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Abstract—For the forced motion of elastic bodies, we provide the variational and projection
statements of initial-boundary problems. In the framework of the spatial linear model, we investigate
the optimal control problem for an elastic rectilinear beam with a rectangular cross-section. Using
the proposed generalized formulations, we develop a design algorithm for optimal displacements of
elastic beams. Results of the numerical simulation and the analysis of the dynamics are provided.
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INTRODUCTION

Usually, systems with distributed parameters are described by systems of partial differential equa-
tions; in special cases, integral or integrodifferential relations might be included. Also, functionals of the
unknown variables might be included. Such a functional achieves its stationary value at an admissible
set of functions corresponding to the stationary point, i. e., the sought solution of the problem. Usually,
this is caused by the problem formulation based on the corresponding variational principle with a
certain physical interpretation. In special cases, the solution might correspond to an extremum of the
functional. Variational principles are especially important because the main equations describing the
medium behavior directly follow from the corresponding principles: the said equations are the stationary
conditions for the corresponding functional. Also, variational problem statements have a number of
advantages compared with partial differential problem statements.

First, the variational technique is suitable to transform a problem originally posed as a partial
differential one to an equivalent problem such that it is frequently easier to solve it than the original one.
If we have a variational statement with additional constraints, then the problem is usually transformed
by means of the method of Lagrange multipliers; this procedure is very efficient and regular. Thus, one
can obtain pairwise equivalent families of variational principles.

Secondly, if it is not possible to find a precise solution of the problem, then the variational method
frequently provided various finite-dimensional formulations to find approximate solutions.

Finally, the application of variational principles guarantees that the numerical algorithms are stable
and the approximate solutions are optimal. Usually, the resulting system of equations is symmetric
and positive definite. Disadvantages of the variational approach exist as well. For example, variational
principle formulations are possible not for all problems of mathematical physics. Frequently, it is rather
hard to construct reliable quality estimates for the solution. If we use, e. g., the Hu–Washizu elasticity
principle to find approximate solutions of a variational problem posed by means of Lagrange multipliers,
then the positive definiteness and symmetry of the problem are lost.

In the present paper, we discuss the method of integrodifferential relations (see [1]). This approach
has a number of advantages and takes into account disadvantages of variational methods, projection
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DESIGN OF OPTIMAL CONTROL FOR MOTIONS OF ELASTIC BODIES 369

methods, and the method of least squares. The sense of this approach is as follows. Several control
equations are satisfied precisely, while other relations (a priori selected from physical considerations) are
taken into account in their integral form. To find an approximate solution of the integrodifferential prob-
lem, we minimize a quadratic functional under differential constraints (such as equilibrium equations,
kinematic relations, and boundary-value conditions). Such a statement is completely coordinated with
the ideas of the method of least squares; however, it is a variational principle as well.

For various variational statements implied by the method of integrodifferential relations, we propose
two-side energy estimates of the quality of the approximate solution. We construct finite-element
algorithms both for the verification of the error of the mathematical model and for the adaptive refinement
of finite-element nets to improve the solution quality.

Following the ideas of the method of integrodifferential relations, we construct a projection approach
as a modification of the Petrov–Galerkin method. Using semidiscrete polynomial approximations and
the projection technique, one can obtain high-precision solutions of three-dimensional static and
dynamic elasticity problems.

Approaches discussed in the present work (on the example of the motion optimization for elastic
bodies) are applied to static and spectral elasticity problems (see [2]) and to direct and inverse initial-
boundary value problems of mechanics of deformable solid bodies (see [3]), hydrodynamics, and thermo-
dynamics (see [4, 5]).

1. THE MOTION PROBLEM FOR ELASTIC BODIES:
A VARIATIONAL STATEMENT

Consider a three-dimensional elastic body occupying a bounded domain V with a piecewise-smooth
boundary Γ. Introduce dynamic variables σ(t,x) and p(t,x) and kinematic variables w(t,x) and ε(t,x);
they characterize the behavior of the elastic system and depend on the time t ∈ [0, T ] and the vector x =
(x1, x2, x3) ∈ V of the spatial coordinates. Here the vector functions p and w are the momentum density
and displacement respectively, while σ and ε are second-rank tensors determining the spatio-temporal
distribution of elastic stresses and strains. Also, define the spatio-temporal domain Ω = (0, T ) × V .

In the linear elasticity theory, the local medium state equations linking the velocities wt of points of
the system with the function p of the momentum density and the strains ε with the stresses σ can be
written as follows (see [6]):

v(t,x) = 0, ξ(t,x) = 0, (t,x) ∈ Ω. (1)

Here

v = wt − ρ−1(x)p (2)

is the residual vector-function with respect to velocities, while

ξ = ε − C−1(x) : σ. (3)

is the residual tensor-function with respect to strains. The strain tensor ε linearly depends on the
movement vector:

ε =
1
2
(∇w + ∇wT). (4)

The solid density ρ of the body and the tensor C of elasticity modules are given functions of the
coordinates x. The fourth-rank tensor C is such that its components possess the following symmetry
properties: Cijkl = Cijlk = Cklij . The sign “:” between the tensors (in the notation) denotes their scalar
product (the double convolution with respect to indices). In equation (4), we use the gradient operator
∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3) in the space of x-coordinates.

Using relations (1) and (4), one can express the variation law for the momentum density of an elastic
body via the stress tensor σ and the momentum-density vector p:

pt(t,x) = ∇ · σ(t,x), (t,x) ∈ Ω. (5)

It is assumed that there are no external volume forces. The operation between the vector and the tensor
at the right-hand part of (5) is the convolution with respect to one index.
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Consider the case where the boundary-value conditions can be represented via components of the
displacement vector w and the external-load vector q = σ · n as follows:

w(t,x) = w0(t,x), x ∈ Γ1, (6)

q(t,x) = q0(t,x), x ∈ Γ2.

Here n is the unit vector of the outward normal to the boundary Γ, w0 and q0 are given boundary vectors
of movements and stresses, and Γ1 and Γ2 are disjoint parts of the boundary, i. e., Γ1

⋂
Γ2 = ∅ and

Γ1
⋃

Γ2 = Γ.
To describe the motion of an elastic body completely, it is necessary to define its initial state (without

loss of generality, one can assign t = 0 for that state). To do that, one can define initial distributions
of elastic displacements w0 and the momentum density p0 as sufficiently smooth functions of x-
coordinates:

w(0,x) = w0(x), p(0,x) = p0(x), x ∈ V. (7)

The proposed approach changes equations (1), which are local state equations of an elastic body, for
an integral relation linking the vector p of the momentum density and the vector wt of the velocity as
well as the stress tensor σ and the deformation tensor ε.

In [3], the following integrodifferential posing of (1)–(7), which is an initial-boundary motion problem
for an elastic body, is proposed: to find a displacement field w∗(t, x), stress field σ∗(t, x), and momentum
density p∗(t, x) such that the integral relation

Φ[w, σ,p] =
∫

Ω

ϕ(t,x) dΩ = 0, ϕ =
1
2

(ρ(x)v · v + ξ : C(x) : ξ) , (8)

is satisfied provided that the kinematic equation (4), the momentum variation equation (5), and the
boundary-value and initial-value conditions (6)-(7) are satisfied.

The integrand function ϕ in (8) has the energy-density dimension and is nonnegative. The latter
property implies the nonnegativity of the integral Φ for arbitrary functions w, σ and p; thus, the
integrodifferential problem (4)–(7), (8) can be reduced to the following minimization statement: to find
admissible functions w∗, σ∗, and p∗ providing the least (zero) value of the functional

Φ[w∗, σ∗,p∗] = min
w,σ,p

Φ[w, σ,p] = 0 (9)

under constraints (4)–(7).
Denote actual and arbitrary selected admissible displacements, stresses, and momenta by w∗, σ∗,

and p∗ and w, σ, and p respectively. Assign

w = w∗ + δw, σ = σ∗ + δσ, and p = p∗ + δp.

Then, taking into account (9), we have the relation

Φ[w, σ,p] = Φ[w∗, σ∗,p∗] + δwΦ + δσΦ + δpΦ + δ2Φ = Φ[δw, δσ, δp],

where δwΦ, δσΦ, and δpΦ are the first variations of the functional Φ with respect to the unknowns w, σ,
and p, while δ2Φ is its second variation; note that δ2Φ ≥ 0.

Using the functional Φ defined by (8) for arbitrary admissible fields of displacements w, stresses
σ, and momentum density p satisfying constraints (5)–(7), one can propose various criteria of the
closeness to the precise solution. The integral quality of approximate functions w, σ, and p can be
estimated by the value of the dimensionless relation

Δ = ΦΨ−1 < δ � 1. (10)

Here δ is a selected positive number, while the integral Ψ of the full mechanical energy with respect to
time is given as follows:

Ψ =
1
2

∫

Ω

(
ρ−1(x)p · p + ε : C(x) : ε

)
dΩ. (11)

For any admissible functions w, σ, and p, the spatio-temporal distribution of its precision is character-
ized by the function ϕ(w, σ,p) defined by (8).
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Fig. 1. The domain V occupied by an elastic body.

2. THE MOTION PROBLEM FOR ELASTIC BODIES:
A PROJECTION STATEMENT

Various projection approaches related to the method of integrodifferential relations are also applicable
to obtain authentic numerical models of the considered mechanical processes. Those approaches use
integral projections of defining relations to a special function space selected to construct a consistent
system of equations. In [4], a modification of the method of integrodifferential relations is developed
to find the profiles of the temperature and heat flow for one-dimensional heat-exchange problems; the
said modification is based on the projection technique and polynomial representations of the unknown
functions.

Below, we explain a variant of the Petrov–Galerkin method (see [2]) using integral projections of the
velocity residual vector v and strain residual vector ξ introduced in (1). In that case, the linear elasticity
problem is posed as follows: to find admissible fields of the displacements w, stresses σ, and momentum
density p satisfying the momentum variation law expressed by (5), boundary-value conditions (6), and
initial-value conditions (7) and such that the following integral relations are satisfied:

∫

Ω

ρ(x)vt(t,x) · r(t,x) dΩ = 0 ∀ r ∈ L2(Ω) (12)

and
∫

Ω

ξ(t,x) : τ(t,x) dΩ = 0 ∀ τ ∈ L2(Ω). (13)

Here r is the vector of virtual displacements, τ is the tensor of virtual stresses, and the vector v and
tensor ξ are defined by (2) and (3) respectively.

3. OPTIMAL CONTROL PROBLEM
FOR DISTRIBUTED SYSTEMS

Consider an elastic body (beam) shaped as a rectangular parallelepiped of length 2a1 and cross-
section of sizes 2a2 × 2a3 such that a1 � a2 + a3 (see fig. 1). Introduce the Cartesian coordinate system
Ox1x2x3 such that its origin is located at the middle of the body and its axes Oxk are parallel to the sides
of lengthes 2ak , k = 1, 2, 3. The (three-dimensional) domain of the problem is defined as follows:

V = {x : |xi| < ai, i = 1, 2, 3}.
Consider the case where the long sides of the beam are load-free:

σ(t,x) · en = 0, xn = ±an, n = 2, 3. (14)

Assume that one front cross-section is load-free:

σ(t,x) · e1 = 0, x1 = a1. (15)

Also, we assume that another cross-section is not deformed and moves according to the given control
law u(t):

w(t,x) = (0, y1(t), 0), ÿ1(t) = u(t), x1 = −a1. (16)
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Here ek = (δ1k, δ2k, δ3k), k = 1, 2, 3, are unit vectors of the coordinate system Ox1x2x3 normal to
various parts of the boundary of the body V and δjk is the Kronecker delta. The displacement of the
end section y1(t) along the axis Ox2 satisfies the following initial-value conditions:

ẏ1(0) = y1(0) = 0. (17)

We have to find an optimal control (see [8]), i.e., an acceleration u∗(t) transferring the beam from the
initial state of rest

w(0,x) = 0, p(0,x) = 0, x ∈ V, (18)

to the terminal state
w(T,x) = (0, yT , 0), p(T,x) = 0, x ∈ V, (19)

and minimizing the quality functional

J [u∗] = min
u∈L2(0,T )

J [u]. (20)

Consider the quadratic functional

J =
1
2

T∫

0

u2(t) dt + γΨ, γ ≥ 0, (21)

where γ is a given weight coefficient and Ψ is the integral of the energy with respect to time defined
by (11).

4. A DISCRETIZATION ALGORITHM
In [1], we propose algorithms based on polynomial and piecewise-polynomial approximations of the

unknown functions with respect to coordinates and time. Such a complete discretization reduces the
generalized initial-boundary problem to a finite-dimensional linear system of algebraic equations with
respect to the unknown functions. Under the given requirements to the precision of the solution and
the class of admissible solutions, this approach has several constraints for the choice parameters of the
problem. For numerical models of motions of elastic bodies, it is frequently more convenient to reduce
the original problem to an approximate finite-dimensional system of ordinary differential equations by
means of the semidiscretization method (see [2]).

4.1. Discretization with respect to spatial variables
To apply this approach, we exclude the vector-function of the momentum density from our consider-

ation, integrating equation (5) with respect to t and taking into account conditions (18):

p(t,x) =

t∫

0

∇ · σ(t̃,x) dt̃. (22)

Substituting expression (22) in the expression for the vector v introduced by (2), we obtain the relation

v = wt − ρ−1

t∫

0

∇ · σ(t̃,x) dt̃. (23)

Once we substitute the Cauchy tensor (4), the residual tensor with respect to deformation, defined by
(3), takes the form

ξ =
1
2

(
∇w + ∇wT

)
− C−1 : σ. (24)

Define the approximations of the unknown displacement fields and stress fields as follows:

w1(t,x) =
N∑

k+l=0

w
(kl)
1 (t, x1)x̃k

2 x̃l
3, w3(t,x) =

N−1∑

k+l=0

w
(kl)
3 (t, x1)x̃k

2 x̃l
3,
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w2(t,x) = y1(t) +
N−1∑

k+l=0

w
(kl)
2 (t, x1)x̃k

2 x̃l
3,

σ11(t,x) =
N∑

k+l=0

σ
(kl)
11 (t, x1)x̃k

2 x̃l
3, σnn(t,x) = gn

N∑

k+l=0

σ(kl)
nn (t, x1)x̃k

2 x̃l
3,

σ1n(t,x) = gn

N−1∑

k+l=0

σ
(kl)
1n (t, x1)x̃k

2 x̃l
3, σ23(t,x) = g2g3

N−2∑

k+l=0

σ
(kl)
23 (t, x1)x̃k

2 x̃l
3, (25)

gn = 1 − x̃2
n, x̃n = a−1

n xn, n = 2, 3.

Here N is a given positive integer defining the degrees of the polynomial expansions of the unknown
functions with respect to the dimensionless coordinates x̃2 and x̃3. Approximations selected this way
satisfy conditions (14), which are homogeneous boundary-value conditions on the lateral side of a prism.

Approximations (25) and projection relations (12)-(13) allow us to construct a system of partial
differential-algebraic equations with respect to t and x1.

First, we form a group of equations containing partial derivatives with respect to x1. To do that, we
compute the projections

∫

Ω

vt(t,x) · r(t,x) dΩ = 0 ∀ r (26)

and
∫

Ω

e1 · ξ(t,x) · s(t,x) dΩ = 0 ∀ s, (27)

where r is the vector of virtual momenta and s = τ · e1 is the vector of virtual stresses defined as follows:

r1(t,x) =
N∑

k+l=0

r
(kl)
1 (t, x1)x̃k

2 x̃l
3, s1(t,x) =

N∑

k+l=0

s
(kl)
1 (t, x1)x̃k

2 x̃l
3,

rn(t,x) =
N−1∑

k+l=0

r(kl)
n (t, x1)x̃k

2 x̃l
3, sn(t,x) =

N−1∑

k+l=0

s(kl)
n (t, x1)x̃k

2 x̃l
3, n = 2, 3. (28)

Equations (26) and (27) can be explicitly resolved with respect to the first derivatives of the functions

∂w
(kl)
m /∂x1 and ∂σ

(kl)
1m /∂x1, m = 1, 2, 3. Due to (25) and (28), the full number of those functions is equal

to the number of virtual functions r
(kl)
m and s

(kl)
m , i. e., is equal to 2Nd, where Nd = (N + 1)(3N + 2)/2.

If we substitute the expressions for those derivatives with respect to the coordinate x1 in the functional

Φ from (8), then the algebraic relations needed to find the stress functions σ
(kl)
22 , σ(kl)

33 , and σ
(kl)
23 (their full

number is equal to Na =
3
2
N2 +

5
2
N + 2) can be obtained from the condition

δσ22Φ + δσ23Φ + δσ33Φ = 0 (29)

(the first variation should be equal to zero) provided that the values of other stress and displacement
functions are fixed.

If the test functions r
(kl)
m and s

(kl)
m and variations δσ

(kl)
22 , δσ

(kl)
33 , and δσ

(kl)
23 are chosen arbitrarily, then

system (26), (27), (29) of integral equations is equivalent to a system of 2Nd + Na linear equations with
respect to the variables w

(kl)
m and σ

(kl)
mn . The differential order of the system is equal to 2Nd (both with

respect to x1 and t).
Condition (15) imply Nd stress boundary-value conditions:

σ
(ij)
11 (t, a1) = 0, i + j ≤ N ; σ

(kl)
12 (t, a1) = σ

(kl)
13 (t, a1) = 0, k + l ≤ N − 1. (30)
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Condition (16) and the form of approximations (25) yield Nd homogeneous displacement conditions:

w
(ij)
1 (t,−a1) = 0, i + j ≤ N ; w

(kl)
2 (t,−a1) = w

(kl)
3 (t,−a1) = 0, k + l ≤ N − 1. (31)

The initial-value conditions for the displacement functions directly follow from (18):

w
(ij)
1 (0, x1) = 0, i + j ≤ N ; w

(kl)
2 (0, x1) = w

(kl)
3 (0, x1) = 0, k + l ≤ N − 1;

w
(ij)
1,t (0, x1) = 0, i + j ≤ N ; w

(kl)
2,t (0, x1) = w

(kl)
3,t (0, x1) = 0, k + l ≤ N − 1. (32)

To obtain a consistent system, the differential equation with respect to the displacement function y1(t)
for the beam section (see (16)) and the initial-value conditions (17) have to be added to relations (26),
(27), and (29)–(32).

4.2. The eigenvalue problem

To solve the finite-dimensional problem posed in partial derivatives, we represent the sought functions
(25) as follows (see [7]):

w1(t,x) =
M−1∑

i=1

w̃1,i(x)yi+1(t), w3(t,x) =
M−1∑

i=1

w̃3,i(x)yi+1(t),

w2(t,x) = y1(t) +
M−1∑

i=1

w̃2,i(x)yi+1(t), σ =
M−1∑

i=1

σ̃i(x)yi+1(t), (33)

where M is a given positive number.
Apply substitution (33) and change the variables as follows: yj(t) = exp(iωt), j = 1, . . . ,M . This

reduces problem (26), (27), (29)–(32), which is a partial derivative problem, to a system of ordinary
differential equations with respect to x1 with homogeneous boundary-value conditions posed on the
beam end-sides (this is the problem to find eigenfrequencies ω).

Once the eigenvalue problem is solved, one can take into account the notation introduced by (25)
and represent the solution as follows (see [2]):

w̃1 =
N∑

k+l=0

w̃
(kl)
1 (x1)x̃k

2 x̃l
3, w̃n =

N−1∑

k+l=0

w̃(kl)
n (x1)x̃k

2 x̃l
3,

σ̃11 =
N∑

k+l=0

σ̃
(kl)
11 (x1)x̃k

2 x̃l
3, σ̃nn = gn

N∑

k+l=0

σ̃(kl)
nn (x1)x̃k

2 x̃l
3,

σ̃1n = gn

N−1∑

k+l=0

σ̃
(kl)
1n (x1)x̃k

2 x̃l
3, σ̃23 = g2g3

N−2∑

k+l=0

σ̃
(kl)
23 (x1)x̃k

2 x̃l
3. (34)

Here w̃
(kl)
i (x1) and σ̃

(kl)
ij (x1) are the components of the corresponding eigenvectors.

In the sequel, we investigate the special case of oscillations of a homogeneous isotropic beam
such that its cross-section is a square (a2 = a3). Introducing the characteristic length x̃ = a2 and
time t̃ = a2

√
ρ/E, where E is the Young module, one can reduce all the considered linear elasticity

equations to a dimensionless form. The only two parameters left in the system are the beam relative
length a = a1/a2 and the Poisson coefficient ν. The unknown is the dimensionless frequency ω̃ = t̃ω.
For simplicity, the symbol “̃ ” is omitted. In the sequel, the following values are used for the computation:
ν = 0.3 and a = 20.

To increase the efficiency of the numerical algorithm, one can take into account the symmetry
properties of the problem. Since the cross-section of the beam has two symmetry axes, it follows that
the system of equations (26), (27), and (29) can be divided into four independent subsystems according
to the evennes of the polynomial part of base functions from (34): the said subsystems approximately
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Table 1. The symmetry property of base functions ∼ xN2
2 xN3

3

Extension along Ox1 Bend around Ox2 Bend around Ox3 Torsion around Ox1

N2 N3 N2 N3 N2 N3 N2 N3

w1, σjj 2n 2n 2n 2n + 1 2n + 1 2n 2n + 1 2n + 1

w2, σ12 2n − 1 2n− 2 2n − 1 2n − 1 2n 2n 2n 2n + 1

w3, σ13 2n − 2 2n− 1 2n 2n 2n − 1 2n − 1 2n + 1 2n

σ23 2n − 3 2n− 3 2n − 1 2n − 2 2n − 2 2n − 1 2n 2n

describe the extension–contraction, bends with respect to the axis Ox2, bends with respect to the axis
Ox3, and the torsion of the beam (see [2]).

For various eigenmotions, Table 1 provides the greatest degrees N2(n) and N3(n) of the variables x2

and x3 contained in the approximations of displacement and stresses (34). Here j = 1, 2, 3, while the
positive integer n determines the differential order of the corresponding boundary-value problem. The
evenness (oddness) of the numbers N2 and N3 characterizes symmetry (antisymmetry) properties of the
displacement and stress functions with respect to the coordinate planes Ox2 and Ox3 respectively. If at
least one of those numbers is less than zero, then there are no corresponding functions.

The order of the system of differential equations is equal to (n + 1)(3n + 2) for the extension–
contraction problem, to (n + 1)(3n + 4) for the bending problems, and to (n + 1)(3n + 6) for the torsion
problem. The least possible dimensions of the approximations from representation (34) are equal to 2, 4,
and 6 respectively.

Since we consider the case where the end of beam for x1 = −a1 moves along the axis Ox2 according
to (16), it follows that only bending oscillations with respect to the axis Ox3 arise in the system.

For example, consider the eigenfrequency problem for bending oscillations of a beam, assuming that
its cross-section is a square and n = 0. For this case, the functions from (34) have the form

w̃1 = w̃
(10)
1 (x1)x2, w̃2 = w̃

(00)
2 (x1),

σ̃11 = σ̃
(10)
11 (x1)x2, σ̃12 = σ̃

(00)
12 (x1)(1 − x2

2),

σ̃22 = σ̃
(10)
22 (x1)x2(1 − x2

2), w̃3 = σ̃13 = σ̃23 = σ̃33 = 0. (35)

Then the resulting system of the differential-algebraic equations (26), (27), (29) can be represented as
the system

4
3

dσ̃
(10)
11

dx1
− 8

3
σ̃

(00)
12 +

4
3
ω2w̃

(10)
1 = 0,

8
3

dσ̃
(00)
12

dx1
+ 4ω2w̃

(00)
2 = 0,

16
45

dσ̃
(00)
12

dx1
+

16
15

σ̃
(10)
22 = 0,

4
3

dw̃
(10)
1

dx1
− 4

3
σ̃

(10)
11 +

4
25

σ̃
(10)
22 = 0,

4
3

dw̃
(00)
2

dx1
+

4
3
w̃

(10)
1 − 208

75
σ̃

(00)
12 = 0 (36)

with the boundary-value conditions

w̃
(10)
1 (−a1) = w̃

(00)
2 (−a1) = σ̃

(10)
11 (a1) = σ̃

(00)
12 (a1) = 0. (37)

Eigenvalues ω are found from system (36): they are roots of the characteristic equation

4
3

λ4 +
406
75

ω2λ2 − 4ω2 +
104
25

ω4 = 0, (38)

where λ is the corresponding wave number.
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Table 2. Eigenfrequencies ωi of a cantilever beam

i 1 2 3 4

ωc
i 1.269× 10−3 7.951× 10−3 2.226 × 10−2 4.363 × 10−2

n = 0, ω0
i 1.266× 10−3 7.843× 10−3 2.157 × 10−2 4.123 × 10−2

n = 1, ω1
i 1.269× 10−3 7.861× 10−3 2.162 × 10−2 4.135 × 10−2

(ωc
i − ω0

i )/ω0
i 0.2% 1.4% 3.2% 5.8%

(ω1
i − ω0

i )/ω0
i 0.21% 0.22% 0.25% 0.29%

Δ1
i 0.30% 0.31% 0.32% 0.33%

To compare, consider the characteristic equation for the Timoshenko beam with the same parameters
(see [9]):

4
3

λ4 +
412
75

ω2λ2 − 4ω2 +
104
25

ω4 = 0. (39)

We see that the only difference between equations (38) and (39) is the coefficient at λ2 and the value of
that difference is less than 2%.

To compute eigenfrequencies and oscillation shapes of beams more precisely, one has to apply higher
powers of polynomial approximations (n > 0). The initial three rows of Table 2 provide the values of
the four lowest eigenfrequencies for the oscillations of a cantilever beam with a square cross-section
for the Euler–Bernoulli model and for the model proposed in the present paper with n = 0 and n = 1
(respectively). The third and fourth lines show the difference of between frequencies obtained in the
framework of those approximations. The difference between the obtained frequencies and the ones
computed according to the Euler–Bernoulli model is substantial: it achieves 5.8% already for the fourth
mode. The last row shows the relative error Δ1

i of the computation of the ith eigenshape of the oscillations
(for n = 1) according to the integral criterion (10).

4.3. The system of ordinary differential equations with respect to time

To construct the system of ordinary differential equations with respect to t, take the approximations
from (33) and substitute the eigenshapes of oscillations from (34), corresponding to the frequencies
ωi, i = 1, . . . ,M − 1, for the displacement functions w̃i(x) and stress functions σ̃i(x). The obtained
approximations are substituted in the integral equations from (26), (27), and (29). In relations (26) and
(27), the vector vt and the tensor ξ are projected to the base vector-functions ri(x) and si(x) with the
components

r̃1,i =
N∑

k+l=0

r̃
(kl)
1,i (x1)x̃k

2x̃
l
3, r̃n,i =

N+1∑

k+l=0

r̃
(kl)
n,i (x1)x̃k

2x̃
l
3,

s̃1,i =
N∑

k+l=0

s̃
(kl)
1,i (x1)x̃k

2x̃
l
3, s̃n,i =

N−1∑

k+l=0

s̃
(kl)
n,i (x1)x̃k

2x̃
l
3. (40)

To find the unknown functions r̃
(kl)
j,i (x1) and s̃

(kl)
j,i (x1), j = 1, 2, 3, we solve the adjoint boundary-value

eigenvalue problem (see [10]).
The above choice of such projections reduces the integral equations from (26), (27), and (29) to the

diagonal form

ÿj = −ω2
j−1yj + bM+ju(t), j = 2, . . . ,M, (41)

where ωi, i = 1, . . . ,M − 1, are the approximate eigenfrequencies obtained for the selected approxima-
tion degree n, while bk, k = M + 1, . . . , 2M , are the control coefficients.
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5. THE FINITE-DIMENSIONAL CONTROL PROBLEM

Taking into account the boundary-value conditions (17), (32), transform system (41), joining the
equation with respect to y1(t) from (16), to the form

ẏj = yM+j, j = 1, . . . ,M,

ẏM+j = −ω2
j−1yj + bM+ju(t), j = 1, . . . ,M,

yk(0) = 0, k = 1, . . . , 2M. (42)

The new variables yM+j(t) are derivatives of yj(t) with respect to time. Also, we assume that the
frequency ω0 is equal to zero and the control coefficient bM+1 is equal to one.

System (42) can be represent in the vector form

ẏ(t) = f(y, u) = Ay(t) + bu(t) (43)

with the homogeneous initial-value conditions

y(0) = 0 (44)

and the terminal relations

y(T ) = (yT , 0, . . . , 0)T (45)

implied by (19).

Here y = (y1(t), . . . , y2M (t))T is the vector of phase variables, A from R
2M×2M is a constant matrix,

and b ∈ R
2M is a constant vector.

Thus, (43) is a finite-dimensional dynamical system approximately determining lateral motions of the
considered elastic body. For this system, we pose the optimal control problem corresponding to problem
(18)–(20): to find a control function u∗(t) moving the linear system (43) from the zero state (44) to the
terminal state (45) of rest, where T is fixed, and minimizing the quality functional:

J̃ [u∗] = min
u∈L2(0,T )

J̃ [u]. (46)

Here the quadratic integral

J̃ =

T∫

0

f0(t) dt, f0 =
1
2

u2(t) +
γ

2
y(t)TWy(t), (47)

is obtained by means of the discretization of the functional J introduced in (21).

Introducing the vector z(t) ∈ R
2M of adjoint variables, one can define the Hamiltonian of the system

according to the Pontrjagin maximum principle (see [11]):

H[y, z, u] = −f0 + fTz. (48)

Using (48), represent the adjoint system of equations as follows:

ż(t) = −∂H
∂y

= γWy(t) −ATz(t). (49)

Then the optimal control treated as a linear function of adjoint variables is

u = bTz(t). (50)

Substitute this function in equation (43). Then the problem to find optimal motions is reduced to the
boundary-value problem (43)–(45), (49), (50).
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Fig. 2. The optimal control law u(t).
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Fig. 3. The variation of the control Δu(t) under the growth of the dimension of the provlem.

6. NUMERICAL RESULTS

To illustrate the work of the proposed algorithm to find controlled motions of a prism-shaped elastic
body, we select the approximation dimensions n = 1, M = 4, and 5 and the control parameters yT = 20,
T = 5000, and γ = 5 · 10−7. The control time T exceeds the oscillation period of the beam with respect
to the first mode T1 � 4952, while the displacement yT is equal to a half of the dimensionless length of
the beam a.

Figure 2 provides the optimal control law u(t) obtained for the approximation parameter M = 5 (only
the four initial oscillation modes are taken into account). This function slightly differs from the control
obtained for M = 4, which is demonstrated by Fig. 3 providing the difference Δu(t) between those two
laws. From both figures, it follows that, taking into account the additional oscillation mode in the model,
we add a negligible high-frequency component to the control.

Figure 4 provides the displacements w2(t,x±) of the two points of an elastic body; their coordinates
in the phase plane are x± = (±a, 0, 0). The dashed curve shows the location and velocity of the point
lying at the middle of the boundary cross-section of the beam (x1 = −a) moving as a rigid body. The
dense curve denotes the phase trajectory of the point x1 = a placed at the middle of the boundary cross-
section free from external loads. The difference between those curves shows that the optimal control law
generates substantial elastic deformations for the selected set of parameters.

The energy distribution with respect to oscillation modes is shown at Fig. 4. The solid curve E1(t)
is the variation of the kinetic energy corresponding to the translational movement of the beam. The said
energy is proportional to the second power of the variable ẏ1(t). The dashed curve E2(t) corresponds
to the kinetic energy of the first oscillation mode, while the dash-dotted curve E3(t) corresponds to the
second one. The values of those energies are proportional to ẏ2

2(t) and ẏ2
3(t) respectively. The graph does
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Fig. 4. The displacements (in the phase plane) of points x± of boundary cross-sections.
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Fig. 5. The variation of the kinetic energy Ei(t) of lower modes.

not show other energies because their values are negligible. The main elastic motions refer to the first
mode and are comparable (with respect to the energy) with the motion of the whole beam as a rigid body.

To obtain more precise optimal control law u∗(t) for the motion of an elastic body and to find
the corresponding fields of displacements, stresses, and momenta, it is necessary to increase (in a
coordinated way) both the order n of the polynomial expansion and the number M of modes taken
into account (provided that it is affordable due to computational resources). Note that high-frequency
oscillations of the control function are caused by the growth of the model dimension; this might
substantially complicate the implementation of the obtained laws in technical applications.
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