

The investigations of quasifields had been more century ago when Veblen, Maclagan-Wedderburn [2]
and Dickson [3] used quasifields in the constructions of projective translation planes. Also, this plane is
Desarguesian iff its coordinatizating quasifield is a field.

The investigations of problems of construction and classification of projective planes and quasifields
from 1960s (Kleinfeld [4], Knuth [5, 6], etc) usually use computer calculations. The development to 2007
is reflected by Johnson, Jha, Biliotti [7] in Handbook (861 pages). Note that the structure of even known
proper (or not being a field) finite semifields is poorly studied.

We discuss certain problems on structure of finite quasifields and semifields in next section. Closely
related constructions of projective translation planes and their coordinatizing quasifields are considered
in section § 4. Further we consider some results.

2. SOME REMARKS AND QUESTIONS

Recall that the groupoid L with binary operation · is called a quasigroup, if for all a, b ∈ L any
equation ax = b or xa = b is uniquely solvable in L. A quasigroup is a loop, if it has an identity e
(zero 0 in the additive terminology). Thus, the group is an associative loop.

Definition 1. The finite set Q with binary operations of addition + and multiplication · is
called a right quasifield, if

1) (Q,+) is an abelian group,
2) Q∗ := (Q \ {0}, ·) is a loop,
3) x0 = 0 (x ∈ Q),
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4) it is satisfied the right distributivity (y + z)x = yx+ zx (x, y, z ∈ S).
Evidently the right distributivity and 1) give the condition 0x = 0.
Analogously finite left quasifield is defined with replacement of right distributivity onto left distribu-

tivity. Further we say “quasifield” instead of “right quasifield”.
Remark 1. By Hughes, Piper [15], a system (Q,+, ·) with arbitrary Q and conditions 1)–4) is said

to be a weak quasifield and, also, a quasifield, if it is uniquely solvable in Q any equation ax = bx+ c
(a, b, c ∈ Q, a �= b). According to [15, 7.3], any finite weak quasifield is a quasifield.

We now show that a characteristic of any quasifield is always determined, similarly to fields, and if the
characteristic is positive, then the statement about minimal subfield is also satisfied.

Clearly that any quasifield Q gives a two-sided Z-module, if for any integer coefficient k ≥ 0 we set
0x := 0 = x0 and also

kx := x+ x+ ...+ x
︸ ︷︷ ︸

k times

= xk, (−k)x := −(kx) = x(−k) (x ∈ Q).

Proposition 1. Let Q be a right quasifield with the identity e. Then:
i) π : k → ke (k ∈ Z) is a homomorphism of the integer ring Z into Q and Q is a left π(Z)-

module;
ii) π(Z) � Z for p = 0, where p = char Q := char π(Z);
iii) if p > 0, then π(Z) � Zp and π(Z) is unique minimal subfield of Q.
Proof. Evidently, π preserves addition + in Q. The associativity of addition and right distributivity in

Q also give

ke ·me = k(e · (me)) = k(me) = (km)e (k,m ∈ Z).

Thus, π is a homomorphism of ring Z into Q. Since any quasifield has no zero-divisors we obtain that
π(Z) is a domain.

Taking into account the equalities me · x = m(ex) = mx we have

(ke) · (me · x) = k(e · (me · x)) = (km)x = (ke ·me) · x,
me · (x+ y) = m(x+ y) = mx+my = (me · x) + (me · y).

It follows that Q is a left π(Z)-module. Clearly, if π is an isomorphism, then π(Z) � Z. Let Ker(π) �= 0.
Then π(Z) is a finite domain and therefore π(Z) � Zp for p := char π(Z) > 0. �

Since any semifield are a right and left quasifield, we obtain
Corollary 1. The center of any semifield contains π(Z).
It seems that this statement is not true, for instance, for near-fields, see § 8. The order of any finite

projective translation plane coincides with the order of its coordinatizing quasifield (§ 4). It follows
directly

Corollary 2. The order of any finite quasifield and hence the order of any finite projective
translation plane equals to a prime number degree.

It is well-known that all quasifield of even orders 2, 4 and 8 are the fields. The proper quasifield of
order p2 for prime p > 2 is constructed by Dickson (1906, [3]). According to Knuth [5], it is true

Theorem 1. The proper semifield of order pn for a prime p exists if and only if n ≥ 3 and
pn ≥ 16.

Let L be a multiplicative loop. A product of m its multipliers is said to be m-th degree of fixed
element v, if every multiplier coincides with v. The smallest integer m ≥ 1 such that there exists m-th
degree of v, which is equal to the identity, is called the order of v and denoted by |v|. The set of orders of
all elements is called a spectrum of loop L.

Analogously, using the right-ordered and the left-ordered m-th degrees

vm) = vm−1) · v, v(m = v · v(m−1, v1) = v = v(1,

we define right order |v|r and left order |v|l of v and, also, right and left spectra of L, respectively.
The following problems for finite proper quasifields were presented in 2013 by first author at research

seminar of chair of algebra of Moscow State University and in [11, 14].
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(A) Enumerate maximal subfields and their possible orders.
(B) Find the finite quasifields S with not-one-generated loop S∗.

Hypotheses: the loop of any finite semifield is one-generated.
(C) What loop spectra S∗ of finite semifields and quasifields are possible?
(D) Find the automorphism group AutS.
Note that hypotheses (B) is more weak than well-known Wene’s hypotheses (1991): any finite

semifield is right-primitive.
A semifield S and multiplicative loop S∗ are called right-primitive, if all elements of loop S∗ are

the right-ordered degrees of fixed element (in other words, there exists an element v ∈ S∗ such that
|v|r = |S∗|).

Wene’s hypotheses was refuted by Rúa [9] in 2004.
Clearly that complete classification of quasifields or semifields means classification up to isomor-

phisms. On the other hand, classification of their up to isotopisms (see § 4) is important for classification
of projective translation planes. It is shown by the following theorem of Albert [18].

Theorem 2. Projective semifield planes are isomorphic if and only if their coordinatizing
semifields are isotopic.

3. SEMIFIELDS OF ORDER 16

The proper finite semifields are completely classified only for smallest possible orders. In this section
we consider the problems (A)–(D) for semifields of smallest even order 16.

According to Kleinfeld, the number of proper semifields of order 16, up to isomorphisms, equals to
23. These semifields form two isotopic classes of 18 (Vi, 1 ≤ i ≤ 18) and 5 (T24, T25, T35, T45 and T50)
pairwise non-isomorphic semifields with the nuclei of order 2 and 4 respectively.

Up to isomorphisms and anti-isomorphisms, we restrict the list to 16 semifields. For any ring (or
quasifield) R = (R,+, ·) the opposite ring Rop = (R,+, ◦) is determined by a ◦ b = b · a (a, b ∈ R). It
is clear that the rings Rop and R are anti-isomorphic.

Theorem 3. Any proper semifield of order 16 up to isomorphisms is either one of 7 semifields
V1, V3, V4, V8, V11, V15, T25 or one of opposite semifields to them V6, V7, V5, V9, V14, V6, T50,
respectively, or one of 9 semifields V2, V10, V12, V13, V17, V18, T21, T35, T45.

Kleinfeld characterizes the Caley table of loop W ∗ for any semifield W = Vi or Tj by special
generating sequence and forms the table as a latin square. The multiplication laws for all 16 semifields
are obtained in [14, Table 3]. All above questions for semifields of order 16 are completely solved by
Kravtsova, Levchuk and Shtukkert ([12–14]).

Let M be a set of all subfields of order 4 for given semifield. Then the following Table 1 resumes
results.

The Kleinfeld method is not suitable for semifields of order more than 16. The general method to
construct quasifields and translation planes will be presented in the following section.

4. PROJECTIVE TRANSLATION PLANES AND ITS COORDINATIZING QUASIFIELDS

The constructions of quasifields and projective translation planes are closely related. According
to [10, 15], the projective plane is a set of points and lines with an incidence relation between them
such that:

—any two distinct points are incident with a unique line,
—any two distinct lines are incident with a unique point,
—there exist four points such that no three are incident with one line.
For every projective plane π a dual plane πd is determined. By definition, its points are lines of π and

its lines are points of π and, also, the point and the line are incident in πd if and only if they are incident
in π.

The number n is called an order of finite plane, if some (equivalently, every) its line is incident to
n+ 1 points. Such plane consists of n2 + n+ 1 points and so many lines (see [10, Theorem 20.1.1]).
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Table 1. The structure of non-isomorphic semifields of order 16

Semifield W |M| Spectrum Right spectrum Left spectrum |AutW |
V1 � V op

6 0 {1, 4, 5} {1, 5, 6, 15} {1, 6, 15} 1

V2 1 {1, 3, 4, 5, 6} {1, 3, 6, 15} {1, 3, 6, 15} 2

V3 � V op
7 0 {1, 4, 5, 6} {1, 5, 6, 15} {1, 5, 6, 15} 1

V4 � V op
5 1 {1, 3, 4, 5, 6} {1, 3, 6, 15} {1, 3, 5, 6, 15} 1

V8 � V op
9 2 {1, 3, 4, 5, 6} {1, 3, 6, 15} {1, 3, 5, 6, 15} 2

V10 1 {1, 3, 5, 6} {1, 3, 6, 15} {1, 3, 6, 15} 3

V11 � V op
14 1 {1, 3, 4, 5, 6} {1, 3, 5, 6, 15} {1, 3, 6, 15} 2

V12 0 {1, 4, 5, 6} {1, 5, 6, 15} {1, 5, 6, 15} 1

V13 4 {1, 3, 5} {1, 3, 15} {1, 3, 15} 6

V15 � V op
16 2 {1, 3, 4, 5} {1, 3, 6, 15} {1, 3, 6, 15} 2

V17 1 {1, 3, 4, 5, 6} {1, 3, 5, 6, 15} {1, 3, 5, 6, 15} 1

V18 2 {1, 3, 5, 6} {1, 3, 5, 6, 15} {1, 3, 5, 6, 15} 2

T24 2 {1, 3, 4, 5, 6} {1, 3, 5, 6, 15} {1, 3, 5, 6, 15} 2

T25 � T op
50 2 {1, 3, 4, 5, 6} {1, 3, 5, 6, 15} {1, 3, 6, 15} 2

T35 1 {1, 3, 4, 5, 6} {1, 3, 6, 15} {1, 3, 6, 15} 3

T45 3 {1, 3, 5} {1, 3, 5, 15} {1, 3, 5, 15} 4

By Bruck–Ryser theorem, there is no plane of order n, if n cannot be expressed as a sum of two
integer squares and n ≡ 1 or 2(mod 4).

Bijective map of points and lines of projective plane π, respectively, to points and lines of projective
plane π′ is called an isomorphism of planes (for π = π′, also automorphism or collineation), if it
preserves the incidence relation. Any collineation of projective plane π, that fixes the line l ∈ π pointwise
and the point P ∈ π linewise, is (P, l)-perspectivity.

If there exists a line l ∈ π such that for any point P ∈ l the group of (P, l)-perspectivities acts
transitively on points of affine plane π \ l, then π is called a translation plane. If dual plane πd is
translation plane too then π is a semifield plane.

Now we consider well-known coordinatization method of translation planes by quasifields using
“spread set”. Recall that the group partition is a set of its subgroups (components of partition), which
have trivial pairwise intersections and their set-theoretic union gives whole group.

Let G be abelian group with partition μ. For corresponding affine plane the points are the elements of
G and the lines are cosets on subgroups of μ and, also, the incidence is set-theoretic. For construction
of projective plane we should define singular (or infinity) point and line. We assume that the cosets
on the same subgroup intersect in the same singular point of this plane; the set of all singular points
gives a singular line.

A partition μ of additive group of 2n-dimensional linear space V over the field F is called spread
in V , if V = M ⊕N for any distinct M,N ∈ μ. Then all components are n-dimensional subspaces,
according to [16]. We get a projective translation plane μ(V ) as above. Inversely: any translation plane
is isomorphic to suitable plane μ(V ).

To construct a translation plane π of rank n over a field F we can use the n-dimensional linear space
W over F (coordinatizing set), the outer direct sum of two copies of W ,

V = W ⊕W = {(x, y) | x, y ∈ W}, and the spread μ with axes V (0) := (W, 0) and V (∞) :=
(0,W ). Then the other components of μ are

V (σ) = {(v, vσ) | v ∈ W}, σ ∈ GL(W ).
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Let θ be an bijective map from linear space W to ring M(n, F ) of all n× n-matrices over F . The
image R = θ(W ) is called a spread set, if:

1) identity and zero matrices E and O are in R,
2) R \ {O} and the matrices θ(u)− θ(v) are in GL(n, F ) for all u, v ∈ W, u �= v.
In this case we have a quasifield (W,+, ◦) with multiplication law

x ◦ y := x · θ(y) (x = (x1, x2, ..., xn), y ∈ W ).

It is well known that projective translation plane is Desarguesian if and only if its coordinatizing set is a
skewfield (a field in finite case). According to Theorem 6.1 [17], an affine plane is translation plane if and
only if it is coordinatized by quasifield. In the case of semifield it is a semifield plane.

The connection between translation planes and coordinatizing quasifields is reflected by the following
diagram of Lavrauw [27], see Table 2.

Table 2. Types of finite translation planes and their associated algebraic structures

Quasifields
Translation planes

Left quasifields
Dual translation planes

Nearfields
Nearfield planes

Left nearfields
Dual nearfield planes

Semifields
Semifield planes

SkewfieldsFields Alternative semifields
Pappian planes ⇔ Desarguesian planes ⇔ Moufang planes

Dickson–Wedderburn Artin–Zorn

Definition 2. The triple of bijective maps α, β, γ of groupoid (S; ◦) on (V ; ·) is called isotopism
if α(x ◦ y) = β(x) · γ(y) (x, y ∈ S).

The isotopism of quasifields Q and W (autotopism, if Q = W ) is a triple of isomorphisms α, β, γ of
additive group (Q,+) to (W,+), if its restrictions to the loop Q∗ is an isotopism to W ∗.

Right, middle and left nuclei Nr, Nm and Nl of semifield S are the invariants of isotopism:

Nr(S) = {k ∈ S | x ◦ (y ◦ k) = (x ◦ y) ◦ k (x, y ∈ S)},
Nm(S) = {k ∈ S | x ◦ (k ◦ y) = (x ◦ k) ◦ y (x, y ∈ S)},
Nl(S) = {k ∈ S | k ◦ (x ◦ y) = (k ◦ x) ◦ y (x, y ∈ S)}.

Kernel in quasifield Q generalizes the left nucleus of semifield:

K = {k ∈ Q | k ◦ (x ◦ y) = (k ◦ x) ◦ y, k ◦ (x+ y) = k ◦ x+ k ◦ y (x, y ∈ Q)}.

The kernel of quasifield is a skewfield, and the quasifield is a vector space over kernel. It is easy to
show that any finite quasifield can be determined as a vector space over prime subfield.

Lemma 1. Let 〈Q,+, ·〉 be a quasifield of order pn, W be n-dimensional linear space over Zp.
Then there exists such a spread set

R = {θ(w) | w ∈ W} ⊂ GLn(p) ∪ {0},
that 〈Q,+, ·〉 is isomorphic to 〈W,+, ∗〉, where x ∗ y = xθ(y), x, y ∈ W .
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5. WENE’S CONJECTURE

In 1991 Wene [8] wrote the hypotheses: any finite semifield D is right or left primitive, i.e. every
element of the loop D∗ is a the set of right- or left-ordered powers of an element in a semifield D. In
2004 Rúa [9] has indicated a counter-example to Wene’s conjecture, using Knuth’s semifield of order
32. This Knuth–Rúa’s semifield is neither right nor left primitive. The second counter-example gives a
Hentzel–Rúa’s semifield of order 64 [29], which was constructed in 2007. We consider both counter-
examples detail in §§ 6 and 7.

Now the primitivity investigations are completed for semifields of orders up to 125 (see [29] and refers
ibid). There exist only two semifields of order ≤ 125 (as above), which are neither left nor right primitive.

Note that the counter-examples of odd order are not known still.
Further in this section we consider some general known results in investigations of primitivity. The

following definition gives its weakening.
Definition 3. Any finite semifield D, which is d-dimensional over its center Z(D), is said to be

left-ciclyc if for some element a ∈ D the semifield D has Z(D)-base {e, a, a(2, . . . , a(d−1}.
Any left-primitive semifield is also left-ciclyc [29]. Nevertheless, even known non-primitive semifields

are left-ciclyc. The investigations of primitivity are based on the properties of spread set. It is known
that for any finite semifield D with Z(D) � GF (q) and spread set Σ the characteristic polynomial for
any matrix from Σ \ {λE | λ ∈ GF (q)} has no linear factors. The following theorem gives the main tool,
which was used in [29].

Theorem 4. If D is a finite semifield of dimension d over its center Z(D) = GF (q), then w ∈ D
is a left primitive element of D iff the characteristic polynomial of a linear map Lw : D → D,
given by Lw(x) = wx, is an irreducible primitive polynomial of degree d over Z(D).

Some conditions from [9] and [30] for primitivity of semifields gives
Theorem 5. Let S be a semifield, which is n-dimensional over its center GF (q). Then S is left

and right primitive, if either n = 3 or n is prime and q is large enough.
Cordero and Jha ([28] and [31]) consider the problem of existence of non-primitive quasifields and

geometric conditions for primitivity.
Lemma 2. A non-primitive quasifield of square order q2 exists iff q > 4.
Lemma 3. For all sufficiently large primes p, the semifields coordinatizing a semifield plane Π

of order p5 are all primitive (right and left) if Π does not contain any proper subplane Π0 of order
> p.

6. SEMIFIELDS OF ORDER 32 AND KNUTH–RÚA’S COUNTER-EXAMPLE

The Knuth–Rúa semifield � of order 32 with the identity x(22 = x is commutative and presents
the first counter-example to Wene’s hypotheses of primitivity for finite semifields. We describe its
automorphisms.

Theorem 6. The automorphism group Aut� of Knuth–Rúa semifield � is a cyclic group of
order 5 and the set � \ {0, e} is an union of six disjoint orbits under Aut�.

The problems (A)–(C) for semifield � are solved in ([24, 14]).
Theorem 7. The loop �∗ of Knuth–Rúa semifield � of order 32 is generated by any non-

identity element. Its spectrum is {1, 5, 6, 7, 8, 10} and right and, also, left spectra are {1, 21}.
Up to isomorphism, there are 2501 proper semifields of order 32; they form 6 isotopic classes

corresponding to six pairwise nonisomorphic planes π(i) (0 ≤ i ≤ 5). The following Table 3 [9] reflects
other information.

Let’s consider as [24] the spread sets of non-isomorphic semifield planes from [20]. The correspon-
dent coordinatizing semifields Pj (1 ≤ j ≤ 5), up to isotopisms, exhauste all proper semifields of order
32. Their structure is determined by following theorems which are proved in [24].

Theorem 8. For any semifields Pi, 1 ≤ i ≤ 4, the subfield of order 2 is a maximal subfield. The
loop P ∗

i is generated by any non-identity element, and the spectrum of loop is {1, 4, 5, 6, 7, 8} for
i = 3, or {1, 5, 6, 7, 8, 9} for i = 4 or {1, 4, 5, 6, 7} for i = 1, 2.
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Table 3. Isomorphic classes of semifields of order 32

Plane π(0) π(1) π(2) π(3) π(4) π(5)

Left and right primitive 1 961 961 180 186 186

Only left primitive 0 0 0 6 0 7

Only right primitive 0 0 0 6 7 0

Neither L. nor R. prim. 0 0 0 1 0 0

According to [9] there exists a semifield of order 32 with a subfield of order 4. By Theorem 7, the prime
subfield of Knuth–Rúa semifield is unique its subfield. Evidently that order of any finite semifield equals
to some powers of right and left nuclei orders. So the nuclei of semifield of order 32 are necessary prime
subfield. Nevertheless such semifields can contain a subfield of order 4.

Theorem 9. The semifield P5 contains the subfield H of order 4, that is unique maximal
subfield. Each element from P5 \H is of order > 3 and generates the loop P ∗

5 , the spectrum of
the loop is {1, 3, 4, 5, 6, 7, 8}.

7. HENTZEL–RÚA SEMIFIELD OF ORDER 64

In 2007 Rúa and Hentzel has indicated [29] the second counter-example to Wene’s conjecture. The
Hentzel–Rúa semifield is the unique semifield of order 64 which is neither left nor right primitive. By [29],
there exist also 35 semifields of order 64 that are not left-primitive but are right-primitive.

Now we consider a structure of Hentzel–Rúa semifield. Let M(6, 2) be the ring of all 6× 6-matrices
over Z2 and let W be a 6-dimensional linear space over Z2, W = {x = (x1, . . . , x6) | xi ∈ Z2, i =
1, . . . , 6}. We define the map θ : W → M(6, 2) by the rule θ(x) = x1A1 + · · ·+ x6A6, x ∈ W, where
matrices A1, A2, . . . , A6 ∈ GL6(2) are determined in [29]. Then we obtain a bijection θ from W into
GL6(2) ∪ {0} and R = {θ(x) | x ∈ W} is a spread set. It seems we get a semifield 〈W,+, ∗〉 of order 64
(the Hentzel–Rúa semifield H�), defining the multiplication ∗ on W by the rule

x ∗ y = x · θ(y) = x

6
∑

i=1

yiAi.

The vector e = (1, 0, . . . , 0) is an identity in this semifield.
We obtain the following description of its automorphisms and maximal subfields.
Theorem 10. The automorphism group of Hentzel–Rúa semifield H� is isomorphic to the

symmetric group S3 and hence has exactly three involution automorphisms.
Theorem 11. The semifield H� contains exactly six maximal subfields:
5 subfields of order 8, three from them are stabilizators of different involution automorphisms;
the unique subfield of order 4, which is a stabilizator of automorphism of order 3.
We introduce the following subsets for the description of spectra:

K(m,n, k) = {x ∈ H� | |x|l = m, |x|r = n, |x| = k}, m, n, k ∈ N.

It was shown that K(7, 7, 7) ∪ {0, e} is an union of all subfields of order 8. Evidently, that K(3, 3, 3) ∪
{0, e} is a subfield of order 4. Moreover,

|K(6, 6, 6)| = 12, |K(7, 7, 6)| = 6, |K(12, 12, 7)| = 6, |K(15, 15, 5)| = 6,

and also we have
H�∗ = K(1, 1, 1) ∪K(3, 3, 3) ∪K(7, 7, 7) ∪K(6, 6, 6) ∪K(7, 7, 6) ∪K(12, 12, 7) ∪K(15, 15, 5).

Using these equalities we show that the loop H�∗ is one-generated.
Lemma 4. For any n ≥ 10 the loop H�∗ is an union of all n-th degrees of any element

x ∈ K(6, 6, 6) ∪K(7, 7, 6) ∪K(12, 12, 7) ∪K(15, 15, 5).
Exacting this statement, we find all spectra.
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Theorem 12. The spectrum of the loop H�∗ is {1, 3, 5, 6, 7}. The left and right spectra coincide
with {1, 3, 6, 7, 12, 15}.

Thus, the semifield H� has no elements with left or right order 63 = |H�| − 1, and hence it is not
primitive.

8. SOME LEMMAS AND QUASIFIELDS WITH ASSOCIATIVE POWERS
It is easy to show that the orders of elements of any finite loop are also finite.
Lemma 5. The order of finite loop is not less than order of any its element.
Proof. The proof of order boundedness of any element v from finite loop L = (L, ◦) uses right-ordered

and left-ordered powers. It is clear that such the powers are no more than |L| pairwise distinct elements.
Choose the sequence e, v1), v2), · · · , vm), that contains two equal elements with minimal m ≥ 1.

Evidently that vm) = vj) for some j, 0 ≤ j < m. If j > 0 that both elements vm−1) and vj−1) are the
solutions of the equation y ◦ v = vj) in a loop L and so are equal, that contradicts to choice of m. Hence,
j = 0 and vm) = e. From the proved we have

|v| ≤ |v|r ≤ |L|, |v| ≤ |v|l ≤ |L|.
�

Lemma 6. Let α be m-th power of an element v from commutative quasigroup. If α contains v2

as a sub-product no more an once, then α = v(m.
Proof. Let’s suppose that m ≥ 3 (the case m ≤ 2 is trivial). By induction, the lemma is proved for

k-th powers for any k. Using commutativity, we can suppose also that all multiplications of v2 in α are
only from the right. Then the minimal sub-product in α that contains v2 and is not v2 is of a form v3;
else v2 is in α more than once. Analogously, the next minimal sub-product in α equals to v4. So we get
the equality α = v(m. �

Lemma 7. Any power > 1 of an element v from commutative quasigroup is a product, with
suitable positioning of brackets, of elements v(m, m ≥ 2, and, possible, of products at least two
such factors to v.

The quasifields with associative powers are the most studied. First of all it is alternative semifield. In
a finite case it is a field, according Artin.

In 1952 Albert [34] proved the following theorem.
Theorem 13. Any finite semifield with associative powers of characteristic p �= 2, the center of

which contains more than 5 elements, is a finite field.
The associative quasifield is called nearfield. In 1936 Zassenhaus [41] described all finite nearfields.

They are exhausted by Dickson nearfields and 7 exceptional Zassenhaus nearfields of order p2 for prime
p = 5, 7, 11, 23, 29 and 59 (see also Hall [10, Theorem 20.7.2]).

The known description of sub-nearfields for finite nearfield is considerably transferred from the
description of subfields for finite field (see Dancs [35]). It is easy to prove

Lemma 8. A nearfield Q is a finite field if its loop Q∗ is one-generated.
In connection with the statements of Proposition 1 (i) and Corollary 1 we note that the center even of

finite nearfield is not necessary a field.
Remark 1. Let N be the exceptional Zassenhaus nearfield of order 25 [10, page 420]. Then the loop

N∗ is isomorphic to the group SL(2, 3) with the center of order 2. Therefore the center of nearfield N
equals {0, e,−e} and coincides no prime subfield of N .

The projective plane that is coordinatized by nearfield is called a nearfield plane. We now consider
more wide class of translation planes which are coordinatized by Moufang quasifield, i.e., the quasifield
with Moufang loop (cf. [10, Theorem 20.5.3]). The loop M is called Moufang loop if for all x, y, z ∈ M
the following holds:

(xy)(zx) = (x(yz))x, ((xy)x)z = x(y(xz)), x(y(zy)) = ((xy)z)y.

The Moufang loops of order less than 32 were described by Chein in 1974, [33]. Some group-
theoretic theorems (Lagrange, Sylow and Hall theorems) are transferred to Moufang loops (Grishkov,
Zavarnitsyn, 2005–2013, [36–38]; Gagola, 2010, [39]). See also Liebeck, 1987 [40]. It is possible to
use these results for classification of certain Moufang quasifields.
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9. QUASIFIELDS OF ORDERS 16, 32 AND 81

According to Dempwolff and Reifart (1983, [19]), the number of all non-desarguesian translation
planes of order 16 equals to 7. Its spread sets allow to construct the representatives of quasifields isotopic
classes.

For correspondent representatives Qj , 1 ≤ j ≤ 5, of isotopic classes without semifields the next
theorem is proved [24].

Theorem 14. Any quasifield Qj , j = 1, 2, 3, is a set-theoretic union of 7 maximal subfields of
order 4 and all its spectra coincide with {1, 3}.

Theorem 15. For the quasifield Q4 the kernel is unique maximal subfield of order 4. The
quasifield Q5 contains 3 maximal subfields of order 4 and its kernel is of order 2. The loop Q∗

j ,
j = 4, 5, is generated by any element which is not from maximal subfields, and all its spectra are
{1, 3, 5}.

Knuth was constructed (see [6]) the projective planes π(i) (1 ≤ i ≤ 5) of order 32 and was proved
that these planes exhauste, up to isomorphisms, all non-desarguesian semifield planes of order 32.

So the proper semifields of order 32 are determined, up to isotopisms, as corresponding coordinatizing
sets Pj (1 ≤ j ≤ 5) (the semifields of order 32 are classified also by Walker (1962, [23])). The structure
of these semifields are determined by next two theorems [24].

Theorem 16. The semifield P5 contains the subfield H of order 4, that is a unique maximal
subfield. Any element from P5 \H generates the loop P ∗

5 , the element order is more than 3, the
loop spectrum is {1, 3, 4, 5, 6, 7, 8}.

Theorem 17. Any semifield Pi, 1 ≤ i ≤ 4, contains only minimal subfield. The loop P ∗
i is gen-

erated by any non-identity element, the loop spectrum is {1, 4, 5, 6, 7, 8} for i = 3, {1, 5, 6, 7, 8, 9}
for i = 4 and {1, 4, 5, 6, 7} for i = 1, 2.

The classification of translation planes of order 32 has been completed by Dempwolff and Rockenfeller
in 2011 (see [20, 22]).

Up to isomorphisms, except 6 semifield planes (with Desarguesian plane) there exist exactly 3
translation non-semifield planes of order 32. Using their spread sets from [20], we can construct the
coordinatizing quasifields Qi, i = 1, 2, 3. Their structure is described in [14].

Theorem 18. For quasifields Qi (i = 1, 2, 3) the prime subfield is maximal, the loop Q∗
i is right-

primitive, its spectrum is {1, 4, 5, 6, 7}.
Further we consider the semifields that coordinatize the semifield planes of order 81 admitting a Baer

involution.
Definition 4. The collineation of finite projective plane π is said to be Baer collineation if it

fixes pointwise the subplane π0 of order |π0| =
√

|π|.
Let π be a semifield plane of order 81 that admit a Baer involution. Then, using [32], we can consider

coordinatizing semifield W as a 4-dimensional vector space over Z3 and spread set in GL4(3) ∪ {0}:

R =

⎧

⎨

⎩

⎛

⎝

m(U) f(V )

V U

⎞

⎠

∣

∣

∣

∣

∣

∣

U, V ∈ K

⎫

⎬

⎭

.

Here K is the field of order 9 in GL2(3) ∪ {0},

K =

⎧

⎨

⎩

U = u1

⎛

⎝

1 1

1 0

⎞

⎠+ u2

⎛

⎝

1 0

0 1

⎞

⎠

∣

∣

∣

∣

∣

∣

u1, u2 ∈ Z3

⎫

⎬

⎭

,

m, f are injective maps from K to GL2(3) ∪ {0}, m(E) = E, f(E) �= E.
Computer calculations lead to construction of 106 semifield planes of order 81 with Baer involution.

Next considerations of isomorphisms give the result:
Theorem 19. There exist exactly 8, up to isomorphisms, non-desarguesian semifield planes of

order 81, which admit a Baer involution in translation complement.
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Table 4. The structure of non-isotopic semifields of order 81, that admit automorphism of order 2

Semifield W |Nl| Spectrum Left spectrum

W1 3 {1, 2, 4, 5, 6, 7, 8} {1, 2, 4, 8, 16, 40, 80}
W2 3 {1, 2, 4, 5, 6, 7, 8} {1, 2, 4, 5, 8, 10, 16, 20, 40, 80}
W3 3 {1, 2, 4, 6, 7, 8} {1, 2, 4, 8, 16, 40, 80}
W4 3 {1, 2, 4, 5, 6, 7, 8, 9, 10} {1, 2, 4, 8, 16, 80}
W5 9 {1, 2, 4, 5, 6, 7, 8} {1, 2, 4, 8, 16, 40, 80}
W6 9 {1, 2, 4, 6, 7, 8} {1, 2, 4, 8, 16, 80}
W7 9 {1, 2, 4, 6, 8, 9, 13} {1, 2, 4, 8, 16, 40, 80}
W8 9 {1, 2, 4, 6, 7, 8} {1, 2, 4, 8, 16, 40, 80}

The structure of correspondent coordinatizing semifields Wi, i = 1, . . . , 8, is determined. The results
are summarized by Table 4.

Lemma 9. Any semifield Wi admits an automorphism of order 2 and contains 1 or 3 maximal
subfields of order 9. The loop W ∗

i is left- and right-primitive, it contains a subloop of order 16
and 1 or 3 subgroup of order 4.

Lemma 10. The semifields W3 and W8 contains exactly three subfields of order 9, another
semifields contain unique subfield of order 9. Tne order of automorphism group Aut W equals to
8 for W8, 2 for W1 and W3 and 4 for other semifields.
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16. J. Andre, “Über nicht-Desarguesche Ebenen mit transitiver Translationgruppe,” Math. Z. 60, 156–186
(1954).

17. M. Kallaher, Affine Planes with Transitive Collineation Groups (North-Holland, Amsterdam, 1982).
18. A. A. Albert, “Finite division algebras and finite planes,” Proc. Symp. Appl. Math. 10, 53–70 (1960).
19. U. Dempwolff and A. Reifart, “The classification of the translation planes of order 16, Part I,” Geom. Dedic.

15, 137–153 (1983).
20. U. Dempwolff, File of Translation Planes of Small Order. http://www.mathematik.uni-

kl.de/∼dempw/dempw−Plane.html.
21. The Kourovka Notebook, Unsolved Problems in Group Theory, 15th ed. (Novosib. Inst. Mat. SO RAN,

Novosibirsk, 1992) [in Russian].
22. R. Rockenfeller, “Translationsebenen der Ordnung 32,” Diploma Thesis (FB Mathematik, Univ. of Kaiser-

slautern, 2011).
23. R. J. Walker, “Determination of division algebras with 32 Elements,” in Proceedings of the 15th Symposium

on Applied Mathematics (Am. Math. Soc., 1962), pp. 83–85.
24. P. K. Shtukkert, “Quasifields and translation planes of smallest even order,” Byull. Irkutsk Univ. 7, 144–159

(2014).
25. G. P. Nagy, “Linear groups as right multiplication groups of quasifields,” arXiv: 1210.1652v1 [math.CO]

(2012).
26. G. Menichetti, “On a Kaplansky conjecture concerning three-dimensional division algebras over a finite

field,” J. Algebra 47, 400–410 (1977).
27. M. Lavrauw, “Finite semifields and nonsingular tensors,” Designs, Codes Cryptogr. 68, 205–227 (2013).
28. M. Cordero and V. Jha, “On the multiplicative structure of quasifields and semifields: cyclic and acyclic

loops,” Note Mat. 29, 45–59 (2009).
29. I. R. Hentzel and I. F. Rua, “Primitivity of Finite Semifields with 64 and 81 elements,” Int. J. Algebra Comput.

17, 1411–1429 (2007).
30. R. Gow and J. Sheekey, “On primitive elements in finite semifields,” Finite Fields Appl. 17, 194–204 (2011).
31. M. Cordero and V. Jha, “Primitive semifields and fractional planes of order q5,” Rend. Mat., Ser. VII 30, 1–21

(2010).
32. O. V. Kravtsova, “Semifield planes of odd order that admit the autotopism subgroup isomorphic to A4,” Russ.

Math. (Izv. VUZ), No. 9, 10–25 (2016).
33. O. Chein, “Moufang loops of small order,” Trans. Am. Math. Soc. 188 (2), 31–51 (1974).
34. A. A. Albert, “On nonassociative division algebras,” Trans. Am. Math. Soc. 72, 296–309 (1952).
35. S. Dancs, “The sub-near-field structure of finite near-fields,” Bull. Austral. Math. Soc. 5, 275–280 (1971).
36. A. N. Grishkov and A. V. Zavarnitsyn, “Lagrange’s theorem for Moufang loops,” Math. Proc. Phil. Soc. 139,

41–57 (2005).
37. A. N. Grishkov and A. V. Zavarnitsyn, “Sylow’s theorems for Moufang loops,” J. Algebra 321, 1813–1825

(2009).
38. A. N. Grishkov and A. V. Zavarnitsyn, “Abelian-by-cyclic Moufang loops,” Comm. Algebra 41, 2242–2253

(2013).
39. W. S. M. Gagola, “Hall’s theorem for Moufang loops,” J. Algebra 323, 3252–3262 (2010).
40. M. Liebeck, “The classification of finite simple Moufang loops,” Math. Proc. Phil. Soc. 102, 33–47 (1987).
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