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Abstract—We discuss the Hermitian finite elements of high-order accuracy for solving boundary
value problems for partial differential equations in domains with curvilinear boundaries. New
elements are constructed in such a way that they can be used in conjunction with the Bogner–
Fox–Schmit rectangular elements.
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1. INTRODUCTION

The finite elements with inter-elemental continuous differentiability are more complicated than those
providing only continuity. Such two-dimensional elements are mostly developed for triangles: the
Argyris triangle [1], the Bell reduced triangle [2], the family of Morgan–Scott triangles [3], the Hsieh–
Clough–Tocher macrotriangle [4], the reduced Hsieh–Clough–Tocher macrotriangle [5], the family of
Douglas–Dupont–Percell–Scott triangles [6], the Powell–Sabin macrotriangles [7]. The Fraeijs de
Veubeke–Sander quadrilateral [8] and its reduced version [9] are also composed of triangles. As for
single, non-composite rectangles, the Bogner–Fox–Schmit (BFS) element [10] is the most popular
and simplest one in the family of elements by Zhang [11]. All these elements are widely used in the
conforming finite element method for the biharmonic equation and other fourth-order equations (see [12,
13, 17–21] and references therein) along with mixed statements of problems and a nonconforming
approach [12, 17, 20].

Using the terminology of paper [12], we shall describe finite elements as the triple (e, Pe,Σe)
consisting of a cell e, a space of functions Pe, and a set of degrees of freedom Σe.

Denote by Pk with positive integer k the space of all polynomials in two variables of full degree k:∑
0≤i+j≤k ai,jx

iyj . And denote by Qk the space of all polynomials in two variables of degree k for each

variable:
∑

0≤i,j≤k ai,jx
iyj .
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Fig. 1. The Argyris P5-triangle. The bold point at vertex means a free value of a function in DoF, the first bold circle
around it means 2 free first-order derivatives in DoF, and the next double circle around it means 3 free second-order
derivatives in DoF. Arrow at the midpoint of a side means the free normal derivative in DoF.
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Fig. 2. The Hsieh–Clough–Tocher composite element combining 3 triangles.

2. TRIANGULAR C1-ELEMENTS

The first C1-element (with inter-element continuity of trial functions and their first derivatives) was
the Argyris P5-triangle (Fig. 1) with a triangle e, a space of functions P5, and 21 degrees of freedom
(DoF): 6 ones (u, ∂u/∂x, ∂u/∂y, ∂2u/∂x2, ∂2u/∂x∂y, ∂2u/∂y2) at each vertex and 3 ones (∂u/∂n) at
the midpoint of each side where ∂u/∂n means the derivative in the direction of an external normal. Later
some restrictions on the polynomial degree along sides were applied to reduce the number of DoF [2, 3]
without loss of inter-elemental C1-smoothness. Nevertheless, the number of DoF stays great enough.

Composite-triangular C1-elements have a less number of DoF. For example, the Hsieh–Clough–
Tocher macro-triangle consists of 3 triangles (Fig. 2) on each of them the space of functions is P3.

For 30 coefficients of three polynomials, 18 restrictions are imposed for C1-continuity along internal
sides of constituting triangles. Therefore only 12 DoF remain: three (u, ∂u/∂x, ∂u/∂y) at each vertex
and one (∂u/∂n) at the midpoint of each side.

3. QUADRANGULAR C1-ELEMENTS

Now consider the composite-quadrangular C1-elements by Fraeijs de Veubeke and Sander. It
is defined with the help of 3 (piecewise) cubic functions w = wa + wb + wc, where wa ∈ P3 with 10
coefficients provides 10 degrees of freedom (Fig. 3(a)). The function wb is defined in a piecewise
manner. In the lower triangle in Fig. 3(b), it is assumed to be zero; in the upper triangle, a cubic
expression wb = a1y

′2 + a2y
′3 + a3x

′2 with three coefficients satisfies the continuity of values and first-
order derivatives along the diagonal (the Ox′ axis) and still provides 3 DoF. Similarly (Fig. 3(c)), the
third function wc equals 0 in the lower triangle; in the upper one, we put wc = b1y

′′2 + b2y
′′3 + b3x

′′y′′2

that satisfies the continuity of values and first-order derivatives along another diagonal (the Ox′′ axis)
and provides 3 more degrees of freedom.

The most simple rectangular C1-elements is the Bogner–Fox–Schmit one (Fig. 4). Its space
of function is Q3. 16 coefficients of polynomial generate 16 DoF: 4 at each vertex of a rectangle
(u, ∂u/∂x, ∂u/∂y, ∂2u/∂x∂y). This element is the most efficient by the criteria of [24] among all those
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Fig. 3. The Fraeijs de Veubeke–Sander element.

Fig. 4. The Bogner–Fox–Schmit element. The double arrow at vertex means free mixed second-order derivative.

containing the polynomial space P3 to provide the corresponding order of approximation. Recall that
the global number of DoF for an approximate solution uh on the triangulation is not proportional to
the number of DoF of one element multiplied by the number of cells. A part of DoF coincides along
inter-elemental boundaries. Therefore, we suggested the number M of DoF of an element on the half-
closed quadrangular cell as the local characteristic for the global number of DoF. This follows from the
proportionality of the number AM of equations or unknowns in the finite element method to the number
M with a factor A depending only on the size of a domain for the same meshsize h of its rectangular
triangulation. For example, M = 9 for two Argiris triangles, M = 6 for two Hsieh–Clough–Tocher
composite triangles, M = 5 for the Fraeijs de Veubeke–Sander composite element, and M = 4 for the
Bogner–Fox–Schmit element.

However, this simple and efficient element has a significant drawback. It may not be used without ap-
plication of other elements near the curvilinear boundary. For three previous elements, the isoparametric
transformation may be used for the approximation of the curvilinear boundary. But for two neighboring
Bogner–Fox–Schmit elements, the isoparametric transformation destroys inter-elemental continuity
of first-order derivatives. It is therefore proposed to use them on a rectangular grid complementing
rectangular cells by curvilinear triangles [23] or trapezoids near the boundary.

4. TRAPEZOIDAL ELEMENTS COMPLEMENTING THE BFS-ELEMENT

First, consider the ‘reference’ element on the trapezoidal cell ABCD with vertices A=(0,0), B=(1,0),
C=(1,a), and D=(0,1) where the straight side DC (Fig. 5) is supposed to be mapped on a part of the
boundary of the domain. We subdivide the trapezium by the diagonal AC into two triangles. In the
triangle ABC, we define the polynomial space Q′

3 ⊂ Q3 with 15 free coefficients where the coefficient of
x3y3 identically equals zero. And in the triangle ACD we define a polynomial space Q′

3 ∪ L{x4} with
16 free coefficients where L{x4} means the linear span of the set in braces. Totally two polynomials
have 31 coefficients. For C1-coalescence of this element with adjacent elements of the BFS-type, it is
necessary to define four DoF u, ∂u/∂x, ∂u/∂y, ∂2u/∂x∂y at each vertex that gives totally 16 DoF. But
at the vertices A and C, the coincidence of these DoF in two triangles imposes 8 more restrictions. Two
more DoF are taken as values of a function u on the ‘boundary’ segment CD for improved approximation
of the boundary values. So we get 18 DoF and 8 restriction. Note that along the diagonal AC, the
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Fig. 5. Composite quadrangle with straight (a) and curved (b) side.

traces of the two-dimensional polynomials are one-dimensional polynomials of degree 5. 6 conditions
are necessary to match their values. Four of them (two values and two derivatives along the diagonal
at the nodes A and C) are derived from the definition of DoF for this element. Two more conditions
are taken as coincidence of values at two additional points on the diagonal with uniform arrangement
(Fig. 5). This ensures the continuity of the function and its first-order derivative along the diagonal. In
each triangle along the diagonal, the derivative in the orthogonal direction is a fourth-degree polynomial.
For its coincidence on both sides, it is necessary to impose 5 conditions. Two of them are derived from
the definition of DoF at the nodes A and C; and we take three more ones as coincidence of the derivative
normal to the diagonal at three additional points with uniform arrangement (Fig. 5a). As a result, we
have 18 DoF and 13 restrictions which equals the amount of the coefficients of two polynomials.

In fact, to prove the unique solvability [12] of this element, one should prove the solvability of the
corresponding systems of linear algebraic equations for the construction of each of 18 basis functions.
Instead of this, we omit checking the solvability of these systems and write out their solutions.

For example, the first basis function (which is equal to 1 at the node A with all other DoF being
vanished) has the form

ϕ1,low(x, y) = 1 − 3x2 − 3y2 + 2x3 − (3a3 − 9a2 − 3a + 3)xy2/a2

+ (3a2 − 3)y3/a2 + (6a3 − 9a2 − 6a + 6)x2y2/a2 − (6a2 − 6)xy3/a2

− (3a3 − 3a2 − 3a + 3)x3y2/a2 + (3a2 − 3)x2y3/a2

in the lower triangle ABC and

ϕ1,up(x, y) = 1 − 3x2 − 3y2 + (a3 − 9a2 + 3a + 5)x3 − (3a3 − 18a2 + 3a + 6)x2y/a + 2y3

+ (18a3 − 18a2 − 6a + 6)x3y/a − (12a3 − 6a − 3)x2y2/a2

− (3a3 − 3a2 − 3a + 3)x3y2/a2 + (3a2 − 3)x2y3/a2 − (6a3 + 9a2 − 3)x4

in the upper triangle ACD.
Then the second basis function (which satisfies ∂ϕ2/∂x = 1 at the node A with all other DoF being

vanished) has the form

ϕ2,low(x, y) = y − 2x2 + x3 + (a − 1)xy2/a2 − y3/a2 − (2a − 2)x2y2/a2

+ 2xy3/a2 + (a − 1)x3y2/a2 − x2y3/a2

in the lower triangle ABC and

ϕ2,up(x, y) = y − 2x2 + (−3a2 + a + 2)x3 + (6a2 − a − 2)x2y/a − 3xy2

+ (6a3 − 6a2 − 2a + 2)x3y/a + (−6a3 − 3a2 − 2a − 1)x2y2/a2 + 2xy3

+ (a − 1)x3y2/a2 + (−2a3 + 3a2 − 1)x4

in the upper triangle ACD.
The third basis function (which satisfies ∂ϕ3/∂y = 1 at the node A with all other DoF being vanished)

has the form

ϕ3,low(x, y) = y − 2y2 − 8a5 + 2a4 + 443a3 − 222a2 − 42a + 54
4a4 − 8a3 + 4a2

xy2
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+
8a4 + 26a3 + 275a2 − 12a − 54

4a4 − 8a3 + 4a2
y3

− 3x2y + 2x3y +
8a5 + 14a4 + 419a3 − 210a2 − 42a + 54

2a4 − 4a3 + 2a2
x2y2

− 8a4 + 26a3 + 275a2 − 12a − 54
2a4 − 4a3 + 2a2

xy3

− 8a5 + 18a4 + 411a3 − 206a2 − 42a + 54
4a4 − 8a3 + 4a2

x3y2 +
8a4 + 26a3 + 275a2 − 12a − 54

4a4 − 8a3 + 4a2
x2y3

in the lower triangle ABC and

ϕ3,up(x, y) = y − 2y2 − 66a4 + 99a3 + 198a2 − 66a − 54
4a2 − 8a + 4

x3

− 4a5 − 98a4 + 85a3 − 432a2 + 90a + 108
4a3 − 8a2 + 4a

x2y

+ y3 +
20a5 − 22a4 + 459a3 − 230a2 − 38a + 54

2a3 − 4a2 + 2a
x3y

− 14a5 + 14a4 + 221a3 + 81a2 − 60a − 27
2a4 − 4a3 + 2a2

x2y2

− 8a5 + 18a4 + 411a3 − 206a2 − 42a + 54
4a4 − 8a3 + 4a2

x3y2

+
8a4 + 26a3 + 275a2 − 12a − 54

4a4 − 8a3 + 4a2
x2y3 − (3a3 − 6a2 + 30a + 27/2)x4

in the upper triangle ACD.

The fourth basis function (which satisfies ∂ϕ4/∂x∂y = 1 at the node A with all other DoF being
vanished) has the form

ϕ4,low(x, y) = xy − 2x2y + (a − 1)xy2/a − y3/a + x3y − (2a − 2)x2y2/a

+ 2xy3/a + (a − 1)x3y2/a − x2y3/a

in the lower triangle ABC and

ϕ4,up(x, y) = xy + (a − a2)x3 + (3a − 4)x2y − 2xy2 + (3a2 − 6a + 3)x3y

− (3a2 − 4a − 1)x2y2/a + xy3 + (a − 1)x3y2/a − x2y3/a − (a3 + 2a2 − a)x4

in the upper triangle ACD.
The basic functions at the other three vertices of the trapezium have a similar form. In principle, for

proving the unique solvability it is enough to find at least one basis function, since the coefficients of
each of them are found out of the system of linear algebraic equations with the same matrix. And if this
matrix is non-singular, then the coefficients of other basic functions are also founded in unique way.

Therefore, we write down only two more basic functions those differ from previous ones and related to
DoF on the arc CD. For example, ϕ17 equals 1 in the node (1/3, (2 + a)/3) and has zeroth other DoF:

ϕ17,low(x, y) = −162a3 + 243a2 − 297a + 117
4a4 − 8a3 + 4a2

x2y

+
162a3 + 162a2 − 135a + 36

4a5 − 8a4 + 4a3
xy2

+
162a3 + 243a2 − 297a + 117

2a4 − 4a3 + 2a2
xy3 − 162a3 + 162a2 − 135a + 36

2a5 − 4a4 + 2a3
x3y2

− 162a3 + 243a2 − 297a + 117
4a4 − 8a3 + 4a2

x2y3 +
162a3 + 162a2 − 135a + 36

4a5 − 8a4 + 4a3
x2y2
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in the lower triangle ABC and

ϕ17,up(x, y) = −x2 − 162a3 + 59a2 + 71a − 67
4a2 − 8a + 4

x3 +
162a3 + 189a − 126

4a3 − 8a2 + 4a
y3

+
162a3 + 189a2 − 189a + 63

2a3 − 4a2 + 2a
x3y − 324a3 + 189a2 − 63

4a4 − 8a3 + 4a2
xy3

− 162a3 + 189a2 − 189a + 63
4a4 − 8a3 + 4a2

x2y3 +
162a2 + 126a − 63
4a4 − 8a3 + 4a2

x2y2 − 63
4

x4

in the upper triangle ACD.

And finally, ϕ18 equals 1 in the node (2/3, (1 + 2a)/3) and has zeroth other DoF:

ϕ18,low(x, y) =
81a3 + 486a2 − 432a + 126

4a4 − 8a3 + 4a2
x2y − 81a3 + 324a2 − 108a − 36

4a5 − 8a4 + 4a3
xy2

− 81a3 + 486a2 − 432a + 126
2a4 − 4a3 + 2a2

xy3 +
81a3 + 324a2 − 108a − 36

2a5 − 4a4 + 2a3
x3y2

+
81a3 + 486a2 − 432a + 126

4a4 − 8a3 + 4a2
x2y3 − 81a3 + 324a2 − 108a − 36

4a5 − 8a4 + 4a3
x2y2

in the lower triangle ABC and

ϕ18,up(x, y) = −x2 +
81a3 + 184a2 + 172a − 176

4a2 − 8a + 4
x3 − 81a3 + 540a − 360

4a3 − 8a2 + 4a
y3

− 81a3 + 540a2 − 540a + 180
2a3 − 4a2 + 2a

x3y +
81a3 + 270a2 − 90
2a4 − 4a3 + 2a2

xy3

+
81a3 + 540a2 − 540a + 180

4a4 − 8a3 + 4a2
x2y3 − 81a2 + 360a − 180

4a4 − 8a3 + 4a2
x2y2 + 45x4

in the upper triangle ACD.

Now consider the case of curved side CD. In this case, the construction of the basis functions differs
from the previous description only in selecting two points on the arc CD (Fig. 5b). It is clear that the
basis functions are not exactly the same as listed above; so it is necessary to solve a system of linear
algebraic equations to determine them. The quantitative factor for these calculations is a relatively small
number of O(h−1) of such elements (that are located along the boundary of the domain) in comparison
with the number of O(h−2) of the standard BFS-elements inside the domain. As regards the solvability
of these systems, it is guaranteed at least by a slight deviation of the selected points on the arc CD from
those on the straight segment due to the continuous dependence of the coefficients of systems on the
coordinates of these points. A small difference is performed automatically and tends to zero for small h
and a smooth section of the approximated boundary since the maximal distance from the smooth arc to
a chord joining its ends is of O(h2).

Note that the proposed finite element is one of a family of three possible elements of this type.
In fact, in the triangle ACD, we can take a more complex polynomial space Q′

3 ∪ L{x4, x4y} or
Q′

3 ∪ L{x4, x4y, x5}. This does not violate the constructions presented above since a one-dimensional
polynomial along the diagonal AC is still of the 5th degree. In this case, there is a possibility to introduce
additional DoF on the boundary segment CD. For example, we can take one or two additional values of
the normal derivative on the segment CD to improve the approximation of the boundary conditions.
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