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Abstract—Iterative solution method for mesh approximation of an optimal control problem of a
system governed by a linear parabolic equation is constructed and investigated. Control functions
of the problem are in the right-hand side of the equation and in Neumann boundary condition,
observation is in a part of the domain. Constraints on the control functions, state function and
its time derivative are imposed. A mesh saddle point problem is constructed and preconditioned
Uzawa-type method is applied to its solution. The main advantage of the iterative method is its
effective implementation: every iteration step consists of the pointwise projections onto the segments
and solving the linear mesh parabolic equations.
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1. INTRODUCTION

State constrained parabolic optimal control problems arise when solving real world applications
(see [1, 2] and bibliography therein). While state constrained elliptic optimal control problems are
thoroughly investigated, only a few contributions are known on numerical analysis of state constrained
parabolic optimal control problems [3–6]. In [3, 4] the problems with point-wise constraints for the
state function are investigated. In particular, Lavrentiev-type regularization is applied to the problems
with distributed and boundary control in [3], and error bounds for control and state mesh functions
are obtained in [4] when approximating the state equation by linear finite elements in space and a
discontinuous Galerkin scheme in time. In [5, 6] new iterative solution methods are proposed for finite-
dimensional approximations of the problems with point-wise bounds on time derivative of the state.
In our knowledge the convergence of mesh approximations of the parabolic optimal problems with
constraints for time derivative of the state is not investigated.

A common way to solve optimal control problems consists of using Lagrange functions and con-
structing the iterative solution methods for the corresponding saddle point problems. Unconstrained
saddle point problems are thoroughly investigated (see survey paper [7] containing exhaustive list of
references on this subject and recent articles [8, 9]). The development of the efficient numerical methods
to solve large scale constrained saddle-point problems is too far from complete. In this way, Uzawa,
Arrow–Hurwitz and operator-splitting iterative methods for the constrained saddle point problems
arising from augmented Lagrangian approach are investigated in monographs [10, 11]. Solution
methods for different classes of the constrained saddle point problems can be found in [12–18].

In this paper we consider a parabolic optimal control problem with distributed and boundary control
and with observation in a part of the domain. Constraints on the control, state and on time derivative of
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state are imposed. We approximate this problem by finite element in space and weighted finite difference
in time scheme, prove the existence of a solution and construct iterative solution method.

We construct preconditioned Uzawa-type iterative solution method with block diagonal precondi-
tioner for the corresponding saddle point problem. The preconditioner is energy equivalent to the “main”
matrix of the problem with the constants of the equivalence which don’t depend on mesh parameters.
The crucial point in constructing the effectively implemented Uzawa type methods is an equivalent
transformation of the original saddle point problem following [14].

2. FORMULATION OF THE PROBLEM AND ITS APPROXIMATION

Let Ω ⊂ R
2 be a bounded domain with the boundary ∂Ω = ΓD ∪ ΓN , meas ΓD > 0 and let Ω1 �

Ω be its subdomain. Let further QT = Ω × (0, T ], Q1 = Ω1 × (0, T ], ΣD = ΓD × (0, T ] and ΣN =
ΓN × (0, T ]. Denote by V = {u ∈ H1(Ω) : u(x) = 0 on ΓD} Sobolev space with inner product (u, v) =∫

Ω
∇u · ∇v dx and norm ||u|| = (u, u)1/2.

We consider a parabolic initial-boundary value problem

∂y

∂t
− Δy = u in QT ,

y = 0 on ΣD,
∂y

∂n
= q on ΣN ,

y = 0 for t = 0, x ∈ Ω, (1)

which will be a state equation. The functions u = u(x, t) and q = q(x, t) are variable control functions,
and the solution y(x, t) of (1) is a state function.

Proposition 1. Let ∂Ω ∈ C2, u ∈ L2(QT ) and q ∈ W = L2(0, T ;H1/2(ΓN ))∩H1/4(0, T ;L2(ΓN )).
Then there exists a unique solution y of problem (1), such that y ∈ L∞(0, T ;V ) ∩ H1(0, T ;L2(Ω))
and the following stability inequality takes place:

sup
0�t�T

||y(t)||V +
∣∣∣∣
∣∣∣∣∂y(t)

∂t

∣∣∣∣
∣∣∣∣
L2(QT )

� Ca

(
||u(t)||L2(QT ) + ||q(t)||W

)
, Ca = const. (2)

The proof of the proposition above can be found in [19] on page 34.
The mentioned regularity properties of state function y allow to define, in particular, the point-wise

constraints for its time derivative. Define the following sets of constraints:

Uad = {u ∈ L2(QT ) : |u(x, t)| � umax a.e. (x, t) ∈ QT },
Qad = {q ∈ W : |q| � q̄ a.e. ΣN},

Yad =
{

y ∈ L2(0, T ;H1
0 (Ω)) :

∂y

∂t
∈ L2(QT ), ymin � y(x, t) � ymax

and dymin � ∂y

∂t
� dymax a.e. QT

}
.

Above constants ū > 0, q̄ > 0 and −∞ � ymin, dymin < 0 < ymax, dymax � ∞.
Let an objective function be defined by the equality

J(y, u, q) =
1
2

∫

Q1

(y(x, t) − yd(x, t))2dxdt +
1
2

∫

QT

u2dxdt +
1
2

∫

ΣN

q2dΓdt

with a given observation function yd(x, t) ∈ L2(Q1).
We will solve the following optimal control problem:

min
(y,u,q)∈K

J(y, u, q),

K = {(y, u, q) ∈ Yad × Uad × Qad : equation (1) holds}. (3)
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PRECONDITIONED UZAWA-TYPE METHOD 563

Lemma 1. Problem (3) has a unique solution (y, u, q).
Proof. The sets of constraints Uad, Qad and Yad are convex, closed and contain zero elements,

moreover Uad and Qad are bounded. These properties together with linearity of state equation and
stability inequality (2) ensure that the set K is convex, closed, bounded and nonempty. Functional
J = J(y, u, q) is continuous. The established properties of J and K ensure the existence of a solution
to problem (3). Its uniqueness follows from the strict convexity of the functional J on the set K. To
prove this property of J we observe that it is convex in y and strictly convex in u and q, and the equalities
u1 = u2 and q1 = q2 imply y1 = y2 for the solutions of problem (1). �

We construct an approximation of problem (3) supposing for the simplicity that the domains Ω and
Ω1 have polygonal boundaries and that the function yd is continuous.

Let a family Th of nonoverlapping closed triangles e (finite elements) with maximal diameter h

compose a conforming and regular triangulation Ω =
⋃

e∈Th

e of Ω ([20], p. 124). We suppose that Th

generates the triangulations T 1
h on Ω1 and ∂Th on ΓN , i.e. Ω1 consists of integer number of e ∈ Th and

ΓN consists of integer number of sides ∂e of elements e ∈ Th. Define the finite element space Vh ⊂ V of
the continuous and piecewise linear functions (linear on each e) which vanish on the boundary ΓD and
the finite element space Uh ∈ L2(ΓN ) of the piecewise linear functions on ΓN (linear on each ∂e ∈ ΓN ),
which are the traces on ΓN of the functions from Vh.

To approximate the integrals of a continuous function g(x) over a finite element e ∈ Th or its side ∂e
we use the quadrature formulas

∫

e

g(x)dx ≈ Se(g) =
1
3

meas(e)
3∑

α=1

g(xα), xα are the vertices of e,

∫

∂e

g(x)dΓ ≈ S∂e(g) =
1
2

meas(∂e)
2∑

α=1

g(xα), xα are the vertices of ∂e.

The corresponding composite quadrature formulas are

SΩ(g) =
∑
e∈Th

Se(g), SΩ1(g) =
∑
e∈T 1

h

Se(g), SΓ(g) =
∑

∂e∈∂Th

S∂e(g).

Let further ωt = {tj = jτ, j = 0, 1, . . . Nt; Ntτ = T} be a uniform mesh on the segment [0, T ]. We
denote by yh with subscript h a mesh function from the space Vh or Uh and by yj

h a time depending mesh

function at a time level tj ∈ ωt. Let also yj
dh be the continuous and piecewise linear in space variables

function which coincides with yd(x, tj) at the nodes of the triangulation T 1
h .

Approximation of state problem (1) is the following weighted finite-difference in time and finite
element in space problem:

SΩ

(
yj

h − yj−1
h

τ
zh

)
+ SΩ

(
∇(σyj

h + (1 − σ)yj−1
h ) · ∇zh

)

= SΩ(uj
h zh) + SΓ(qj

h zh) ∀zh ∈ Vh, j = 1, 2, . . . , Nt, (4)

with initial value y0
h = 0 and a weight σ ∈ [0, 1]. This scheme includes: forward Euler (σ = 0), backward

Euler (σ = 1) and Crank–Nicolson (σ = 1/2) schemes.
Define the approximations of the objective function and the sets of constraints by the following

equalities:

Jh(yh, uh, qh) =
τ

2

Nt∑
j=1

(
SΩ1((y

j
h − yj

d h)2) + SΩ(uj
h)2 + SΓ(qj

h)2
)
, (5)

Uh
ad = {|uj

h| � ū ∀x ∈ Ω, j = 1, 2, . . . , Nt},
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Qh
ad = {|qj

h| � q̄ ∀x ∈ Ω, j = 1, 2, . . . , Nt},
Y h

ad = Y h
0

⋂
Y h

1 , Y h
0 = {yj

h : ymin � yj
h � ymax, ∀x ∈ Ω, j = 1, 2, . . . , Nt},

Y h
1 = {y : τdymin � yj

h − yj−1
h � τdymax ∀x ∈ Ω, j = 1, 2, . . . , Nt, (y0

h = 0)}. (6)

Approximation procedures result to the following mesh optimal control problem:

find min
(yh,uh,qh)∈Kh

Jh(yh, uh, qh),

Kh = {(yh, uh, qh) : yh ∈ Y h
ad, uh ∈ Uh

ad, qh ∈ Qh
ad, equation (4) holds}. (7)

Lemma 2. Mesh optimal control problem (7) has a unique solution (yh, uh, qh).
Proof. Similar to lemma 1 the result follows from the facts that the set Kh is nonempty, closed,

convex and bounded, while the function Jh is continuous and strictly convex on Kh. �

It is well-known that problem (4) is unconditionally stable for σ � 1/2. In the case 0 � σ < 1/2
it is stable under the additional condition for time-step τ < τ0(h) 
 h2. More precisely, the following
statement takes place (this is a slightly modified result of [22], p. 391):

Proposition 2. Let 0 � σ < 1/2 and τ � 2(νmax(1 − 2σ))−1, where νmax is the maximal eigenvalue
of the following eigenvalue problem:

(yh, ν) : SΩ (∇yh · ∇zh) = νSΩ(yh zh) ∀zh ∈ Vh.

Then for a solution to problem (4) the following stability inequality holds:

Nt∑
j=1

SΩ

(
|yj

h|
2
)

� CT

⎛
⎝ Nt∑

j=1

SΩ

(
|uj

h|
2
)

+
Nt∑
j=1

SΓ

(
|qj

h|
2
)⎞
⎠ , CT = const. (8)

3. ALGEBRAIC FORM OF PROBLEM (7) AND SADDLE POINT PROBLEM

Denote by y ∈ R
Ny the vector of nodal values of a function yh ∈ Vh (Ny = dim.Vh) Then we get the

“onto” correspondence y ⇔ yh. Similarly a vector q ∈ R
Nq corresponds to qh ∈ Qh.1) By (., .)y ((., .)q)

and ||.||y (||.||q) we denote the inner product and euclidian norm in R
Ny (RNq ) and by (., .) and ||.|| as the

inner product and euclidian norm in R
NtNy and R

NtNq (concrete case will be obvious from the context).

Define stiffness matrix A ∈ R
Ny×Ny , diagonal matrices M̃, M̃y ∈ R

Ny×Ny and M̃q ∈ R
Nq×Nq , and

rectangular matrix S̃q ∈ R
Ny×Nq , by the following equalities:

(Ay, z)y = SΩ (∇yh · ∇zh) , (M̃y, z)y = SΩ(yhzh),

(M̃yy, z)y = SΩ1(yhzh), (M̃qq, p)q = SΓ(qhph), (S̃qq, z)y = SΓ(qhzh).

Above y ⇔ yh ∈ Vh, z ⇔ zh ∈ Vh and q ⇔ qh ∈ Qh, p ⇔ ph ∈ Qh. With these notations mesh state
equation (4) and objective function (5) can be written for the vectors of nodal values of mesh functions:

M̃
yj − yj−1

τ
+ A(σyj + (1 − σ)yj−1) = M̃uj + S̃qq

j , j = 1, 2, . . . , Nt, y0 = 0, (9)

I(y, u, q) =
τ

2

Nt∑
j=1

(
(M̃y(yj − yj

d), y
j − yj

d)y + (M̃uj , uj)y + (Mqq
j, qj)q

)
. (10)

Further we use also the block diagonal matrices with constant blocks, namely, M = diag(M̃, M̃ , . . . ,

M̃) ∈ R
NtNy×NtNy and similarly defined My ∈ R

NtNy×NtNy , Mq ∈ R
NtNq×NtNq and Sq ∈ R

NtNy×NtNq .
Define also matrix L ∈ R

NtNy×NtNy :

(Ly)j = {M̃ yj − yj−1

τ
+ A(σyj + (1 − σ)yj−1), j = 1, 2, . . . , Nt},

1)Since hereafter we consider only finite dimensional problems, we use the same notations for the vectors as previously for
the functions.
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with formal component y0 = 0.

Now we can rewrite mesh state equation (9) and objective function (10) in the following short manner
(we scale objective function by dividing to τ ):

Ly = Mu + Sqq,

I(y, u, q) =
1
2
(My(y − yd), y − yd) +

1
2
(Mu,u) +

1
2
(Mqq, q).

Note, that stability inequality (8) implies the estimate

(My, y) � CT

(
(Mu,u) + (Mqq, q)

)
. (11)

Point-wise constraints (6) can be obviously rewritten for the vectors of nodal values of mesh
functions. Let further

R ∈ R
NtNy×NtNy , (Ry)j = {yj − yj−1 for j = 2, . . . ,M ; y1 for j = 1}.

Then we can replace the constraint y ∈ Y 1h
ad in the discrete optimal control problem by the following

constraints:

p ∈ P h
ad = {τdymin � pj � τdymax, j = 1, 2, . . . M}, Ry − p = 0.

At last, denote by ψ, θ, ϕu and ϕq the indicator functions of the sets Y h
0 , P h

ad, Uh
ad and Qh

ad, respectively.

As a result we obtain the following algebraic form of mesh optimal control problem (7):

min
Ly=Mu+Sqq, p=Ry

{I(y, u, q) + ψ(y) + θ(p) + ϕu(u) + ϕq(q)}. (12)

Construct Lagrange function for problem (12):

L(y, u, q, p, λ, μ) = I(y, u, q) + ψ(y) + θ(p) + ϕu(u) + ϕq(q) + (λ,Ly − Mu − Sqq) + (μ,Ry − p).

A saddle point of this Lagrangian satisfies the following saddle point problem (cf., e.g. [21], p. 169):⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

My 0 0 0 LT RT

0 M 0 0 −M 0

0 0 Mq 0 −ST
q 0

0 0 0 0 0 −E

L −M −Sq 0 0 0

R 0 0 −E 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y

u

q

p

λ

μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ψ(y)

∂ϕu(u)

∂ϕq(q)

∂θ(p)

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Myyd

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (13)

where ∂ψ, ∂ϕu, ∂ϕq and ∂θ are the subdifferentials of the corresponding functions and E is identity
matrix. With the notations z = (y, u, q, p)T , η = (λ, μ)T , f = (Myyd, 0, 0, 0)T , Ψ(z) = ψ(y) + θ(p) +
ϕu(u) + ϕq(q), and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

My 0 0 0

0 M 0 0

0 0 Mq 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎝L −M −Sq 0

R 0 0 −E

⎞
⎠

problem (13) can be rewritten in a compact form:⎛
⎝A BT

B 0

⎞
⎠

⎛
⎝z

η

⎞
⎠ +

⎛
⎝∂Ψ(z)

0

⎞
⎠ �

⎛
⎝f

0

⎞
⎠ .
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The degenerate matrix A is an obstacle to the application of Uzawa-type iterative methods for solving
this saddle point problem. To overcome this deficiency we use two last equations of system (13) to
transform it to the equivalent saddle point problem⎛

⎝Ar BT

B 0

⎞
⎠

⎛
⎝z

η

⎞
⎠ +

⎛
⎝∂Ψ(z)

0

⎞
⎠ �

⎛
⎝f

0

⎞
⎠ (14)

with

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎝

My + r1M −r1ML−1M −r1ML−1Sq 0

0 M 0 0

0 0 Mq 0

−r2MR 0 0 r2M

⎞
⎟⎟⎟⎟⎟⎟⎠

, r1 > 0, r2 > 0,

instead of A and with the same matrix B and function Ψ.

Lemma 3. Let (r1, r2) ∈ ω = {0 < r1 < 2/CT , 0 < r2 < r1 − r2
1CT /2}. Then matrix Ar is

positive definite and energy equivalent to block-diagonal matrix

A00 = diag
(
M, M, Mq, M

)

with constants of the equivalence, which depend only on r1, r2:

c0(r1, r2)(A00z, z) � (Arz, z) � c(r1, r2)(A00z, z), z = (y, u, q, p)T . (15)

Proof. Let z = (y, u, q, p)T , then

(Arz, z) = ((My + r1M)y, y) − r1(L−1(Mu + Sqq),My) + (Mu,u)
+ (Mqq, q) + r2(Mp, p) − r2(Mp,Ry).

Denote by ỹ the solution of the equation Lỹ = Mu + Sqq. Then due to the stability inequal-
ity (11) (Mỹ, ỹ) � CT

(
(Mu,u) + (Mqq, q)

)
. Using this estimate and the inequality |(Ry,Mp)| �

2(My, y)1/2(Mp, p)1/2 we get

(Arz, z) � r1(My, y) + (Mu,u) + (Mqq, q) + r2(Mp, p)

− r1C
1/2
T (Mu,u)1/2(My, y)1/2 − r1C

1/2
T (Mqq, q)1/2(My, y)1/2 − 2r2(My, y)1/2(Mp, p)1/2.

For (r1, r2) ∈ ω the quadratical form F (y, u, q, p) = r1y
2 + u2 + q2 + r2p

2 − r1C
1/2
T uy − r1C

1/2
T qy −

2r2yp is positive definite and there exists c0 > 0 such that F (y, u, q, p) � c0(y2 + u2 + q2 + p2). As a
consequence (Arz, z) � c0(A00z, z). Since (Myy, y) � (My, y), we obtain

(Arz, z) � (1 + r1)(My, y) + (Mu,u) + (Mqq, q) + r2(Mp, p)

+ r1C
1/2
T (Mu,u)1/2(My, y)1/2 + r1C

1/2
T (Mqq, q)1/2(My, y)1/2 + 2r2(My, y)1/2(Mp, p)1/2,

whence (Arz, z) � c1(A00z, z) with a constant c1 depending on r1, r2. �

Theorem 1. Problem (13) has a solution (y, u, q, p, λ, μ) with unique y, u, q, p, which coincide
with the solution of problem (12).

Proof. Matrix Ar is positive definite, matrix B has a full column rank and function Ψ is convex,
proper and lower semicontinuous. Moreover, zero vector satisfies the equation Bz = 0 and belongs to
int dom Ψ. All these properties ensure the result of the theorem (cf. [23]). �
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4. ITERATIVE SOLUTION METHOD FOR SADDLE POINT PROBLEM

A preconditioned Uzawa-type iterative method for solving saddle point problem (14) reads as follows:

Arz
k+1 + ∂Ψ(zk+1) � BT ηk + f,

1
ρ
D(ηk+1 − ηk) + Bzk+1 = 0, (16)

where D is a symmetric and positive definite matrix (preconditioner), ρ > 0 is an iterative parameter.
Iterative method (16) converges for any initial guess η0 if the pair (D, ρ) satisfies the following
assumption ([14]):

D � (1 + ε)ρ
2

BA−1
rs BT , ε > 0, (17)

where Ars = 0.5(A + AT ) is the symmetric part of Ar.
Below we construct an easy invertible block diagonal preconditioner D which is spectrally equivalent

to BA−1
rs BT with the constants, which don’t depend on meshsizes h and τ .

Due to lemma 3 the matrix BA−1
rs BT is spectrally equivalent to

BA−1
00 BT =

⎛
⎝LM−1LT + M + SqM

−1
q ST

q LM−1RT

RM−1LT RM−1RT + M−1

⎞
⎠ .

In turn, this matrix is spectrally equivalent to a block-diagonal one. More precisely, the following

statement takes place for KT = 1 + CT +
√

C2
T + 4.

Lemma 4. Matrix D =

⎛
⎝LM−1LT 0

0 M−1

⎞
⎠ is spectrally equivalent to BA−1

00 BT with constants,

which don’t depend on meshsizes h and τ . In particular,

(BA−1
00 BT η, η) � KT (Dη, η) ∀η = (λ, μ). (18)

Proof. Using the inequalities

(Mλ,λ) + (M−1
q ST

q λ, ST
q λ) � 0 and (M−1RT μ,RT μ) � 4(M−1μ, μ)

we estimate the quadratical form (BA−1
00 BTη, η) from below:

(BA−1
00 BT η, η) = (M−1LTλ,LT λ) + (Mλ,λ) + (M−1

q ST
q λ, ST

q λ)

+ (M−1RTμ,RT μ) + (M−1μ, μ) + 2(M−1LT , RT μ)

�
(

1 − 1
ε

)
(M−1LT λ,LT λ) + (1 − ε) (M−1RT μ,RT μ)

+ (M−1μ, μ) �
(

1 − 1
ε

)
(M−1LT λ,LT λ) + (1 − 4|1 − ε|)(M−1μ, μ).

For a fixed 0 < ε < (
√

2 − 1)/2 we get (BA−1
00 BTη, η) � c(ε)(Dη, η), c(ε) > 0.

Let us prove estimate (18). For any ε > 0 we have

(BA−1
00 BT η, η) �

(
1 +

1
ε

)
(M−1LT λ,LT λ) + (Mλ,λ)

+ (M−1
q ST

q λ, ST
q λ) + (1 + 4ε)(M−1μ, μ). (19)

Due to Cauchy inequality and stability estimate (11) the following chain of the inequalities is true:

||M−1/2LT λ|| = sup
v

(M−1/2LT λ, v)
||v|| = sup

y

(λ,Ly)
||M1/2y||
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� sup
u,q

(λ,Mu + Sqq)
||M1/2(L−1(Mu + Sqq))||

� 1

C
1/2
T

sup
u,q

(λ,Mu + Sqq)

||M1/2u|| + ||S1/2
q q||

.

Choosing subsequently q = 0 and u = 0 in this inequality we have

||M−1/2LT λ|| � 1

C
1/2
T

sup
u

(λ,Mu)
||M1/2u||

=
1

C
1/2
T

||M1/2λ||,

||M−1/2LT λ|| � 1

C
1/2
T

sup
q

(λ, Sqq)

||S1/2
q q||

=
1

C
1/2
T

||M−1/2ST
q λ||. (20)

Estimates (19) and (20) yield

(BA−1
00 BT η, η) �

(
1 +

1
ε

+ 2CT

)
(M−1LT λ,LT λ) + (1 + 4ε)(M−1μ, μ).

For ε = (KT − 1)/4 we get estimate (18). �

Method (16) for problem (13) with preconditioner D =

⎛
⎝LM−1LT 0

0 M−1

⎞
⎠ reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Muk+1 + ∂ϕu(uk+1) � Mλk,

Mqq
k+1 + ∂ϕq(qk+1) � ST

q λk,

(My + r1M)yk+1 + ∂ψ(yk+1) � Myd + r1ML−1Muk+1

+ r1ML−1Sqq
k+1 − LT λk − RT μk,

r2Mpk+1 + ∂θ(pk+1) � r2MRyk+1 + μk,

(21)

⎧⎪⎪⎨
⎪⎪⎩

LM−1LT λk+1 − λk

ρ
= Lyk+1 − Muk+1 − Sqq

k+1,

μk+1 − μk

ρ
= MRyk+1 − Mpk+1.

(22)

Theorem 2. Method (21), (22) converges if (r1, r2) ∈ ω and

0 < ρ < 2c0(r1, r2)/KT , (23)

where the domain ω and the constant c0(r1, r2) are defined in lemma 3.

Proof. From inequality (15) we get the following estimate:

A−1
rs � c−1

0 (r1, r2)A−1
00 .

This estimate and (18) yield

BA−1
rs BT � c−1

0 (r1, r2)BA−1
00 BT � c−1

0 (r1, r2)KT D.

Thus, assumption (17) is satisfied if the iterative parameter ρ satisfies the inequality c−1
0 (r1, r2)KT <

2/ρ, which is just (23). �

Implementation. On every step of method (21), (22) we have to solve three inclusions (21) with
diagonal matrices and diagonal operators. Solving the inclusions reduces to pointwise projections (for
all coordinates of nodal vectors on every time level) on the corresponding sets of the constraints.

Solving a system of linear equations with the matrix LM−1LT consists of sequential solution of the
systems with the matrices L and LT . In the particular case of the explicit finite difference approximation
of state equation (σ = 0) these matrices are triangle ones and the solutions can be found by explicit
calculations.
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