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Abstract—The paper puts forwards principal kinematic relations and constitutive equations, which
can be applied in designing numerical methods of study of finite elasto-plastic strains. The medium
kinematics is considered under the multiplicative decomposition of the total deformation gradient.
The constitutive equations are deduced using the theory of flow and the second law of thermody-
namics. As a result, we find the dependence of the stress tensor rate on the free energy function and
on the yield function.
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INTRODUCTION

An increasingly popular technique is to use the multiplicative decomposition of the gradient of
deformations in the study if finite elasto-plastic, visco-elastic or visco-plastic strains. With such
expansion there are several ways of construction of the study algorithm. First of all, this is the choice
problem of a basis relative to which the process of strain will be studied. In the present paper the basic
relations are written with respect to the actual (deformed) state. Note that numerical algorithms for the
study of solids for hyperelastic material were constructed in [1–4] and methods of solution of elasto-
plastic problems with additive expansion of the strain rates were constructed in [5–8].

1. KINEMATICS

We shall assume that the medium under consideration admits finite strains and is in an elasto-plastic
state. The gradient of strains [9, 10] is used as the principal kinematic characteristic; the tensor of
the gradient of total deformations is represented as the product of the gradient of elastic and plastic
deformations:

F = Fe ·Fp. (1)

Such representation is widely useful in solving nonlinear problems of mechanics of deformable bodies
and is considered as fairly (mathematically) rigorous. As an example we mention the papers [11–15].

Using expansion (1) means introduction of some deformed state, which is admissible in the medium
microvolume near a material point under consideration when removing the stresses. In other words, this
is a singling out of the residual strains appeared due to plastic (viscous) flow. A geometric illustration is
given in the figure, which shows the radius vector of the material point in the undeformed state, to which
there corresponds the volume V0,

X = Xiei,

the radius vector of the same material point in the actual configuration, which corresponds to the
volume V ,

x = xiei,
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Kinematics of finite strains.

the radius vector of the material point in the unloaded condition,

z = ziei.

With the use of this parameters one may write expansion (1) in the form

F =
∂xi

∂Xk
(eiek) = (eiek)

∂xi

∂zj

∂zj

∂Xk
=

∂xi

∂zj
(eiej) · (emek)

∂zm

∂Xm
= Fe ·Fp.

For each state, we introduce the corresponding tensors of the strain measures:
—the right Cauchy–Green tensor (the Cauchy–Green strain measure)

C = FT ·F, Ce = Fe
T ·Fe, Cp = Fp

T · Fp;

—the left Cauchy–Green tensor (the Cauchy–Green strain measure)

B = F ·FT , Be = Fe ·Fe
T , Bp = Fp · Fp

T ;

—the left Piola tensor (the Almansi strain measure):

B−1 = F−T ·F−1, B−1
e = F−T

e ·F−1
e , B−1

p = F−T
p · F−1

p ;

—the right Piola tensor:

C−1 = F−1 ·F−T , C−1
e = F−1

e · F−T
e , C−1

p = F−1
p · F−T

p .

There are certain relations between the above tensors; we give only those that will be used later:

Be = F ·C−1
p · FT , C = Fp

T · Ce · Fp.

In what follows we shall adopt the theory of plastic flow, which is traditionally described in terms of
time derivatives. So, we first introduce the principal tensors employed in the description of the kinematics
of flow for a continuous medium. The tensor of spatial velocity gradient is basic one; it is written in the
form

h = Ḟ · F−1. (2)

The symmetrical part of this tensor is called the deformation rate tensor

d =
1
2

[
h + hT

]
; (3)

the skew-symmetric part is known as the spin rate tensor

ω =
1
2

[
h− hT

]
. (4)
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The following relations hold:

Ċ = 2FT · d ·F, Ḃ = h ·B + B · hT ,

d = −1
2
F · Ċ−1 · FT , Ḃ−1 = −B−1 · h− hT · B−1.

In accordance with expansion (1) we introduce the analogues of the tensors (2)–(4) for elastic and
plastic rates of strains he, de, ωe, hp, dp, ωp. The above tensors are related as follows:

h =
[
Ḟe · Fp + Fe · Ḟp

]
·
[
F−1

p ·F−1
e

]
= he + Fe · hp ·F−1

e ,

F · Ċ−1
p ·FT = −F ·C−1 · Ċp · C−1

p ·FT

= −Fe · Fp · F−1
p ·F−T

p ·
[
ḞT

p ·Fp + FT
p · Ḟp

]
·F−1

p ·F−T
p ·FT

p · FT
e

= −Fe · hT
p · FT

e − Fe · hp ·FT
e = −2Fe · dp ·FT

e ,

Ḃe = Ḟ ·C−1
p · FT + F · Ċ−1

p ·FT + F · C−1
p · ḞT = h ·Be + Be · hT − 2Fe · dp · FT

e .

The generalized derivative
∇
Be = Ḃe − h ·Be −Be · hT (5)

satisfies the following relations
∇
Be = F · Ċ−1

p ·FT = −2Fe · dp ·Fe
T .

Let us give some comments on the above relations. First, one should test the membership of the
tensors to the corresponding basis. Here we have three bases constricted in the original, actual and
intermediate states. In the initial configuration we have the tensors C, Cp, C−1, C−1

p , Ċ, Ċp, Ċ−1
p ,

which are invariant tensors. In the basis of actual configuration we have the indifferent tensors B, B−1,

Be, B−1
e ,

∇
Be, d and the tensors h, ω, Ḃe. In the intermediate (unloaded) basis we have the tensors

Ce, Bp, hp. Second, the tensors in one basis are united by addition–multiplication operations. This fact
should be also taken into account below in stating the corresponding state equations. Third, a transition
from one basis into another one is effected by the respective multiplication from the left and right by
the tensors of the strain gradient F, Fe, Fp and the place gradient FT , FT

e , FT
p and by the inverse

tensors. Fourth, the rate of plastic strains in the initial configuration is governed by the tensor Ċp, in

the intermediate configuration, by dp, and in the actual configuration, by the tensor
∇
Be.

2. CONSTITUTIVE EQUATIONS

As a basic one we take the Cauchy stress tensor Σ, which is also called the hydrodynamic stress
tensor. This tensor is defined in the actual basis; it is indifferent and conjugate in power to the velocity
strain tensor (3). So, the power of internal forces is given as

N =
∫

V

Σ : ddV .

To find the power as an integral with respect to work in the initial configuration use is made of two
tensors: the Kirchhoff stress tensor

τ = JΣ (6)

(J is the relative variation of the volume) and the second Piola–Kirchhoff stress tensor

S = JF−1 ·Σ ·F−T = F−1 · τ ·F−T .
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In this case, the power is given as

N =
∫

V0

1
2
S : ĊdV0 =

∫

V0

τ : ddV0.

Physical relations will be obtained from the equation of the second law of thermodynamics for an
isothermic process. According to [11, 12], we have the inequality

τ : d− ρ0ψ̇ ≥ 0, (7)

where ρ0 is the original density and ψ is the free energy. It is assumed that the free energy depends only
on elastic strains, because the plastic strain results in expenditure (dissipation) of energy. As the elastic
strains tensor, whose components are arguments of the energy function, one usually chooses either Fe

(see [13]) or Ce (see [11, 12]) or Be (see [14, 15]). There also exist some other variants (the distortion
tensors, the logarithmic measures of strains, the Cauchy–Green and Almansi strains tensors, etc. [16–
20]). In the present paper, we take the following variant as a basic one:

ψ = ψ (Be) .

Substituting this in (7) and using the expression for the generalized derivative (5), we find that
{

τ − ρ0

[
Be ·

∂ψ

∂Be
+

∂ψ

∂Be
· Be

]}
: d

− ρ0

[
Be ·

∂ψ

∂Be
− ∂ψ

∂Be
·Be

]
: ω − ρ0

∂ψ

∂Be
:
∇
Be ≥ 0. (8)

This gives us the constitutive equation

τ = 2ρ0Be ·
∂ψ

∂Be
, (9)

the symmetry equation

Be ·
∂ψ

∂Be
=

∂ψ

∂Be
· Be

and the dissipative inequality

ρ0
∂ψ

∂Be
:
∇
Be ≤ 0.

As the plastic flow condition we take

Φp (Σ, χ) ≤ 0, (10)

where Φp is the yield function and χ is the hardening parameter.

Let us compose the generalized dissipation functional

ρΣ :
[
1
2

∇
Be · B−1

e

]
+ λ̇Φp (Σ, χ) ≤ 0. (11)

Here we used the relations (6) and (9), in terms of which the gradient of the functional
∂ψ

∂Be
is expressed

via the stress tensor Σ. Next, in accordance with [11, 12, 14, 15], we write down the condition for an
extremum of the functional (11) with respect to possible fields of stresses. As a result, we get the relation

−1
2

∇
Be ·B−1

e = λ̇
∂Φp

∂Σ
. (12)

This equation is an analogue of the equation of the associated law of plastic flows in the theory of small
elasto-plastic strains (the flow theory). Here we also have the parameter λ̇, which controls the value of
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the plasticity strain rate. To obtain the linearized constitutive relation we differentiate equation (9) in
time, which gives

τ̇ = 2ρ0

[
Ḃe ·

∂ψ

∂Be
+ Be ·

∂2ψ

∂Be∂Be
: Ḃe

]
.

In view of (6) we write the result as the sum of two terms

τ̇ = τ̇e + τ̇p,

where

τ̇e = 2ρ0

{[
h ·Be + Be · hT

]
· ∂ψ

∂Be
+ Be ·

∂2ψ

∂Be∂Be
:
[
h ·Be + Be · hT

]}
, (13)

τ̇p = 2ρ0

{
∇
Be ·

∂ψ

∂Be
+ B · ∂2ψ

∂Be∂Be
:
∇
Be

}
. (14)

In [21] it was shown that a dependence of form (13) can be written as

τ̇e = 4ρ0

[
Be ·

∂2ψ

∂Be∂Be
· Be

]
: d + h · τ + τ · hT .

Expressing the generalized derivative
∇
Be from (12) in terms of the unknown parameter λ̇ and substitut-

ing into (14), this gives

(τ̇ ) = 4ρ0Λe : d + hτ + τhT − λ̇4ρ0

{
∂Φp

∂Σ
·Be ·

∂ψ

∂Be
+ Be ·

∂2ψ

∂Be∂Be
:

∂Φp

∂Σ
Be

}
, (15)

where

Λe = Be ·
∂2ψ

∂Be∂Be
·Be. (16)

The rate of plastic strains is determined from the equation of stationarity (matching equation), which is
obtained by differentiating equation (6):

∂Φp

∂Σ
: Σ̇ − Hλ̇ = 0; (17)

here we introduced the hardening function H =
∂Φp

∂χ

∂χ

∂λ
.

The derivative of the tensor Σ is expressed in terms of the tensor τ by the formula

Σ̇ =
1
J

τ̇ − Σ [I : d] , (18)

where we used the available kinematic relation
J̇

J
= I1d = I : d.

Substituting (18) in view of (15) into (17), we get the following equation λ̇:

4ρ
∂Φp

∂Σ
: Λe : d +

∂Φp

∂Σ
:
[
hΣ + ΣhT − ΣI1d

]
− λ̇4ρ

[
∂Φp

∂Σ
: R

]
− λ̇H = 0, (19)

where

R =
∂Φp

∂Σ
·Be ·

∂ψ

∂Be
+ Be

∂2ψ

∂Be∂Be
:
[
∂Φp

∂Σ
·Be

]
.

From (19) we find λ̇:

λ̇ =
[
H + 4ρ

∂Φp

∂Σ
: R

]−1 {
4ρ

∂Φp

∂Σ
: Λe : d +

∂Φp

∂Σ
:
[
h ·Σ + Σ · hT − ΣI1d

]
}

.
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Next, for brevity, we set

4ρΛe : d + h · Σ + Σ · hT − ΣI1d = Ge : h.

As a result, the linearized relation for Σ̇ is structurally written as

Σ̇ = Ge : h− 4ρR

∂Φp

∂Σ
: Ge : h

H + 4ρ
∂Φp

∂Σ
: R

. (20)

This equation in velocities can be looked upon as an equation in increments of the corresponding
quantities. In particular, the rate of variation of the stresses Σ̇ should be identified with the increment of
these stresses ΔΣ, while the spatial gradient of the velocity h should be considered as the tensor ΔhR;
besides,

ΔhR =
∂Δyi

∂yj
eiej ,

which structurally agrees with (2). Note that changing h by ΔhR and replacing Σ̇ by ΔΣ changes the
physical dimension of relation (20). Now there is no time as a physical parameter.

CONCLUSIONS

The paper presents the principal kinematic and physical relations employed in simulation of finite
elasto-plastic strains. The medium kinematics was considered with account of the multiplicative
expansion of the total gradients of deformations in the elastic and inelastic components. The derivation
of physical relations depends upon the equation of the second law of thermodynamics with introduction
of the free energy function. On the basis of the yield condition a generalized functional is constructed,
using which an analogue of the equation of the associated law of plastic flow is obtained. This eventually
allowed us to construct the constitutive relations for the rates and increments of the true Cauchy
stresses. These constitutive relations can be applied in constructing numerical methods of study of
nonlinear strain processes.
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