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Abstract—Let m,n ≥ 1 are integers and D be a domain in the complex plane C or in the m-
dimensional real space Rm. We build positive subharmonic functions on a part of D vanishing on
the boundary ∂D of domain D. We use such (test) functions to study the distribution of zero sets of
holomorphic functions f on D ⊂ C

n with restrictions on the growth of f near the boundary ∂D.
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1. MOTIVATION AND STATEMENT OF THE PROBLEM

1.1. Notations, Definitions, and Agreements

We use an information and definitions from [1–4]. As usual, N := {1, 2, . . . }, R and C are the sets of
all natural, real and complex numbers, resp. We set

R−∞ := {−∞} ∪ R, R+∞ := R ∪ {+∞},R±∞ := R−∞ ∪ R+∞,

R
+ := {x ∈ R : x ≥ 0}, R+

∗ := R
+ \ {0}, R+

+∞ := R
+ ∪ {+∞},

where the usual order relation ≤ on R is complemented by the inequalities −∞ ≤ x ≤ +∞ for all
x ∈ R±∞. Let f : X → Y be a function. For Y ⊂ R±∞, g : X1 → R±∞ and S ⊂ X ∪X1, we write
“f = g on S” or “f ≤ g on S” if f(x) = g(x) or f(x) ≤ g(x) for all x ∈ S respectively.

Let m ∈ N. Denote by R
m the m-dimensional Euclidean real space. Then R

m
∞ := R

m ∪ {∞} is
the Alexandroff (⇔one-point) compactification of Rm. Given a subset S of Rm (or Rm

∞), the closure
closS, the interior intS and the boundary ∂S will always be taken relative Rm

∞.
Let S0 ⊂ S ⊂ R

m
∞. If the closure closS0 is a compact subset of S in the topology induced on S from

R
m
∞, then we write S0 � S. An open connected (sub-)set of Rm is a (sub-)domain of Rm

∞. Given
x ∈ R

m and r∈R+
+∞, we set B(x, r) := {x′ ∈ R

m : |x′ − x| < r}, where | · | is the Euclidean norm on
R
m, |∞| := +∞; B(r) := B(0, r). Besides, B(∞, r) := {x ∈ R

m : |x| > 1/r}, B(x, r) := closB(x, r)

for r > 0, but B(x, 0) := {x} and B(+∞) := R
m
∞.

Let A,B are sets, and A ⊂ B. The set A is a non-trivial subset of the set B if the subset A ⊂ B is
non-empty (A 
= ∅) and proper (A 
= B).

We understand always the “positivity” or “positive” as ≥ 0, where the symbol 0 denotes the number
zero, the zero function, the zero measure, etc. So, a function f : X → R⊂R±∞ is positive on X if
f(x) ≥ 0 for all x ∈ X. In such case we write “f ≥ 0 on X”.

The operation of superposition of functions denoted by ◦.
By M+(S) denote the class of all Borel positive measures on S.
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Let O be a non-trivial open subset ofRm
∞. We denote by sbh(O) the class of all subharmonic functions

u : O → R−∞ on O for m ≥ 2, and all (local) convex functions u : O → R−∞ on O for m = 1. By
� : Rm

∞ → R
m
∞ denote the inversion in the unit sphere ∂B(0, 1):

� : x �→ x� :=

⎧
⎪⎨

⎪⎩

0 for x = ∞,
1

|x|2x for x 
= 0,∞,

∞ for x = 0.

(1)

A function u is subharmonic on a neighborhood of ∞ ∈ Rm
∞ if its Kelvin transform

u�(x�) = |x|m−2u(x), x� ∈ O� := {x� : x ∈ O}, (2)

is subharmonic on a neighborhood of 0. The class sbh(O) contains the function −∞ : x �→ −∞, x ∈ O
(identically equal to −∞);

sbh+(O) := {u ∈ sbh(O) : u ≥ 0 on O}, sbh∗(O) := sbh(O) \ {−∞}.
For u ∈ sbh∗(O), the Riesz measure of u is the Borel (or Radon [2, A.3]) positive measure

νu := cmΔu ∈ M+(O), cm :=
Γ(m/2)

2πm/2 max
{
1, (m− 2)

} , (3)

where Δ is the Laplace operator acting in the sense of distribution theory, and Γ is the gamma function.
In particular, νu(S) < +∞ for each subset S � O. By definition, ν−∞(S) := +∞ for all S ⊂ O.

1.2. Test Functions

Subjects of our investigation are presented by
Definition 1. Throughout what follows m,n ∈ N and ∅ 
= K = closK � D ⊂ R

m
∞, where D is a

subdomain in R
m
∞ or Cn

∞. A function v ∈ sbh+(D \K) is a test function for D outside of K if

lim
D�x′→x

v(x′) = 0 for each x ∈ ∂D, (4)

sup
x∈D\K

v(x) < +∞. (5)

The class of test functions for D outside of K is denoted by sbh+
0 (D \K).

We give elementary properties and simple examples of test functions.

t1. The condition (4) can be replaced by the condition: for each number ε ∈ R
+
∗ there is a subset

Sε � D such that 0 ≤ v < ε on D \ Sε.

t2. If a function v ∈ sbh+
0 (D \K) is continued (extended) by zero as

v(x) :=

{
v(x), for x ∈ D \K,

0, for x ∈ R
m
∞ \D,

(6)

then the extended function v is a subharmonic function on R
m
∞ \K and v ∈ sbh+

0 (R
m
∞ \K).

t3. If v ∈ sbh+
0 (R

m
∞ \K) and v = 0 on R

m
∞ \D, then v ∈ sbh+

0 (D \K). Throughout what follows we
identify a test function v ∈ sbh+

0 (D \K) and its continuation (6) of the class sbh+
0 (R

m
∞ \K).

t4. The condition (5) can be replaced by the condition

sup
x∈∂S

lim sup
D\S�x′→x

v(x′) < +∞ (the maximum Principle for sbh(Rm
∞ \K)).

t5. If v ∈ sbh+
0 (D \K) ⊂ sbh+

0 (R
m
∞ \K), then its Riesz measure νv belongs to M+(closD \K).
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Example 1. Let D ⊂ R
m
∞ be a domain, D̃ ⊂ D a regular (for the Dirichlet problem) subdomain of D,

and ∃x0 ∈ D̃. Then the extended Green’s function g
˜D
(·, x0) for D̃ with pole at x0 is a test function

from the class sbh+
0

(
D \ {x0}

)
. Its Riesz measure is the harmonic measure ω

˜D(x0, ·) for D̃ at x0 such
that

suppω
˜D
(x0, ·) ∈ M+(∂D̃) ⊂ M+(closD), ω

˜D
(x0, ∂D̃) = 1.

1.3. Holomorphic Functions
Let n ∈ N. Denote by Cn the n-dimensional Euclidean complex space. Then C

n
∞ := C

n ∪ {∞} is
the Alexandroff (⇔one-point) compactification of Cn. If it is necessary, we identify C

n (or Cn
∞) with

R
2n (or R2n

∞ ). Let O be a non-trivial open subset of Cn
∞. We denote by Hol(O) and sbh(O) the class of

holomorphic and subharmonic functions on O, resp. For u ∈ sbh∗(O), the Riesz measure of u is the
Borel (and the Radon) positive measure

νu:=c2nΔu ∈ M+(O), c2n:=
(n− 1)!

2πn max{1, 2n − 2} . (7)

For k ∈ {0} ∪ N, we denote by σk the k-dimensional surface (⇔Hausdorff) measure on C
n and its

restrictions to subsets of Cn. So, if k = 0, then σ0(S) =
∑

z∈S 1 for each S ⊂ C
n, i. e. σ0(S) is equal to

the number of points in the set S ⊂ C
n.

Theorema A (see [5, Corollary 1.1] for the case n = 2, and [6–8, Corollary 1] for n > 1). Let D
be a non-trivial domain in C

n
∞, K a compact subset of D with intK 
= ∅. Let M ∈ sbh∗(D) be a

function with the Riesz measure νM ∈ M+(D), and v ∈ sbh+
0 (D \K) a test function for D outside

of K. Assume that
∫

D\K

vdνM < +∞. (8)

Let f ∈ Hol(D) and Zerof := {z ∈ D : f(z) = 0} ⊃ Z. If

|f | ≤ eM on D,

∫

Z\K

vdσ2n−2 = +∞, (9)

then f = 0 on D, i.e. Zerof = D.
This Theorem A shows that each constructed test function of the class sbh+

0 (D \K) gives a
uniqueness theorem in terms of the distribution of the zero set of holomorphic functions. The main
goal of our article is to give some methods for constructing of test functions in the sense of Definition 1
with applications to the distribution of the zero sets of holomorphic functions. Many such constructions
have been proposed for domains in the complex plane C in our work [5, sections 4–5].

2. RADIAL CASE
2.1. Radial Subharmonic Functions

A subset S ⊂ Rm
∞ is radial, if from the conditions x ∈ S and |x′| = |x| it follows that x′ ∈ S. A

function f on radial set S is radial, if f(x) = f(x′) for all |x| = |x′|, x ∈ S. By imf denote the image of
f . Further

spS := {|x| : x ∈ S}, spf : spS → imf, spf (r) := f
(
|x|

)
for r = |x|,

is the spherical projection of radial function f on radial set S. Let 0 ≤ r1 < r2 ≤ +∞ and h : (r1, r2) →
R be a strictly increasing function. A function f : (r1, r2) → R is convex of h if the function f ◦ h−1 is
convex on

(
h(r1), h(r2)

)
⊂ R. Given t ∈ R

+
∗ , we set

hm(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

t for m = 1,

log t for m = 2,

− 1

tm−2
for m ≥ 3,

t ∈ R
+
∗ ;
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A(r1, r2) := {x ∈ R
m : r1 < |x| < r2}. (10)

Proposition 1. Let Q : A(r1, r2) → R be a radial function and q := spQ. The following five
conditions are equivalent:

I. The function Q is subharmonic on A(r1, r2), Q 
= −∞;

II. The function q is convex of hm on
(
hm(r1), hm(r2)

)
⊂ R;

III. The function q has the following properties: i) q is continuous; ii) there exist the left
derivative q′left and the right derivative q′right(r); iii) q′left is continuous on the left, and q′right is

continuous on the right; iv) the functions r �→ rm−1q′left(r), r �→ rm−1q′right(r) are increasing; v)
q′left ≤ q′right on (r1, r2); vi) there is a no-more-than countable set R ⊂ (r1, r2) such that q′left = q′right

on (r1, r2) \R;

IV. For any r0 ∈ (r1, r2) there is an increasing function p0 : (r1, r2) → R such that

q(r) = q(r0) +

r∫

r0

p0(t)

tm−1
dt, r ∈ (r1, r2),

where the function p0 can be chosen in the form

p0(r) := rm−1q′left(r) or p0(r) := rm−1q′right(r), r ∈ (r1, r2);

V. The function q is upper semicontinuous, locally integrable on (r1, r2), and r �→
(
rm−1q′(r)

)′

is a positive distribution (measure).

The proof is omitted (see [1]–[4] and [5, § 4] for m = 2 or C).

2.2. Radial Test Functions

Let 0 < r0 < R ∈ R
+
+∞. The following statement describes all radial test functions for the domain

D = B(R) ⊂ R
m
∞. Recall that B(+∞) = R

m.

Proposition 2. Let v : B(R) \B(r0) → R
+ be a radial function on B(R) \B(r0). The following

three conditions are equivalent:

1. The function v is a test function for B(R) outside of B(r0);

2. There is a decreasing function d : (r0, R) → R
+ such that

v(x) =

R∫

|x|

d(t)

tm−1
dt < +∞, x ∈ B(R) \B(r0);

3. The function spv ◦ h−1
m is convex on

(
hm(r0), h(R)

)
and

lim
hm(R)>x→hm(R)

spv(x) = 0.

Proof. If we apply the inversion and the Kelvin transform from (1)–(2) to the extended function
(6) with D = B(R) and K = B(r0), then the equivalences 1⇔2 and 1⇔3 follow from the equivalences
I⇔IV and I⇔II of Proposition 1 respectively. �

We can easily add other equivalences to Proposition 2 based on Proposition 1.
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2.3. Cases D = B(R)

The following result follows immediately from Theorem A and Proposition 1 (see [5, § 4] for m = 2
or C).

Theorem 1. Let 0 < r0 < R ∈ R
+
∞. Let M : B(R) → R be a continuous radial function and q :=

spM . Suppose that q is convex of h2n on (0, R) and there is a decreasing function d : (r0, R) → R
+

such that
R∫

r0

d(r)q′right(r)dr
(8)
< +∞.

If the function f ∈ Hol
(
B(R)

)
with zero set Zerof ⊃ Z satisfies the conditions (see 9)

|f | ≤ eM on B(R),

R∫

r0

d(r)sZ(r)
dr

r2n−1
= +∞,

where sZ(r) = σ2n−2

(
Z ∩B(r)

)
, r ∈ (r0, R), then f = 0 on D.

The proof is a direct computation of (8)–(9) for radial case with D = B(R) and K = B(r0) using the
integration by parts. So, in (8),

dνM (rz)=c2nd
(
rm−1q′right(r)

)
⊗ dσ2n−1(z), z ∈ ∂B(1),

and we consider the test function v from Proposition 2 (2), in (9),

∫

Z\B(r0)

vdσ2n−2 =

R∫

r0

d(r)sZ(r)
dr

r2n−1
− sZ(r0)

R∫

r0

d(t)

tm−1
dt.

Radial test functions can also be considered for sets A(r1, r2)
(10)
⊂ C

n. But it is not of interest for
holomorphic functions on A(r1, r2) ⊂ C

n in view of the classical Hartogs extension phenomenon. Here
we do not consider also holomorphic functions on polydiscs in C

n, n > 1.

3. GREEN’S CASE

Throughout this section 3 D ⊂ R
m
∞ is a regular domain with Green’s function gD := gD(·, x0) (with

the pole at x0 ∈ D). We set

Dt := {x ∈ D : gD(x, x0) > t} � x0, 0 < t ≤ t0 ∈ R
+
∗ . (11)

3.1. Superpositions of Convex Functions and Green’s Functions

Proposition 3. Let q : [0, t0) → R
+ be a convex function such that q(0) = 0. Then the superpo-

sition q ◦ gD is a test function for D outside of Dt0 , i.e. q ◦ gD ∈ sbh+
0 (D \Dt0).

Proof. The superposition of convex function f and harmonic function gD(·, x0) is subharmonic. For
v := f ◦ gD, the condition (4) follows from the condition f(0) = 0, since the Green’s function gD(·, x0)
vanishes on the boundary ∂D of regular domain D. �

Proposition 4. Let F : (−R
+
∗ ) → R

+ be a convex increasing function, F (−∞) := lim
x→−∞

F (x) ∈
R−∞, where (−R

+
∗ ) := R−∞ \ R+. Then the superposition F ◦ (−gD) is subharmonic on D.

Proof. Obviously, the function −gD(·, x0) is subharmonic on D. The superposition of convex
increasing function F and subharmonic function −gD(·, x0) is subharmonic on D. �
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3.2. A Uniqueness Theorem with Green’s Functions
For simplicity, we assume that the boundaries ∂D and ∂Dt of Dt from (11) belong to the class C2.
Theorem 2 [see [5, Theorem 7] for n = 1]. Suppose that the functions q and F are the same as

in Propositions 3 and 4. Let q ∈ C1(0, t0) and F ∈ C1(−R
+
∗ ), and

t0∫

0

q′(t)F ′(−t)dt < +∞. (12)

If the function f ∈ Hol(D) with zero set Zerof ⊃ Z satisfies the conditions

|f |≤ exp
(
F ◦ (−gD)

)
on D,

t0∫

0

q′(t)sZ,D(t)dt = +∞, (13)

where sZ,D(t) = σ2n−2

(
Z ∩Dt

)
, t ∈ (0, t0), then f = 0 on D.

Proof. Let νM be the Riesz measure of M := F ◦ (−gD) ∈ sbh(D), and v := q ◦ gD . We have the
following equalities:

νM (Dt2 \Dt1) = F ′(−t2)− F ′(−t1), −t0 < −t1 < −t2 < 0 [5, 6.2.1],

∫

D\Dt0

vdνM =

∫

D\Dt0

(q ◦ gD)dνM =

t0∫

0

q(t)d
(
−F ′(−t)

)
, (14)

∫

Z\D(t0)

vdσ2n−2 =

∫

Z\D(t0)

(q ◦ gD)dσ2n−2 =

t0∫

0

q(t)dsZ,D(t). (15)

Next we apply the integration by parts to the right-hand sides of (14)–(15) and Theorem A with
K = Dt0 . �

Remark 1. The conditions to the boundaries ∂D and ∂Dt can be considerably weakened [9]. In
addition, if we replace the derivatives q′, F ′ by q′right, F

′
right in (12) and by q′left in (13) respectively, we can

remove the conditions q ∈ C1(0, t0) and F ∈ C1(−R
+
∗ ).

We will provide a more general and subtle results on the test functions and their construction
elsewhere.
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