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1. INTRODUCTION

It was shown in [1] that under the assumption of uniform integrability of jumps of local martingales
the weak convergence of a sequence of local martingales to a continuous Gaussian martingale holds if
and only if a convergence in probability of corresponding quadratic variations takes place. It should be
noted that some particular cases of this result may be found in [1] (see also [2, 3]).

Many authors have investigated the weak convergence of martingale difference arrays and for scheme
of a series of Hilbert-valued random variables [4–9]. The aim of this work is to disseminate the results
of [1] on the case of local martingales with values in a Hilbert space.

Let (Ω,F ,P) be a complete probability space, Fn = (Fn
t )t≥0 , n ≥ 1 and F = (Ft)t≥0 be non-

decreasing right-continuous family of σ-algebras of F such that the σ-algebras Fn
0 and F0 contain

the P zero sets from F . We denote by M(H), Mloc(H), Mc
loc(H), Md

loc(H), M2
loc(H) the classes

of uniformly integrable martingales, local martingales, locally continuous, purely discontinuous local
martingales and locally square-integrable martingales X = (Xt,Ft; H),X0 = 0 with values in Hilbert
space H.

Let X be Hilbert-valued process. Then for i ≥ 1 we denote by xi-process (xi)t = (ei,Xt), where
{ei} is orthonormal basis in H. For X ∈ M2

loc(H) we have the set of real predictable processes of
locally integrable variation (〈xi, xj〉)i,j≥1 such that xixj − 〈xi, xj〉 is local martingale (〈xi〉 ≡ 〈xi, xi〉).
In addition, there is a real predictable increasing process 〈M〉 such that ||M ||2 − 〈M〉 is local martingale
and 〈M〉 =

∑∞
i=1 < mi,mi >. For X ∈ Mloc(H) we denote by [X]t ≡ 〈Xc〉t +

∑
0<s≤t ||ΔXs||2,

[xi, xj]t ≡ 〈xc
i , x

c
j〉t +

∑
s≤t Δ(xi)sΔ(xj)s.

Suppose further that M is continuous Gaussian martingale with values in Hilbert space. Then
(〈mi,mj〉)i,j≥1 are continuous and deterministic functions, and quadratic variation is 〈M〉t = E||Mt||2.
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2. THE RESULTS

Theorem 1. Let Xn ∈ Mloc(H), n ≥ 1 satisfies the condition (R): for any t > 0 the set of
random variables (sup0<s≤t ||ΔXn

s ||) is uniformly integrable. Then the conditions

[xn
i , xn

j ]t
P−→ 〈mi,mj〉t, [Xn]t

P−→ 〈M〉t, i, j ≥ 1, t > 0, (1)

holds if and only if Xn D−→ M .
Corollary 1. Let Xn ∈ Mc

loc(H), n ≥ 1, then the conditions

〈xn
i , xn

j 〉t
P−→ 〈mi,mj〉t, 〈Xn〉t

P−→ 〈M〉t, i, j ≥ 1, t > 0, (2)

holds if and only if Xn D−→ M .
The semimartingale Xn = (Xn

t ,Ft; H) has a canonical representation [10]:

Xn
t = X0 + Bn

t + Mnc
t +

1∫

0

∫

||x||≤1

xd(μn − νn) +

t∫

0

∫

||x||>1

xμn (ds, dx) ,

where Bn = (Bn
t ,Ft; H) is predictable process of class Aloc(H) (processes with locally integrable

variation), Mnc ∈ Mc
loc(H), μn = μn(ds, dx) is an integer-valued random measure associated to jumps

of Xn and νn = νn(ds, dx) its compensator. Then from the theorem 2 in [11] it follows that for
Xn ∈ Mloc(H)

Bn
t = −

t∫

0

∫

||x||>1

xdνn.

Furthermore, Bn = Bnc + Bnd, where

Bnd
t = −

∑

0<s≤t

∫

||x||>1

xνn({s}, dx).

Consequently, the variation Vt(Bnd) of the function Bnd on the interval [0, t] is defined by the formula:

Vt(Bnd) =
∑

0<s≤t

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∫

||x||>1

xνn({s}, dx)

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
. (3)

Theorem 2. Let Xn ∈ Mloc(H), n ≥ 1 satisfies the condition

sup
0<s≤t

||Bnc
s || + Vt(Bnd) P−→ 0, t > 0. (4)

Then the conditions (1) holds if and only if Xn D−→ M .
Corollary 2. Let Xn ∈ Mloc(H), n ≥ 1 quasi-continuous from the left (for any predictable

stopping time τΔXn
τ = 0) and satisfies the condition

sup
0<s≤t

||Bn
s ||

P−→ 0, t > 0. (5)

Then the conditions (1) holds if and only if Xn D−→ M .
Following [12], we introduce conditions for any t > 0 and n → ∞:

[mn1
i ,mn1

j ]t
P−→ 〈mi,mj〉t, [Mn1]t

P−→ 〈M〉t, i, j ≥ 1; (6)

〈mnε
i ,mnε

j 〉t P−→ 〈mi,mj〉t, 〈Mnε〉t P−→ 〈M〉t, ε > 0, i, j ≥ 1. (7)
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Corollary 3. Let Xn ∈ M2
loc(H), n ≥ 1, satisfies Lindeberg condition:

t∫

0

∫

||x||>ε

||x||2νn(ds, dx) P−→ 0, ε > 0. (8)

Then the following statements are equivalent:

(1) ⇔ (6) ⇔ (7) ⇔ (2) ⇔ (Xn D−→ M).

3. THE PROOFS

3.1. The Proof Theorem 1 and Corollary 1

Following [12], we introduce conditions for any t > 0 and n → ∞:
t∫

0

∫

||x||>ε

νn(ds, dx) P−→ 0, ε ∈ (0, 1], (9)

sup
0<s≤t

||Bn
s ||

P−→ 0, (10)

Following the scheme proposed in [1] for the one-dimensional case, in accordance with the [12] it
suffices to establish the following implications hold:

(R, 1) ⇒1) (R, 1, 9) ⇒2) (R, 1, 9, 10) ⇒3) (R, 9, 10, 6) ⇒4) (R,Xn D−→ M) ⇒5) (R,Xn D−→ M, 9)

⇒6) (R,Xn D−→ M, 9, 10) ⇒7) (R, 9, 10, 6) ⇒8) (R, 1).

To this end, we prove that (1) ⇒ (9), (9, R) ⇒ (10), and verify that under conditions (9) and (R) condition
(1) is equivalent to (7).

Since 〈M〉 is non-decreasing continuous function, then by Lemma 1, in [13] from the condition (1)
we obtain

sup
s≤t

|[Xn,Xn]s − 〈M〉s|
P−→ 0, t > 0.

Since [M ]t = 〈M c〉t +
∑

s≤t ||ΔMs||2 then sups≤t ||ΔMs||2 P−→ 0 and from the condition (1) it follows

that sup0<s≤t ||ΔXs|| P−→ 0, t > 0, which is equivalent to (9) according to Theorem 2 in [12].

In order to check the relation (9, R) ⇒ (10), we note that the condition (9) by the Corollary from
Lenglart inequality [14] implies that

Zn
t =

t∫

0

∫

||x||>1

||x||dμn P−→ 0.

Variation of the function Bn has the property (3) and

Vt(Bn) ≤
t∫

0

∫

||x||>1

||x||dνn = Zn
t .

Then, since ||ΔZn
s || ≤ ||ΔXn

s ||, then from the condition (R) and the corollary of Lenglart inequality [14]

implies that Vt(Bn) P−→ 0, t > 0.

The inequality sup0<s≤t ||Bn
s || ≤ Vt(Bn) implies the validity of (9, R) ⇒ (10).
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To prove the equivalence (1) and (7) (under the conditions of (9) and (R)) we denote h = ei, ei + ej ;
i, j ≥ 1,

Jn
t (h) = [(Xn, h)]t − [(Mn, h)]t =

∑

0<s≤t

(ΔXn
s , h)2I(||ΔXn

s || > 1)

+ 2
∑

0<s≤t

(ΔXn
s , h)I(||ΔXn

s || ≤ 1)
∫

||x||≤1

(x, h)νn({s}, dx)

−
∑

0<s≤t

⎛

⎜
⎝

∫

||x||≤1

(x, h)νn({s}, dx)

⎞

⎟
⎠

2

.

Jn
t = [Xn]t − [Mn]t =

∑

0<s≤t

||ΔXn
s ||2I(||ΔXn

s || > 1)

+ 2
∑

0<s≤t

⎛

⎜
⎝ΔXn

s I(||ΔXn
s || ≤ 1),

∫

||x||≤1

xνn({s}, dx)

⎞

⎟
⎠

−
∑

0<s≤t

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

∫

||x||≤1

xνn({s}, dx)

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

2

.

Thus, it suffices to show that

(9, R) ⇒ Jn
t (h) P−→ 0, Jn

t
P−→ 0, t > 0. (11)

In the proof of Theorem 2 in [11] it has been shown that for s > 0
∫
H\{0} xνn({s}, dx) = 0 a.s. From

this and Vt(Bn) P−→ 0, t > 0 we have

|Jn
t (h)| ≤ ||h||2In

t , |Jn
t | ≤ In

t ,

In
t =

∑

0<s≤t

||ΔXn
s ||2I(||ΔXn

s || > 1) + 2Vt(Bnd) + V 2
t (Bnd). (12)

From the condition (9) and the corollary of Lenglart inequality [14] imply that
∑

0<s≤t

||ΔXn
s ||2I(||ΔXn

s || > 1) P−→ 0. (13)

We have already proved the implication (9, R) ⇒ Vt(Bn) P−→ 0. Thus from Vt(Bnd) ≤ Vt(Bn), (13) and
(12) we get (11).

So, the implications 1), 2), 3), 6) and 8) are proved and implications 4), 5) and 7) follow from [12].
This completes the proof of the theorem 1.

Corollary 1 is the evident consequence of Theorem 1.

3.2. The Proof of Theorem 2 and Corollaries

In the proof of Theorem 1, it was shown that (R, 1) ⇒ Vt(Bn) P−→ 0, t > 0. Hence the condition (4)
is satisfied. Further (4) ⇒ (10). Then from (9) and (4) implies the equivalence of (1) ⇔ (7) therefore

(4, 1) ⇒ (9, 10, 6) ⇒ Xn D−→ M .

On the other hand (4,Xn D−→ M) ⇒ (4, 9, 6) ⇒ (1). Since the function Bn is continuous a.s. for
quasi-left continuous process Xn [15] then corollary 2 follows from theorem 2.
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The proof corollary 3. For Xn ∈ M2
loc(H) we have

Xn
t = Xnc

t +

t∫

0

∫

||x||≤ε

x(μn − νn)(ds, dx) +

t∫

0

∫

||x||>ε

xμn(ds, dx) + Bnε
t ,

where Bnε
t = −

∫ t
0

∫
||x||>ε xνn(ds, dx) and

sup
s≤t

||Bnε
s || ≤

t∫

0

∫

||x||>ε

xνn(ds, dx) ≤ 1
ε

t∫

0

∫

||x||>ε

||x||2νn(ds, dx) P−→ 0.

Note that s > 0,
∫
H\{0} xνn({s}, dx) = 0 a.s. (see proof theorem 2 in [11]), therefore

〈(Xn, h)〉t = 〈(Xnc, h)〉t +

t∫

0

∫

H\{0}

(x, h)2νn(ds, dx),

[(Xn, h)]t = 〈(Xnc, h)〉t +

t∫

0

∫

H\{0}

(x, h)2μn(ds, dx),

the same way

〈Xn〉t = 〈Xnc〉t +

t∫

0

∫

H\{0}

||x||2νn(ds, dx),

[Xn]t = 〈Xnc〉t +

t∫

0

∫

H\{0}

||x||2μn(ds, dx).

Condition (8) and the corollary of Lenglart inequality [14] imply that
∫ t
0

∫
||x||>ε ||x||2μn(ds, dx) P−→ 0.

With these remarks Corollary follows easily from [12] and conditions (8).

4. THE COROLLARY FOR SUMS OF RANDOM VARIABLES

Let Xn
t =

∑[nt]
k=0 ξnk, Fn

t = σ{Xn
s , s ≤ t}, 0 ≤ t ≤ 1, ξn0 = 0, (ξnk) is the arrays of random variables

with values in Hilbert space, 0 ≤ k ≤ n, n ≥ 1. Later on we will be denote by W = (Wt,Ft; H)
Hilbert-valued Wiener process with covariance operator S (S-operator ), i.e. a continuous process with
independent increments that for any u < t, h ∈ H the real random variable (Wt −Wu, h) has a Gaussian
distribution with zero mean and variance (t − u)(Sh, h) [16].

Corollary 4. Let for any n ≥ 1 a sequence ξn = (ξnk,Fn
k ; H) is a martingale difference (i.e.

E||ξnk|| < ∞, E(ξnk|Fn
k−1) = 0, 1 ≤ k ≤ n) and the set of random variables (sup0≤k≤n ||ξnk||)n≥1

is uniformly integrable. Then the conditions
[nt]∑

k=0

(ξnk, ei)(ξnk, ej)
P−→ t(Sei, ej), i, j ≥ 1, (14)

[nt]∑

k=0

||ξnk||2
P−→ tT rS (15)

are necessary and sufficient for the convergence of Xn D−→ W .
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Proof. This corollary is a simple restatement of Theorem 1 for this special case.
Corollary 5. Let for each n ≥ 1 a sequence ξn = (ξnk,Fn

k ; H) is a square-integrable martingale
difference (i.e. E||ξnk||2 < ∞, E(ξnk|Fn

k−1) = 0, 1 ≤ k ≤ n and ξn0 = 0 for any n ≥ 1).

1) Let for all t ∈ [0, 1] the following conditions are satisfied:
n∑

k=1

E(||ξnk||2I(||ξnk|| > ε)|Fn
k−1)

P−→ 0, ε > 0, (16)

[nt]∑

k=1

E((ξnk, ei)(ξnk, ej)|Fn
k−1)

P−→ t(Sei, ej), i, j ≥ 1, (17)

n∑

k=1

E(||ξnk||2|Fn
k−1)

P−→ tT rS, (18)

then Xn D−→ W .
2) The conditions (14) and

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=0

||ξnk||2 − tT rS

∣
∣
∣
∣
∣
∣
→ 0 (19)

are also sufficient for the convergence of Xn D−→ W .
3) Let for any y ∈ H

lim sup
n

n∑

k=1

E(ξnk, y)2) ≤ (Sy, y), i, j ≥ 1, (20)

then conditions (14) and (16)–(19) are also necessary for the convergence of Xn D−→ W .
Proof. The sufficiency of (16)–(18) follows from Corollary 3.
It follows from (19) (see the proof of Corollary 6 in [2]) that

E

n∑

k=1

||ξnk||2I(||ξnk|| > ε) → 0.

Hence, from the condition of (14), (19), applying Corollary 3 we obtain the convergence of Xn D−→ W .

To prove the necessity we set y ∈ H and we note that the convergence of Xn D−→ W implies the
convergence of

(Xn, y)
√

(Sy, y)
D−→ w =

(W,y)
√

(Sy, y)
, (21)

where w is standard real Wiener process.
By Theorem 2 in [17] from (20) and (21) it follows that

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=1

E((ξnk, y)2
∣
∣
∣Fn

k−1) − t(Sy, y)

∣
∣
∣
∣
∣
∣
→ 0, (22)

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=1

(ξnk, y)2 − t(Sy, y)

∣
∣
∣
∣
∣
∣
→ 0, (23)
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i.e. conditions (17) and (14) are fulfilled. Further, we note that for any N > 1

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=0

||ξnk||2 − tT rS

∣
∣
∣
∣
∣
∣
≤

∞∑

i=N

n∑

k=1

E(ξnk, ei)2

+
N−1∑

i=1

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=1

(ξnk, ei)2 − t(Sei, ei)

∣
∣
∣
∣
∣
∣
+

∞∑

i=N

(Sei, ei).

Hence, (20) and (23) imply condition (19) and, as shown above, the condition (16).
The necessity of (18) follows from (20), (22) and the following relationship:

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=1

E(||ξnk||2|Fn
k−1) − tT rS

∣
∣
∣
∣
∣
∣
≤

∞∑

i=N

n∑

k=1

E(ξnk, ei)2

+
N−1∑

i=1

E

∣
∣
∣
∣
∣
∣

[nt]∑

k=1

E((ξnk, ei)2|Fn
k−1) − t(Sei, ei)

∣
∣
∣
∣
∣
∣
+

∞∑

i=N

(Sei, ei).

Remark 1. For the scheme of series of independent (for each n) random variables (ξnk), 1 ≤ k ≤ n,
in Corollary 4 and 5 conditional expectations are replaced by unconditional. For a fixed t = 1 Corollary 5
implies the following central limit theorem for series such random variables.

Corollary 6. Suppose for a scheme of series of independent square integrable random
variables with values in Hilbert space (ξnk), 0 ≤ k ≤ n, n ≥ 1, the following conditions:

n∑

k=1

E(ξnk, ei)(ξnk, ej) −→ (Sei, ej), i, j ≥ 1,
n∑

k=1

E||ξnk||2 −→ TrS. (24)

If, moreover,
n∑

k=1

E||ξnk||2I(||ξnk|| > ε) −→ 0 (25)

then Xn =
∑n

k=1 ξnk
d−→ N (0, S).

Remark 2. Let S
nisS-operator defined by (Sny, y) = E

∑n
k=1(ξnk, y)2, y ∈ H. Conditions (24) can

be rewritten as follows:
(Snei, ej) → (Sei, ej), i, j ≥ 1, (26)

TrS
n → TrS. (27)

One can easily verify that under the assumption (26) condition (27) is equivalent to compactness of the
family S-operator {Sn}, i.e.

sup
n

∞∑

i=1

(Snei, ei) < ∞, sup
n

∞∑

i=r

(Snei, ei) → 0, r → ∞. (28)

Thus, the conditions (24) are equivalent to (26), (28), which have been used in the works [4, 5] in the
proof of the corresponding central limit theorem, i.e. Corollary 6. It has been shown in [5] that under the
additional assumption

max
1≤k≤n

P (||ξnk|| > ε) → 0, ε > 0,

condition (25) is also necessary.
Remark 3. For t = 1 the first part of Corollary 5 is proved in [9]. The functional central limit theorem

for continuous processes built by partial sums of square-integrable martingale differences with a few
more stringent assumptions than (16)–(18), has been obtained in [8].

The first assertion of Corollary 5 implies the corresponding results of [4, 5, 8, 9].
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