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1. INTRODUCTION. FORMULATION OF THE RESULTS

A complex-valued function f : Rm → C is said to be positive definite on R
m (f ∈ Φ(Rm)) if the

inequality
n∑

k,j=1

ckcjf(xk − xj) � 0 is satisfied for any finite systems of complex numbers {ck}nk=1 ⊂ C

and points {xk}nk=1 ⊂ R
m. A real-valued and continuous functionϕ on [0,+∞) is called a radial positive

definite function on R
m, if ϕ(||x||) is positive definite on R

m (we denote this class by Φm). We stick to
the standard notation for the inner product (u, v) = u1v1 + . . .+ umvm of two vectors u = (u1, . . . , um)

and u = (v1, . . . , vm) in R
m, and ||u|| =

√
(u, v) for the Euclidean norm of u.

In this paper, we study the problems of positive definiteness and smoothness at zero for the linear
combinations of functions hμ,ν being introduced by Zastavnyi (2002) [34, 33] and defined as follows:
hμ,ν(x) := 0 for |x| ≥ 1 and

hμ,ν(x) :=

1∫

|x|

(2u− |x|)gμ,ν(u)gμ,ν(u− |x|)du, |x| < 1, (1)

where gμ,ν(u) := uμ−1(1− u2)ν−1, u ∈ (0, 1), μ, ν ∈ C+, and C+ := {z ∈ C : Re z > 0}. The family
of these functions is a subfamily of Buhmann’s functions (2000) and contains the families of functions
introduced by Trigub (1987) and Wendland (1995) (for more details see section 2). Functions of the
form (1) arise in the study of exponential type entire functions without zeros in the lower half-plane [36,
Proposition 5.1].

Problem 1. Let μ > 0, ν > 1/2, μ+ ν > 1. Then hμ,ν ∈ C(R) (see [34, 33]). Let ε > 0 and

fμ,ν,ε,β1,β2(x) := βε
2hμ,ν

(
x

β2

)

− βε
1hμ,ν

(
x

β1

)

, x ∈ R. (2)
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ON POSITIVE DEFINITENESS 387

Let m ∈ N. Show the conditions on (ε, μ, ν) such that, for any β2 > β1 > 0, we have

fμ,ν,ε,β1,β2 ∈ Φm. (3)

A similar problem for the function h1,1(x) = (1− |x|)+ was considered by Ramachandran [17] and
Gneiting [11, p. 362].

The main results of our paper are as follows.
Theorem 1. The following assertions are true:
1. If (3) is true, then ε ≥ 2ν − 1.
2. If m ∈ N, ν > 1

2 , ε ≥ 2ν − 1 and μ ≥ (m− 1)/2 + ν + 3, then condition (3) is true. If, in
addition, ε = 2ν − 1, then (3) is true if and only if μ ≥ (m− 1)/2 + ν + 3.

3. Suppose that for some n = 1, 2, 3, we have ε ≥ 21−n(m+ (2ν − 1)(2n−1 + 1)), (m− 1)/2 +
ν + 1− n > 0 and

μ− n ≥ min

{

m− 1 + 2ν + 2− 2n;max{1; m− 1

2
+ ν + 1− n}

}

.

Then, condition (3) is true.
Theorem 2. Let ν ∈ N, μ > 0, ε ∈ R, β2, β1 > 0, and β2 �= β1. Let q := min(β1, β2). Then,
1. If ε �= 2ν − 1, then fμ,ν,ε,β1,β2 ∈ C2ν−2(−q, q), and fμ,ν,ε,β1,β2 �∈ C2ν−1(−q, q).
2. If ε = 2ν − 1, μ /∈ {1, 2}, then fμ,ν,ε,β1,β2 ∈ C2ν(−q, q), and fμ,ν,ε,β1,β2 �∈ C2ν+1(−q, q).
3. If ε = 2ν − 1, μ = 1 or μ = 2, then fμ,ν,ε,β1,β2 is a even polynomial of degree at most μ+2ν − 2

on [−q, q], and therefore fμ,ν,ε,β1,β2 ∈ C∞(−q, q).
The section 5 is devoted to a discussion on the applications of positive definite functions to spatial

statistics.

2. BUHMANN FUNCTIONS. AUXILIARY FACTS AND ASSERTIONS
We denote C(Rm) the set of continuous functions on R

m, for m = 1, 2, . . .. Let δ, μ, ν ∈ C+ and
α ∈ C. Zastavnyi (2006) [35] proposed the following even functions given on R:

ϕδ,μ,ν,α(x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1∫

|x|
(s2 − x2)ν−1(1− sδ)μ−1sα−2ν+1ds, |x| < 1,

0, |x| ≥ 1.

(4)

If δ, μ, ν ∈ C+, then ϕδ,μ,ν,α ∈ C(−1, 1) ⇐⇒ α ∈ C+ (see [35, Proposition 1]) and ϕδ,μ,ν,α ∈
C(R) ⇐⇒ α, μ+ ν − 1 ∈ C+ (see [35, Theorem 1]). If δ, μ, ν, α ∈ C+, then ϕδ,μ,ν,α(0) = B(α/δ, μ)/δ.

The functions ϕδ,μ,ν,α coincide (modulo some positive factors) with the functions

φδ,�,λ,α(x) ≡ 2ϕ2δ,�+1,λ+1,2α+2(x), x ∈ R,

introduced by Martin Buhmann (2000) [5]. We thus term them Buhmann functions throughout. The
class ϕδ,μ,ν,α includes a wealth of interesting special cases. For instance, μδϕδ,μ,1,δ(x) = (1− |x|δ)μ+
and

ϕ1,μ,ν,2ν−1(x) ≡ hμ,ν(x) ≡
2ν−1Γ(ν)

μ
ψμ,ν−1(x), x ∈ R, (5)

with the functions hμ,ν (see (1)) being introduced by Zastavnyi (2002) [34, 33]. The functions ψμ,ν−1,
with μ > 0, ν ∈ N, have been introduced by Wendland (1995) [29]: for μ > 0, k ∈ Z+, we have

ψμ,0(x) := ψμ(x) := (1− |x|)μ+, ψμ,k := Ikψμ (k ∈ N),

where I(f)(x) :=
∫ +∞
|x| sf(s)ds is the Matheron’s [13] Montée operator (provided the integral is well

defined), and where Ik is the k-fold application of the operator I. Arguments in [29] and subse-
quently [12] show that Iϕ belongs to the class Φm−2 whenever ϕ ∈ Φm, for m ≥ 3. For k < 2m, the
k-fold application of the Montée operators shows that Ikϕ ∈ Φm−2k, k ∈ N.
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388 ZASTAVNYI, PORCU

Gneiting (2002) [12, Equation (17)] has proposed a generalizion of Wendland functions on
the basis of the fractional Montée operator, which coincide with the normalized Buhmann func-
tions ϕ1,μ+1,ν,2ν(x)/ϕ1,μ+1,ν,2ν(0), μ, ν > 0, and coincide with the functions hμ,ν+1(x)/hμ,ν+1(0) ≡
ψμ,ν(x)/ψμ,ν(0) (see Equation (7)). Arguments in [5] show that Wu functions [31] and consequently
the spherical model are a special case of the Buhmann class.

For r ∈ Z+ and k ∈ N, we have hr+k,r+1(x) ≡ B(r + k, 2r + 1)Ar,2k−1(x), with the splines Ar,2k−1

introduced by Trigub (1987), and we refer to [24], [25, § 6.2.13, 6.2.16, 6.3.12], [26, § 6] for their analytical
expression which is not reported here. Equation above in turn highlights the explicit connection between
Trigub splines and Wendland functions: Ar,2k−1(x) ≡ ψr+k,r(x)/ψr+k,r(0), for r ∈ Z+ and k ∈ N.

For a proof of the identities above, the reader is referred to Zastavnyi and Trigub [34, Remarks 10 and
11], to [33, Theorems 12 and 13], [35] and [37, § 4.7].

Arguments in Proposition 4 of [35] show that, for δ, μ, ν ∈ C+ and x ∈ R,

ϕ2,μ
2
,μ
2
+ν,2ν−1(x) ≡

2μ−1Γ
(μ
2

)
Γ
(μ
2 + ν

)

Γ(μ)
ϕ1,μ,ν,2ν−1(x),

2νϕδ,μ+1,ν,2ν(x) ≡ δμϕδ,μ,ν+1,2ν+δ(x), (6)

and, for μ, ν ∈ C+ and x ∈ R, we also have the obvious identities:

ϕ1,μ+1,ν,2ν(x)≡
μ

2ν
ϕ1,μ,ν+1,2ν+1(x) ≡

μ

2ν
hμ,ν+1(x) ≡ 2ν−1Γ(ν)ψμ,ν(x). (7)

For a function h defined on (0,∞) and m ∈ C, we define the Hankel transform Fm as follows:

Fm(h)(t) := t1−
m
2

∞∫

0

h(u)u
m
2 Jm

2
−1(tu)du =

∞∫

0

h(u)um−1jm
2
−1(tu)du, t > 0, (8)

where Jλ is the Bessel function of the first kind (see [27, Sec. 3.1]) and

jλ(x) :=
Jλ(x)

xλ
=

1

2λ

∞∑

k=0

1

Γ(k + λ+ 1)
·

(
−x2

4

)k

k!
, x ∈ C, λ ∈ C. (9)

Remark 1. For functions f defined on R
m, m ∈ N, the Fourier transform is given by the formula

Fm(f)(x) :=

∫

Rm

f(u)e−i(u,x)du, x ∈ R
m.

For m ∈ N the transform Fm is connected with the Fourier transforms Fm of radial functions through
the identity

Fm(h(|| · ||))(x) = (2π)
m
2 Fm(h)(||x||), x ∈ R

m.

These facts and Bochner–Khintchine theorem (see, for example [18, 20, 25]) imply that, if h is a
continuous functions on [0,∞) and

∫∞
0 tm−1|h(t)|dt < ∞, then h ∈ Φm if and only if Fm(h) is

nonnegative on the positive real line.
For δ, μ, α + 1 ∈ C+ and ν ∈ C, we define the function Iδ,μ,ν,α : R+ → C through

Iδ,μ,ν,α(t) := t−α−1−δ(μ−1)

t∫

0

(tδ − uδ)μ−1uα−ν+ 1
2Jν− 1

2
(u)du

=

1∫

0

(1− xδ)μ−1xαjν− 1
2
(tx)dx, t > 0. (10)

The following result reports succinctly a collection of useful results from [35] (Theorems 2, 3,
Proposition 4 (Assertions 1, 3) and Proposition 6).
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Theorem 3 (Zastavnyi [35]). Let the functions I and Fm as being defined through Equations
(10) and (8), respectively. Denote with I ′ the first derivative of I. Then, the following assertions
are true:

1. Let δ, μ, ν,m, α +m ∈ C+. Then Fm(ϕδ,μ,ν,α)(t) = 2ν−1Γ(ν)Iδ,μ,m−1
2

+ν,m−1+α(t). Moreover, if

n,m− n+ 2ν ∈ C+, then

Fm(ϕδ,μ,ν,α)(t) =
2

n−m
2 Γ(ν)

Γ(m−n
2 + ν)

Fn(ϕδ,μ,m−n
2

+ν,m−n+α)(t), t ≥ 0.

2. Let δ, μ, α + 1 ∈ C+ and ν ∈ C. Then

I ′δ,μ,ν,α(t) = −tIδ,μ,ν+1,α+2(t), t > 0. (11)

3. If μ, ν ∈ C+, t > 0, then

I1,μ,ν,2ν−1(t) =
2

1
2
−νΓ(μ)Γ(2ν)

Γ
(
ν + 1

2

)
Γ(μ + 2ν)

1F2

(

ν;
μ+ 2ν

2
,
μ+ 2ν + 1

2
;− t2

4

)

. (12)

4. Let δ, μ, ν ∈ C+ and α ∈ C. Then

ϕδ,μ,ν+1,α+2(t) = 2ν

∞∫

|t|

uϕδ,μ,ν,α(u)du, t �= 0. (13)

5. Let δ, μ, ν + 1
2 , α+ 1 > 0 and let L ∈ Z+. Then the following equality holds as t → +∞:

δ

2
1
2
−νΓ(μ)

· Iδ,μ,ν,α(t) =
2νδμ√
πtμ+ν

{

cos
(
t− π

2
(μ+ ν)

)
+O

(
1

t

)}

+

L∑

l=0

δ(−1)l

2

Γ ((α+ 1 + δl)/2)

Γ (ν − (α+ δl)/2) Γ(μ− l)Γ(l + 1)
·
(
2

t

)α+1+δl

+ o

(
1

tα+1+δL

)

.

Another remarkable consequence of Theorem 3 is that, for μ, ν,m, 2ν − 1 +m ∈ C+,

Fm(hμ,ν)(t) = Fm(ϕ1,μ,ν,2ν−1)(t) =
2

1−m
2 Γ(ν)

Γ(m−1
2 + ν)

F1(hμ,m−1
2

+ν)(t), t ≥ 0, (14)

which in turn shows, in concert with [34, Lemma 12], that in some cases the Hankel transforms above
can be written in closed form. Specifically, we have

Fm(hμ,ν)(t) = Fm(ϕ1,μ,ν,2ν−1)(t) = 2ν−1Γ(ν)I1,μ,m−1
2

+ν,m−1+2ν−1(t)

= D(m,μ, ν) · 1F2

(
m− 1

2
+ ν;

m− 1

2
+ ν +

μ

2
,
m− 1

2
+ ν +

μ+ 1

2
;− t2

4

)

, (15)

with

D(m,μ, ν) :=
2−

m
2 Γ(ν)Γ(μ)Γ(m− 1 + 2ν)

Γ
(
m
2 + ν

)
Γ(μ+m− 1 + 2ν)

, μ, ν,m, 2ν − 1 +m ∈ C+.

For the one-dimensional Fourier transform of the function hμ,ν , we use the notation ĥμ,ν . We also
denote with L the Laplace transform operator. For μ, ν ∈ C+, arguments in Zastavnyi and Trigub [34,
Equation (44)] show that

L
(
t2ν+μ−1ĥμ,ν(t)

)
(x) :=

∞∫

0

e−txt2ν+μ−1ĥμ,ν(t)dt =
Γ2(ν)Γ(μ)22ν−1

xμ(1 + x2)ν
, x > 0. (16)
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Thus, for μ, ν,m, 2ν − 1 +m ∈ C+ and x > 0, we have

L
(
tm−1+2ν+μ−1

Fm(hμ,ν)(t)
)
(x) =

2
1−m

2 Γ(ν)

Γ(m−1
2 + ν)

L
(
tm−1+2ν+μ−1

F1(hμ,m−1
2

+ν)(t)
)
(x)

=
2

1−m
2 Γ(ν)

Γ(m−1
2 + ν)

·
Γ2(m−1

2 + ν)Γ(μ)2m−1+2ν−1

(2π)
1
2

· 1

xμ(1 + x2)
m−1

2
+ν

=
C(m,μ, ν)

xμ(1 + x2)
m−1

2
+ν

, (17)

with

C(m,μ, ν) :=
2−

m
2 Γ(ν)Γ(μ)Γ(m− 1 + 2ν)

Γ
(
m
2 + ν

) = D(m,μ, ν)Γ(μ+m− 1 + 2ν).

Remark 2. Equation (17) is the crux of the proof of the main part of Theorem 11 in [33]:
(i) If ν > 1/2 and μ ≥ max{ν, 1}, then hμ,ν ∈ Φ1. If, additionally, (μ; ν) �= (1; 1), then there

exist constants ci > 0, i = 1, 2, depending on μ and ν only, such that c1 ≤ (1 + t2)ν · ĥμ,ν(t) ≤ c2,
t ∈ R

(ii) If ν ≥ 1, then hμ,ν ∈ Φ1 ⇐⇒ μ ≥ ν.

(iii) If m ≥ 2, then hμ,ν ∈ Φm ⇐⇒ ν > 1/2 and μ ≥ m−1
2 + ν. In this case, there exist two

constants ci > 0, i = 1, 2, depending on μ, ν and m, and such that

c1 ≤ (1 + t2)
m−1

2
+ν · Fm(hμ,ν)(t) ≤ c2, t ≥ 0.

This theorem is related to the positiveness of the function I1,μ,ν,2ν−1(t) for all t > 0. Theorems on
positiveness of the functions Iδ,μ,ν,α(t) are obtained in [35, Theorems 4, 5, 6] (the well-known cases
given before Theorem 4 from [35]).

3. PROOF OF THEOREM 1

A function f : (0,∞) → R is called completely monotone if it is infinitely often differentiable and
(−1)nf (n)(x) ≥ 0, for all n ∈ Z+ and for all x > 0. The set of completely monotone functions on (0,∞)
is denoted CM .

Theorem 4 (Hausdorff–Bernstein–Widder. See, for example, [8, 18, 20, 30]). f ∈ CM if and only if

f(x) =

+∞∫

0

e−xs dμ(s), x > 0, (18)

where μ is a nonnegative Borel measure on [0,+∞) such that the integral (18) converges for all
x > 0. The measure μ is finite on [0,+∞) if and only if f(+0) < +∞.

Remark 3. It follows from Hausdorff–Bernstein–Widder theorem that if g ∈ C[0,+∞) and its
Laplace transform Lg(x) :=

∫ +∞
0 e−xsg(s) ds converges for all x > 0, then g(s) ≥ 0 for s ≥ 0 if and

only if Lg ∈ CM .
Let us start with a general assertion regarding the structure of Problem 1.
Proposition 1. The following conditions are equivalent:
1. Condition (3) is satisfied.
2. For any β2 > β1 > 0, the function t 
→ βε+m

2 Fm(hμ,ν)(β2t)− βε+m
1 Fm(hμ,ν)(β1t) is nonnega-

tive in interval (0,∞).
3. The function tε+mFm(hμ,ν)(t) = 2ν−1Γ(ν)tε+mI1,μ,m−1

2
+ν,m−1+2ν−1(t) increases in the inter-

val (0,∞).
4. The following inequality is true:

(ε+m)I1,μ,m−1
2

+ν,m−1+2ν−1(t) + tI ′
1,μ,m−1

2
+ν,m−1+2ν−1

(t) =

(ε+m)I1,μ,m−1
2

+ν,m−1+2ν−1(t)− t2I1,μ,m−1
2

+ν+1,m−1+2ν+1(t) ≥ 0, ∀t > 0
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5. Let n := m−1
2 + ν. Then, (ε+m)F1(hμ,n)(t) − t2

2nF1(hμ,n+1)(t) ≥ 0, ∀t > 0.
6. We have

L

(

t2n+μ−1
(
(ε+m)ĥμ,n(t)−

t2

2n
ĥμ,n+1(t)

))

(x)

= Γ2(n)Γ(μ)22n−1

(
ε+m

xμ(1 + x2)n
− 2n

xμ(1 + x2)n+1

)

∈ CM.

7.
ε− 2ν + 1 + (ε+m)x2

xμ(1 + x2)
m−1

2
+ν+1

∈ CM (19)

The proof is an easy consequence of Remark 1 in concert with the Hausdorff–Bernstein–Widder
theorem (see Remark 3), Theorem 3 (statements 1 and 2), and equalities (14) and (16).

Note that, if μ, ν > 0, then x−μ(1 + x2)−ν ∈ CM if and only if ĥμ,ν(t) ≥ 0 for all t > 0, if and only if
I1,μ,ν,2ν−1(t) ≥ 0 for all t > 0 (see Equations (16) and (15)).

Proposition 1 will now be combined with the following facts:
1. If ν ≥ 1, then x−μ(1 + x2)−ν ∈ CM if and only if μ ≥ ν. The sufficiency of this result can be found

in [9], and the necessity has been proved in [14], [32, Lemma 8].
2. If 0 < ν < 1, μ ≥ 1, then x−μ(1 + x2)−ν ∈ CM [14] and [36, Example 5.4], [37, § 4.7, Exam-

ple 4.7.7].
3. If ν > 0, μ ≥ 2ν, then x−μ(1 + x2)−ν ∈ CM [2].
4. If n = 1, 2, 3, then (a+ x2)/(xn(1 + x2)n) ∈ CM if and only if a ≥ 1/(2n−1 + 1) [34, § 2].
We can now combine the first three sufficient conditions above to obtain the following assertion: if

ν > 0 and μ ≥ min{2ν;max{1, ν}}, then x−μ(1 + x2)−ν ∈ CM .
The combination of these facts with Proposition 1 has just offered the proof of Theorem 1. It is only

necessary to take into account the following equations:

ε− 2ν + 1 + (ε+m)x2

xμ(1 + x2)
m−1

2
+ν+1

=
ε− 2ν + 1

xμ(1 + x2)
m−1

2
+ν+1

+
ε+m

xμ−2(1 + x2)
m−1

2
+ν+1

,

ε− 2ν + 1 + (ε+m)x2

xμ(1 + x2)
m−1

2
+ν+1

=
ε−2ν+1
ε+m + x2

xn(1 + x2)n
· ε+m

xμ−n(1 + x2)
m−1

2
+ν+1−n

.

4. PROOF OF THEOREM 2

If μ, ν > 0, then the arguments in [34, Equality (40)] show that

hμ,ν(x) = (1− x)μ+ν−1

1∫

0

tμ−1(1− t)ν−1(1− t+ (1 + t)x)ν−1dt, x ∈ (0, 1). (20)

Let ν ∈ N. Then from Proposition 1 in [35] we have that hμ,ν ∈ C2ν−2(−1, 1) and hμ,ν �∈ C2ν−1(−1, 1).
Thus, from (20) it follows that

hμ,ν(x) =

∞∑

k=0

ak(μ, ν)x
2k + |x|2ν−1

∞∑

k=0

bk(μ, ν)x
2k, |x| < 1,

b0(μ, ν) �= 0, b1(μ, ν) =
h
(2ν+1)
μ,ν (+0)

(2ν + 1)!
. (21)

From (13) we have that h
′
μ,ν(x) = −2(ν − 1)xhμ,ν−1(x) for ν ≥ 2, x > 0, and h

(k+1)
μ,ν (x) = −2(ν −

1)(xh
(k)
μ,ν−1(x) + kh

(k−1)
μ,ν−1(x)) for k ≥ 1, 0 < x < 1. From the last equation it follows that h(k+1)

μ,ν (+0) =
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−2(ν − 1)kh
(k−1)
μ,ν−1(+0) for ν ≥ 2, k ≥ 1, and for ν ≥ 2, k ≥ 2ν − 3, we have (for convenience, we

consider that 0!! := 1 and (−1)!! := 1)

h(k+1)
μ,ν (+0) = (−2)ν−1(ν − 1)! · k!!

(k − 2ν + 2)!!
h
(k−2ν+3)
μ,1 (+0). (22)

The equality (22) is true for ν = 1, k ≥ −1. It’s obvious that hμ,1(x) = (1− |x|)μ+/μ and h
(p)
μ,1(+0) =

(−1)pΓ(μ)/Γ(μ − p+ 1), p ∈ Z+. Therefore, for k ≥ ν − 1, with ν ∈ N, we have

h(2k+1)
μ,ν (+0) = (−4)ν−1(ν − 1)! · k!

(k − ν + 1)!
· h(2k−2ν+3)

μ,1 (+0)

= −(−4)ν−1(ν − 1)! · k!

(k − ν + 1)!
· Γ(μ)

Γ(μ − 2k + 2ν − 2)
;

h(2ν+1)
μ,ν (+0) = −(−4)ν−1(ν − 1)!ν!(μ − 1)(μ − 2).

On the other hand, (21) shows that, for |x| < q = min(β1, β2),

fμ,ν,ε,β1,β2(x) =

∞∑

k=0

ak(μ, ν)
(
βε−2k
2 − βε−2k

1

)
x2k

+ |x|2ν−1
∞∑

k=0

bk(μ, ν)
(
βε−2ν+1−2k
2 − βε−2ν+1−2k

1

)
x2k.

Assertions 1. and 2. are thus proved.
If, in addition, μ ∈ N, then hμ,ν is a polynomial of degree μ+ 2ν − 2 on the compact interval [0, 1]. If

μ = 1 or μ = 2, then in the second sum of (21), the terms with k ≥ 1 vanish. Therefore, if ε = 2ν − 1,
μ = 1 or μ = 2, then fμ,ν,ε,β1,β2 on the interval [−q, q] is an even polynomial of degree ≤ μ+ 2ν − 2.
Assertion 3. is proved. The proof is completed.

5. COVARIANCE FUNCTIONS

Let {Z(x),x ∈ D} be a stationary and isotropic Gaussian field observed over a bounded set D of Rm.
The assumption of Gaussianity implies that we only need focus on the first and second order moments
in order to specify the probabilistic properties of the field. If ϕ ∈ Φm with ϕ(0) = 1, then ϕ(|| · ||) is the
correlation function of some Gaussian field Z as previously defined.

Covariance functions are fundamental to geostatistics for both modeling, inference, and best linear
unbiased prediction (called kriging in the geostatistical literature). Let us define Φ∞ :=

⋂
mΦm.

Arguments in Bernstein–Widder in concert with Schoenberg [21] show that a mapping f belongs to
the class Φ∞ if and only if f(

√
·) is completely monotonic on the positive real line. This is the case for

the Matérn function (see [23], with the references therein), defined through

Mν(r) = rνKν(r), r ≥ 0, (23)

where ν > 0 is a parameter that allows to govern the differentiability at the origin, and thus the mean
square differentiability of the associated Gaussian field. Here, Kν is a modified Bessel function of order
ν. We have M1/2(r) = exp(−r) and M∞ = exp(−r2). When ν = k + 1/2, with k positive integer,
the Matérn simplifies into the product of the exponential function with polynomial of degree k, and exact
smoothness can be determined in this case. Another function in the class Φ∞ is the Dagum function [15,
3], admitting equation

Dα,β(r) = 1− rαβ

(1 + rα)β
, r ≥ 0, (24)

where the conditions on the positive parameters are shown in Berg, Porcu and Mateu [3]. This function
has been used in a number of papers devoted to statistical mechanics, and we refer the reader to [22] with
the references therein.
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The use of compactly supported covariance functions has been advocated in a number of papers, and
we refer the reader to [12], with the references therein, and to [7] for a recent effort under the framework on
multivariate Gaussian fields. Covariance functions with compact support represent the building block
for the construction of methods allowing to overcome the big data problem ([10]). The recent work
of [4] brought even more attention on the role of some classes of compactly supported covariances
for asymptotically optimal prediction on a bounded set of Rd. The Buhmann functions as defined
in Zastavnyi [35] (see also [5]) includes as special case many other classes of compactly supported
covariance functions, such as Askey [1] and Wendland [29] functions, as well as the Zastavnyi [33–
35] and Trigub [24, 25] classes. Finally, also Wu functions [31] and the celebrated spherical model [28]
are included as special cases. From the cited works it has become apparent that the smoothness at the
origin (intended as even extension) of a compactly supported and isotropic covariance function plays a
crucial role for both estimation and prediction. Wendland functions [29] have been especially popular,
being compactly supported over balls ofRd with arbitrary radii, and additionally allowing for a continuous
parameterization of differentiability at the origin, in a similar way to the Matérn family ([23]).

It should be noted that many applications of positive definite radial functions arise in applications like
Engineering and Physics, because scientists use shifted translates of them as trial functions for PDE
solving. An overview of such applications is given e.g. in Schaback and Wendland [19].
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