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Abstract—In this article, a large sample pooling procedure is considered for the reliability function
of a Weibull distribution. Asymptotic properties of shrinkage estimation procedures based on the
preliminary test are developed. It is shown that the proposed estimator has substantially smaller
asymptotic mean squared error (AMSE) than the usual maximum likelihood (ML) estimator in most
of the parameter space. Analytic AMSE expressions of the proposed estimators are obtained and the
dominance picture of the estimators is presented by comparing them. It is shown that the suggested
estimators yield a wider dominance range over the ML estimator than the usual pretest estimator and
give a meaningful size of the pretest. To appraise the small sample performance of the estimators,
detailed Monte-Carlo simulation studies are also carried out.
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1. INTRODUCTION AND PRELIMINARIES

The reliability function of a product, denoted as R(t), indicates the probability of the product’s life
exceeding t time periods. When the life time of a particular product is modeled by a two-parameter
Weibull distribution with shape parameter β > 0 and scale parameter θ > 0 having probability density
function

fX(x) =
β

θ

(x
θ

)β−1
exp

[
−
(x
θ

)β
]
, x ≥ 0,

then the product reliability function is R(t) = P (X > t) = exp
[
− (t/θ)β

]
. For one sample case, Bak-

lizi and Ahmed [1] discussed improved estimation of R(t) in the presence of uncertain prior information
wherein R(t) equals a specific value R0(t). In the present investigation, we discuss two sample version
of the problem.

Suppose a reliability engineer wishes to estimate R(t) of a product based on sample data of two
different manufacturing plants. If we assume that the samples from both plants follow a Weibull
distribution with parameters βi and θi, where i = 1, 2, then the reliability function of the product
at i-th plant is Ri(t) = exp[−(t/θi)

βi ]. Furthermore, suppose the reliability engineer suspects that
R1(t) = R2(t) and wishes to estimate R1(t) based on the two samples. For ease of notations, Ri(t)
will be denoted by γi.
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Let Xi,1,Xi,2 · · · ,Xi,ni be the pair of independent random samples available from the above Weibull
distribution. Then, the usual unrestricted estimator (UE) of γi based on ni observations is

γ̂i = exp

[
−
(
t/θ̂i

)β̂i
]
, (1)

where (β̂i, θ̂i) are the ML estimators of (βi, θi) and are numerically obtained by optimizing two score
equations.

Our primary interest is in the estimation of γ1 when it is suspected that both reliability functions may
be equal and can thus be written in the following null hypothesis:

H0 : γ1 = γ2. (2)

Under H0, the combined or restricted estimator (RE) of γ1 is

γ̂RE
1 = (n1γ̂1 + n2γ̂2)/(n1 + n2).

This estimator gives smaller quadratic risk as compared to γ̂1 when the null hypothesis is true
or nearly true, while its performance is poorer in the rest of the parameter space. In order to have
increased precision, one can use the preliminary test (PT) estimator suggested by Bancroft [2] defined
as γ̂PT

1 = γ̂RE
1 I(Tn < cn,α) + γ̂1I(Tn ≥ cn,α), where I(·) is an indicator function, Tn is an appropriate

test statistic for testing H0 in (2), and cn,α is the cut-point of the null distribution of Tn.

It has been observed that γ̂PT
1 is not the best estimator in the entire parameter space and it has a

larger size of the pretest. Following Ahmed and Khan [3], an improved estimator of γ̂PT
1 based on the

linear shrinkage methodology has been suggested here for the estimation of γ1. This estimator is termed
as shrinkage pretest (SP) and it is denoted as γ̂SP1 . Interestingly, γ̂SP1 dominates the γ̂1 over a large
portion of the parameter space and it provides a reasonable size for the preliminary test. A detailed
discussion of these estimation procedures for various settings can be found in Saleh [4] and Ahmed [5].

Our primary goal in this article is to investigate the large sample properties of γ̂SP1 over γ̂PT
1 and other

estimators. The properties of small samples are also explored with the help of Monte-Carlo simulations.
Mean squared error (MSE) criterion is selected to appraise the performance of the estimators under the
following quadratic loss function �(γ̂�1 , γ1) = (γ̂�1 − γ1)

2, where γ̂�1 is a suitable estimator of γ1. Then,
the MSE of γ̂�1 is given by MSE(γ̂�1 , γ1) = E(γ̂�1 − γ1)

2. Further, γ̂�1 will be termed as an admissible
estimator of γ1 if there exists an alternative estimator γ̂�1 such that

MSE(γ̂�1) ≤ MSE(γ̂�1) for all γ1, (3)

with strict inequality for some γ1. If instead of (3) holding for every n we use the AMSE then we require

lim
n→∞

MSE(γ̂�1) ≤ lim
n→∞

MSE(γ̂�1) for all γ1,

with strict inequality holding for some γ1 and γ̂�1 is termed as an asymptotically inadmissible estimator
of γ1.

This article is organized as follows. The proposed estimators are presented in section 2. Expressions
for the asymptotic bias (AB) and AMSE of the suggested estimators under local alternatives are given
in section 3 while the AMSE analysis is provided in section 4. Section 5 summarizes the findings of the
simulation studies while section 6 concludes the article.

2. PROPOSED ESTIMATORS

Firstly, a linear shrinkage (LS) estimator of γ1 is defined as γ̂LS1 = πγ̂RE
1 +(1−π)γ̂1, where π ∈ [0, 1]

is termed as the shrinkage coefficient reflecting the degree of confidence in the available information. If
the reliability engineer wishes to rely on the data completely and strongly believes that H0 is true, then
s/he should select π = 1. In the reviewed literature, it has been found that γ̂LS1 provides a wider range
than γ̂RE

1 in which it dominates γ̂1. This encouraged us to replace γ̂RE
1 by γ̂LS1 in γ̂PT

1 . Thus, the SP
estimator of γ1 is defined by γ̂SP1 = γ̂LS1 I(Tn < cn,α) + γ̂1I(Tn ≥ cn,α).

The following lemma, due to Bain and Engelhardt [8], will be used to obtain the test statistic Tn.
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Fig. 1. Asymptotic Bias of the estimators for α = 0.05, 0.10.

Lemma 1. For a random sample of size ni drawn from the Weibull distribution defined above,

the following asymptotic property holds
√
ni(γ̂i − γi)

d−→ N (0, τ2i ), where τ2i = (γi ln γi)
2[1.109 −

0.514 ln(− ln γi) + 0.608{ln(− ln γi)}2] and d−→ means convergence in distribution.
Now, for the preliminary test on H0 in (2), we consider the following generalized squared distance

Tn =
(γ̂2 − γ̂1)

2

τ̂2 (1/n1 + 1/n2)
, (4)

where τ̂2 = (γ̂RE
1 ln γ̂RE

1 )2[1.109 − 0.514 ln(− ln γ̂RE
1 ) + 0.608{ln(− ln γ̂RE

1 )}2]. The distribution of Tn

approaches the central chi-square distribution with 1 degree of freedom asymptotically. Thus, for a given
level of significance α (0 < α < 1) and using the null distribution of Tn one can obtain cn,α as the upper
100α% critical value.

Since the test-statistic Tn is consistent against any fixed alternative γ1 = γ2, we should specify a
reasonable sequence of local alternatives accordingly to avoid asymptotic degeneracy. Therefore, in order
to study the asymptotic properties of the estimators, we consider the following sequence {Hn} of local
alternatives Hn : γ2 = γ1 + ζ/

√
n, where ζ is a fixed real number and n = n1 + n2. With the help of the

following theorem, we have studied the asymptotic properties of the estimators under {Hn}
Theorem 1. Under local alternatives, as n → ∞ in such a way that n1/n → ω ∈ (0, 1) and

n2/n → (1− ω), the following results hold

(1)
√
n(γ̂2 − γ̂1)

d−→ N
(
ζ, τ2

ω(1−ω)

)
,

(2) Tn asymptotically follows a non-central chi-squared distribution with 1 degree of freedom
and non-centrality parameter Δ = ω(1− ω)ζ2/τ2.

3. ASYMPTOTIC RESULTS

Following Ahmed [6, 7] and by direct computations, the AB and AMSE expressions of the proposed
estimators are given in theorem 2 and 3, respectively.

Theorem 2. Under local alternatives and using theorem 1, the asymptotic bias of the listed
estimators is given as

AB(γ̂1) = asymptotic bias of {
√
ωn(γ̂1 − γ1)} = 0,

AB(γ̂RE
1 ) = asymptotic bias of {

√
ωn(γ̂RE

1 − γ1)} = τζ
√

(1− ω),

AB(γ̂LS1 ) = asymptotic bias of {
√
ωn(γ̂LS1 − γ1)} = πτζ

√
(1− ω),

AB(γ̂PT
1 ) = asymptotic bias of {

√
ωn(γ̂PT

1 − γ1)} = τζ
√

(1− ω)G3(χ
2
1,α;Δ),
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Fig. 2. Asymptotic MSE performance of the listed estimators.

AB(γ̂SP1 ) = asymptotic bias of {
√
ωn(γ̂SP1 − γ1)} = πτζ

√
(1− ω)G3(χ

2
1,α;Δ),

where Gν(·;Δ) is the cumulative distribution function of a non-central chi-squared distribution
with ν degrees of freedom and non-centrality parameter Δ.

Since AB(γ̂LS1 ) = πAB(γ̂RE
1 ) and AB(γ̂SP1 ) = πAB(γ̂PT

1 ), therefore AB(γ̂LS1 ) < AB(γ̂RE
1 ) and

AB(γ̂SP1 ) < AB(γ̂PT
1 ) for π ∈ (0, 1). Thus, the shrinkage technique worked well for the estimators

and it reduced the asymptotic bias. For various values of π and α with ω = 0.5, we have plotted AB of
the estimators in Figure 1 against different Δ.

Theoretically speaking, bias is a component of the MSE. Thus, by controlling MSE one can control
both the bias and variance of the estimators. Therefore, from this point onwards we shall only compare
the AMSE. Direct computations provide expressions for the AMSE of the estimators, which are
presented in theorem 3.

Theorem 3. Using Theorem 1 and under local alternatives, expressions of the AMSE of the
estimators are given as

AMSE(γ̂1) = asymptotic MSE of {
√
ωn(γ̂1 − γ1)} = τ2,

AMSE(γ̂RE
1 ) = asymptotic MSE of {

√
ωn(γ̂RE

1 − γ1)} = τ2 + (1− ω)τ2Δ− (1− ω)τ2,

AMSE(γ̂LS1 ) = asymptotic MSE of {
√
ωn(γ̂LS1 − γ1)} = τ2 + π2(1− ω)τ2Δ− π(2− π)(1 − ω)τ2,

AMSE(γ̂PT
1 ) = asymptotic MSE of {

√
ωn(γ̂PT

1 − γ1)}
= τ2 + (1− ω)τ2Δ{2G3(χ

2
1,α;Δ)−G5(χ

2
1,α,Δ)} − (1− ω)τ2G3(χ

2
1,α;Δ);
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AMSE(γ̂SP1 )& = asymptotic MSE of {
√
ωn(γ̂SP1 − γ1)}

= τ2 + (1− ω)τ2Δ{2πG3(χ
2
1,α;Δ)− π(2 − π)G5(χ

2
1,α,Δ)} − π(2 − π)(1 − ω)τ2G3(χ

2
1,α;Δ).

Asymptotic analysis of the MSE of the suggested estimators is studied in the following section.

4. ASYMPTOTIC ANALYSIS

We begin our analysis by noting that the AMSE of γ̂1 is a constant line, while the AMSE of γ̂RE
1

is a straight line. If the restriction γ1 = γ2 holds, then γ̂RE
1 has smaller AMSE than γ̂1. It can

be seen that AMSE(γ̂RE
1 ) ≤ AMSE(γ̂1) if 0 ≤ Δ ≤ 1 i.e., γ̂RE

1 performs better than γ̂1 whenever
Δ ∈ [0, 1]. Beyond this interval the AMSE of γ̂RE

1 increases and becomes bounded. The AMSE
function of γ̂LS1 has similar characteristics to that of γ̂RE

1 . It is worth noting that γ̂LS1 dominates γ̂1 when
0 ≤ Δ ≤ (2− π)/π. Thus, the range in which AMSE(γ̂LS1 ) ≤ AMSE(γ̂1) is wider than the range in
which AMSE(γ̂RE

1 ) ≤ AMSE(γ̂1).
In order to compare the AMSE of the shrinkage preliminary test estimator with other estimators, the

following identity will be helpful. For Δ ≥ 0 and α ∈ (0, 1)

G5(χ
2
1,α;Δ) ≤ G3(χ

2
1,α;Δ) ≤ G3(χ

2
1,α; 0) = 1− α. (5)

The left hand side of (5) approaches 0 as Δ goes to infinity. The AMSE comparison of SP and UE yields
that γ̂SP1 dominates γ̂1 whenever

Δ ≤
(2− π)G3(χ

2
1,α;Δ)

2G3(χ
2
1,α;Δ)− (2− π)G5(χ

2
1,α;Δ)

. (6)

Moreover, as α approaches one, the AMSE of SP converges to the AMSE of γ̂1. For large values
of Δ, AMSE(γ̂SP1 ) increases, reaches its maximum point after crossing the AMSE of γ̂1 and then
monotonically decreases and approaches AMSE(γ̂1). Therefore, there are points in the parameter
space where γ̂SP1 has a larger AMSE than UE and a sufficient condition for this result to occur is

Δ >
(2−π)G3(χ2

1,α;Δ)

2G3(χ2
1,α;Δ)−(2−π)G5(χ2

1,α;Δ)
. Interestingly, when α → 0 the interval in (6) becomes

0 ≤ Δ ≤ (2− π)π−1. (7)

For π = 1, it is evident that the AMSE(γ̂PT
1 ) ≤ AMSE(γ̂1) as long as 0 ≤ Δ ≤ 1, whereas

AMSE(γ̂SP1 ) ≤ AMSE(γ̂1) as long as (7) holds. Thus, the range for which SP dominates UE is
greater than the range for which PT dominates UE. Clearly, this indicates the superiority of γ̂SP1 over
γ̂PT
1 .

Next, we compare the AMSE of the restricted estimator and SP. Under the null hypothesis and for
α ∈ (0, 1) we note that

AMSE(γ̂SP1 )−AMSE(γ̂RE
1 ) = τ2(1− ω)[1 − {1 − (1− π)2}G3(χ

2
1,α; 0)] > 0,

which shows that γ̂RE
1 dominates γ̂SP1 . Alternatively, as Δ moves away from zero the AMSE of RE

becomes unbounded whereas the AMSE of SP remains bounded. Thus, the departure from the null
hypothesis is fatal to γ̂RE

1 whereas γ̂SP1 has good AMSE control.

Now, we determine the dominance region where γ̂SP1 performs better than γ̂LS1 by comparing their
AMSE. In the first place, under H0 : γ1 = γ2 and for α ∈ (0, 1) the AMSE of γ̂LS1 is τ2[1− {1− (1−
π)2}(1− ω)] and AMSE(γ̂SP1 )−AMSE(γ̂LS1 ) > 0. Thus, at Δ = 0 we conclude that γ̂LS1 performs
better than γ̂SP1 . Furthermore, we find that the AMSE of γ̂LS1 is smaller than the AMSE of γ̂SP1 when

Δ <
1−G3(χ

2
1,α;Δ)

2(2− π)−1[1−G3(χ
2
1,α;Δ)]− [1−G5(χ

2
1,α;Δ)]
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SREs of the estimators relative to γ̂1 for π = 0.50

ni Δ� γ̂RE
1 γ̂LS

1

γ̂PT
1 γ̂SP

1

α = 0.05 α = 0.10 α = 0.05 α = 0.10

20 0.00 1.9637 1.5825 1.6278 1.4593 1.4070 1.3090

0.01 1.0073 1.3300 0.9065 0.8872 1.1268 1.0589

0.02 0.6452 1.1262 0.6271 0.6582 0.9235 0.8937

0.03 0.4606 0.9610 0.4940 0.5584 0.7903 0.8006

0.04 0.3405 0.8085 0.4219 0.5126 0.7034 0.7490

0.05 0.2732 0.7096 0.4109 0.5352 0.6756 0.7548

0.10 0.1231 0.4022 0.7390 0.9017 0.8748 0.9555

0.20 0.0598 0.2201 1.0000 1.0000 1.0000 1.0000

30 0.00 2.0128 1.6061 1.7046 1.5183 1.4493 1.3441

0.01 0.7720 1.2155 0.7236 0.7354 1.0136 0.9675

0.02 0.4608 0.9594 0.4938 0.5573 0.7935 0.8017

0.03 0.3145 0.7768 0.4207 0.5244 0.6961 0.7540

0.04 0.2296 0.6302 0.4054 0.5425 0.6596 0.7545

0.05 0.1815 0.5414 0.4553 0.6312 0.6930 0.8108

0.10 0.0812 0.2838 0.9687 0.9944 0.9864 0.9975

0.20 0.0387 0.1480 1.0000 1.0000 1.0000 1.0000

and for

Δ ≥
1−G3(χ

2
1,α;Δ)

2(2− π)−1[1−G3(χ
2
1,α;Δ)]− [1−G5(χ

2
1,α;Δ)]

the opposite conclusion holds. Hence, neither γ̂SP1 nor γ̂LS1 asymptotically dominates the other estimator
under local alternatives.

Lastly, we compare the AMSE performance of SP and PT and determine the dominance conditions.
It may be noticed that

AMSE(γ̂PT
1 )−AMSE(γ̂SP1 ) = τ2(1− ω)Δ{2(1 − π)G3(χ

2
1,α;Δ)

− (1− ω)G5(χ
2
1,α;Δ)} − τ2(1− ω)(1− π)2G3(χ

2
1,α;Δ). (8)

It is clear from (8) that the AMSE of γ̂PT
1 will be smaller than γ̂SP1 in the neighborhood of Δ = 0.

However, for large values of π, this AMSE difference may be negligible. On the other hand, as Δ
increases, the AMSE difference in (8) becomes positive and γ̂SP1 starts dominating γ̂PT

1 uniformly in
the rest of the parameter space. To be specific, let Δπ be a point in the parameter space at which the
AMSE of SP and PT intersect for a given π. Then, for Δ ∈ (0,Δπ], PT performs better than SP, while
for Δ ∈ (Δπ,∞], its SP that dominates PT uniformly. Further, for large values of π (close to 1), the
interval Δ ∈ (0,Δπ] may be negligible. Nevertheless, PT and SP share a common asymptotic property
in that as Δ → ∞, their AMSE converge to a common limit, i.e., to the AMSE of γ̂1.

We have plotted the AMSE of γ̂1, γ̂LS1 , and γ̂SP1 against Δ for π = 0.35, 0.50, 0.85, ω = 0.5, τ2 = 1,
and for selected values of α. Figure 2 exhibits the aforementioned properties of the estimators.
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From the above figure, we see that for smaller values of α and fixed π, the variation in the AMSE is
greater. The larger α values are used in figure 2 to observe the variation in the AMSE of the selected
estimators. Furthermore, the larger value of π results in greater variation in the AMSE of γ̂SP1 .

Finally, we conclude that none of the five estimators is superior to the others under the local
alternatives. However, at Δ = 0 and the nominal choice of α, the AMSE of the estimators may be
ordered as follows:

γ̂RE
1 � γ̂LS1 � γ̂PT

1 � γ̂SP1 � γ̂1

for a range of π, where � denotes the dominance.

5. MONTE-CARLO SIMULATIONS

In this section, we investigate the properties of the proposed estimators in small samples as the
analytical treatment of the MSE is difficult in such cases. However, using Monte-Carlo simulations,
we can study the MSE efficiency of the estimators relative to γ̂1. Following Bain and Engelhardt [8], we
first note that (1) can be written as:

γ̂ = exp

⎡
⎣
(

ln γ0

(θ̂/θ0)β

)β̂/β0
⎤
⎦ ,

where θ0, β0, and γ0 are some specific values.
The indices of our simulation design are the sample size (ni), the significance level (α), the shrinkage

coefficient (π), the true value of reliability function (γ0) and a parameter Δ� =
∑2

i=1(γi − γ0)
2, which

is essentially a measure of how far away we go from the hypothesized value γ0. The hypothesized
value of reliability was chosen to be γ0 = 0.6. For the sake of simplicity, we considered an equal
number of random samples from these populations and the chosen sample sizes were ni = 20, 25, 30,
and 50. The significance level was fixed at 5% and 10%, while different values of π were selected, i.e.,
π = 0.25, 0.50, 0.75, 0.90. In order to save space, the results are reported only for π = 0.50.

To facilitate the computational process, we have generated N = 5000 samples from a Weibull
distribution with θi = βi = 1 by writing a computer program in R language [9]. A special R package
named fitdistrplus by Delignette–Muller and Dutang [10] was used to obtain the MLEs of (θi, βi)
by fitting a Weibull distribution to the simulated data. Based on the numerical estimates of (θ̂i, β̂i) and
true value of γ0 = 0.6, we have computed the estimators and their simulated relative efficiencies (SRE)
relative to γ̂1 by the following formula

SRE(γ̂∗1 : γ̂1) = SimulatedMSE(γ̂1)/SimulatedMSE(γ̂∗1 ),

where the simulated MSE of the estimator γ̂∗1 is the average MSE of N = 5000 replications defined as
1

5000

∑5000
b=1

∑2
i=1(γ̂

∗
i(b) − γ0)

2. A value of SRE greater than one indicates the superiority of γ̂∗1 over γ̂1.
Obviously, the SRE of the unrestricted estimator γ̂1 will be 1.

In order to assess the behavior of the estimators when the null hypothesis (2) is false, further samples
were drawn from a Weibull distribution with a shift to the right side under γ1 	= γ2 such that Δ� takes a
specific value greater than zero. The results of the simulation studies are reported in table 1 and can be
summarized as follows:

At Δ� = 0, when the null hypothesis holds, γ̂RE
1 has maximum SRE as compared to the other

estimators. But the SRE drops to zero as Δ�, increases showing the inferiority of the restricted
estimator. Similarly, the performance of γ̂PT

1 is much better than γ̂SP1 when the null hypothesis holds.
However, as we move away from the hypothesized value, the SRE performance of γ̂SP1 is comparable to
γ̂PT
1 and γ̂RE

1 .
The simulated relative efficiency of the estimators based on the preliminary test depends upon the size

of the pretest (α) i.e., a smaller size yields larger SRE and vice-versa. The performance of γ̂LS1 depends
on π and has the same characteristics as that of γ̂RE

1 . Graphical representation of table 1 is given in
Figure 3 and 4 for ni = 20 and ni = 30, respectively. Overall, the results of the simulation study are in
agreement with the asymptotic results mentioned in Section 4.
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Fig. 4. SRE of the estimators for ni = 30.

6. CONCLUDING REMARKS

In this article, we compared the performance of various estimators based on the linear shrinkage,
preliminary test, and shrinkage pretest principles with the unrestricted and restricted estimation strate-
gies using the AMSE criterion. Monte-Carlo simulations were also designed to assess the robustness
of the estimators in small samples. It was concluded that the restricted estimator should be used when
the assumption of homogeneity of reliability functions holds, i.e., γ1 = γ2. When the assumption of
homogeneity is rather dubious, the use of γ̂SP1 is suggested as it has the smallest AMSE in most of the
parametric space as compared to the other estimators.
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