A Functional Central Limit Theorem for Hilbert-Valued Martingales V. V. Lavrentyev* and L. V. Nazarov**

(Submitted by A. I. Volodin)

Laboratory of Statistical Analysis, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, 119991 Russia Received April 24, 2015

Abstract—Weak convergence of martingales with values in Hilbert space is studied in the paper. Necessary and sufficient conditions for the convergence to Gaussian martingale with continuous trajectories are obtained.

DOI: 10.1134/S1995080216020086

Keywords and phrases: *Hilbert space, martingale, weak convergence, functional central limit theorem.*

1. INTRODUCTION

It was shown in [1] that under the assumption of uniform integrability of jumps of local martingales the weak convergence of a sequence of local martingales to a continuous Gaussian martingale holds if and only if a convergence in probability of corresponding quadratic variations takes place. It should be noted that some particular cases of this result may be found in $[1]$ (see also $[2, 3]$).

Many authors have investigated the weak convergence of martingale difference arrays and for scheme of a series of Hilbert-valued random variables $[4-9]$. The aim of this work is to disseminate the results of [1] on the case of local martingales with values in a Hilbert space.

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a complete probability space, $F^n = (\mathcal{F}_t^n)_{t \geq 0}$, $n \geq 1$ and $F = (\mathcal{F}_t)_{t \geq 0}$ be nondecreasing right-continuous family of σ -algebras of $\cal F$ such that the σ -algebras ${\cal F}^n_0$ and $\cal F_0$ contain the ${\bf P}$ zero sets from ${\cal F}$. We denote by ${\cal M}({\mathbb H}),\ {\cal M}_{loc}({\mathbb H}),\ {\cal M}_{loc}^c({\mathbb H}),\ {\cal M}_{loc}^d({\mathbb H}),\ {\cal M}_{loc}^2({\mathbb H})$ the classes of uniformly integrable martingales, local martingales, locally continuous, purely discontinuous local martingales and locally square-integrable martingales $X = (X_t, \mathcal{F}_t; \mathbb{H}), X_0 = 0$ with values in Hilbert space H.

Let X be Hilbert-valued process. Then for $i \ge 1$ we denote by x_i -process $(x_i)_t = (e_i, X_t)$, where ${e_i}$ is orthonormal basis in H. For $X \in \mathcal{M}_{loc}^2(\mathbb{H})$ we have the set of real predictable processes of locally integrable variation $(\langle x_i, x_j \rangle)_{i,j\geq 1}$ such that $x_ix_j - \langle x_i, x_j \rangle$ is local martingale $(\langle x_i \rangle \equiv \langle x_i, x_i \rangle)$. In addition, there is a real predictable increasing process $\langle M \rangle$ such that $||M||^2 - \langle M \rangle$ is local martingale and $\langle M \rangle = \sum_{i=1}^{\infty} \langle m_i, m_i \rangle$. For $X \in \mathcal{M}_{loc}(\mathbb{H})$ we denote by $[X]_t \equiv \langle X^c \rangle_t + \sum_{0 \le s \le t} ||\Delta X_s||^2$, $[x_i, x_j]_t \equiv \langle x_i^c, x_j^c \rangle_t + \sum_{s \leq t} \Delta(x_i)_s \Delta(x_j)_s.$

Suppose further that M is continuous Gaussian martingale with values in Hilbert space. Then $(\langle m_i,m_j\rangle)_{i,j\geq 1}$ are continuous and deterministic functions, and quadratic variation is $\langle M\rangle_t=E||M_t||^2.$

^{*} E-mail: lavrent@cs.msu.ru

^{**}E-mail: nazarov@cs.msu.ru

2. THE RESULTS

Theorem 1. Let $X^n \in \mathcal{M}_{loc}(\mathbb{H}), n \ge 1$ *satisfies the condition* (R): *for any* $t > 0$ *the set of* $\mathit{random\ variables}\ (\sup_{0 < s \leq t} ||\Delta \dot{X}_{s}^{n}||)$ is uniformly integrable. Then the conditions

$$
[x_i^n, x_j^n]_t \xrightarrow{P} \langle m_i, m_j \rangle_t, \quad [X^n]_t \xrightarrow{P} \langle M \rangle_t, \quad i, j \ge 1, \quad t > 0,
$$
 (1)

holds if and only if $X^n \overset{D}{\longrightarrow} M.$

Corollary 1. *Let* $X^n \in \mathcal{M}_{loc}^c(\mathbb{H}), n \geq 1$, *then the conditions*

$$
\langle x_i^n, x_j^n \rangle_t \xrightarrow{P} \langle m_i, m_j \rangle_t, \quad \langle X^n \rangle_t \xrightarrow{P} \langle M \rangle_t, \quad i, j \ge 1, \quad t > 0,
$$
 (2)

holds if and only if $X^n \stackrel{D}{\longrightarrow} M.$

The semimartingale $X^n = (X_t^n, \mathcal{F}_t; \mathbb{H})$ has a canonical representation [10]:

$$
X_t^n = X_0 + B_t^n + M_t^{nc} + \int_0^1 \int_{\|x\| \le 1} x d(\mu^n - \nu^n) + \int_0^t \int_{\|x\| > 1} x \,\mu^n \,(ds, dx),
$$

where $B^n = (B_t^n, \mathcal{F}_t; \mathbb{H})$ is predictable process of class $\mathcal{A}_{loc}(\mathbb{H})$ (processes with locally integrable variation), $M^{nc}\in\mathcal{M}_{loc}^c(\mathbb{H}),$ $\mu^n=\mu^n(ds,dx)$ is an integer-valued random measure associated to jumps of X^n and $v^n = v^n(ds, dx)$ its compensator. Then from the theorem 2 in [11] it follows that for $X^n \in \mathcal{M}_{loc}(\mathbb{H})$

$$
B_t^n = -\int\limits_{0}^t \int\limits_{||x||>1} x d\nu^n.
$$

Furthermore, $B^n = B^{nc} + B^{nd}$, where

$$
B_t^{nd} = -\sum_{0 < s \le t} \int_{||x|| > 1} x \nu^n(\{s\}, dx).
$$

Consequently, the variation $V_t(B^{nd})$ of the function B^{nd} on the interval $[0,t]$ is defined by the formula:

$$
V_t(B^{nd}) = \sum_{0 < s \le t} \left| \left| \int_{||x|| > 1} x \nu^n(\{s\}, dx) \right| \right| \tag{3}
$$

Theorem 2. Let $X^n \in \mathcal{M}_{loc}(\mathbb{H}), n \geq 1$ *satisfies the condition*

$$
\sup_{0 < s \le t} ||B_s^{nc}|| + V_t(B^{nd}) \xrightarrow{P} 0, \quad t > 0. \tag{4}
$$

Then the conditions (1) holds if and only if $X^n \stackrel{D}{\longrightarrow} M$.

Corollary 2. *Let* $X^n \in \mathcal{M}_{loc}(\mathbb{H}), n \geq 1$ *quasi-continuous from the left (for any predictable* $stopping$ $time \tau \Delta X^n_{\tau} = 0$) and satisfies the condition

$$
\sup_{0 < s \le t} ||B_s^n|| \xrightarrow{P} 0, \quad t > 0. \tag{5}
$$

Then the conditions (1) holds if and only if $X^n \stackrel{D}{\longrightarrow} M$.

Following [12], we introduce conditions for any $t > 0$ and $n \to \infty$:

$$
[m_i^{n1}, m_j^{n1}]_t \xrightarrow{P} \langle m_i, m_j \rangle_t, \quad [M^{n1}]_t \xrightarrow{P} \langle M \rangle_t, \quad i, j \ge 1; \tag{6}
$$

$$
\langle m_i^{n\varepsilon}, m_j^{n\varepsilon} \rangle_t \xrightarrow{P} \langle m_i, m_j \rangle_t, \langle M^{n\varepsilon} \rangle_t \xrightarrow{P} \langle M \rangle_t, \varepsilon > 0, i, j \ge 1. \tag{7}
$$

Corollary 3. *Let* $X^n \in M_{loc}^2(\mathbb{H}), n \geq 1$, *satisfies Lindeberg condition:*

$$
\int_{0}^{t} \int_{||x||>\varepsilon} ||x||^{2} \nu^{n} (ds, dx) \xrightarrow{P} 0, \quad \varepsilon > 0.
$$
\n(8)

Then the following statements are equivalent:

$$
(1) \Leftrightarrow (6) \Leftrightarrow (7) \Leftrightarrow (2) \Leftrightarrow (X^n \xrightarrow{D} M).
$$

3. THE PROOFS

3.1. The Proof Theorem 1 and Corollary 1

Following [12], we introduce conditions for any $t > 0$ and $n \to \infty$:

$$
\int_{0}^{t} \int_{||x|| > \varepsilon} \nu^{n}(ds, dx) \xrightarrow{P} 0, \quad \varepsilon \in (0, 1],
$$
\n(9)

$$
\sup_{0 < s \le t} ||B_s^n|| \xrightarrow{P} 0,\tag{10}
$$

Following the scheme proposed in [1] for the one-dimensional case, in accordance with the [12] it suffices to establish the following implications hold:

$$
(R,1) \Rightarrow^{1} (R,1,9) \Rightarrow^{2} (R,1,9,10) \Rightarrow^{3} (R,9,10,6) \Rightarrow^{4} (R,X^{n} \xrightarrow{D} M) \Rightarrow^{5} (R,X^{n} \xrightarrow{D} M,9)
$$

$$
\Rightarrow^{6} (R,X^{n} \xrightarrow{D} M,9,10) \Rightarrow^{7} (R,9,10,6) \Rightarrow^{8} (R,1).
$$

To this end, we prove that $(1) \Rightarrow (9)$, $(9, R) \Rightarrow (10)$, and verify that under conditions (9) and (R) condition (1) is equivalent to (7).

Since $\langle M \rangle$ is non-decreasing continuous function, then by Lemma 1, in [13] from the condition (1) we obtain

$$
\sup_{s\leq t} |[X^n, X^n]_s - \langle M \rangle_s| \xrightarrow{P} 0, \quad t > 0.
$$

Since $[M]_t = \langle M^c \rangle_t + \sum_{s \le t} ||\Delta M_s||^2$ then $\sup_{s \le t} ||\Delta M_s||^2 \stackrel{P}{\to} 0$ and from the condition (1) it follows that $\sup_{0< s\leq t}||\Delta X_s||\stackrel{P}{\to} 0,\;\;\;t>0,$ which is equivalent to (9) according to Theorem 2 in [12].

In order to check the relation $(9, R) \Rightarrow (10)$, we note that the condition (9) by the Corollary from Lenglart inequality [14] implies that

$$
Z_t^n = \int_0^t \int_{||x||>1} ||x|| d\mu^n \xrightarrow{P} 0.
$$

Variation of the function $Bⁿ$ has the property (3) and

$$
V_t(B^n) \le \int_0^t \int_{||x||>1} ||x|| d\nu^n = Z_t^n.
$$

Then, since $||\Delta Z_s^n|| \le ||\Delta X_s^n||$, then from the condition (R) and the corollary of Lenglart inequality [14] implies that $V_t(B^n) \stackrel{P}{\longrightarrow} 0, t > 0.$

The inequality $\sup_{0\le s\le t}||B_s^n|| \le V_t(B^n)$ implies the validity of $(9, R) \Rightarrow (10)$.

To prove the equivalence (1) and (7) (under the conditions of (9) and (R)) we denote $h = e_i, e_i + e_j$; $i,j \geq 1$,

$$
J_t^n(h) = [(X^n, h)]_t - [(M^n, h)]_t = \sum_{0 < s \le t} (\Delta X_s^n, h)^2 I(||\Delta X_s^n|| > 1)
$$
\n
$$
+ 2 \sum_{0 < s \le t} (\Delta X_s^n, h) I(||\Delta X_s^n|| \le 1) \int_{||x|| \le 1} (x, h)\nu^n(\{s\}, dx)
$$
\n
$$
- \sum_{0 < s \le t} \left(\int_{||x|| \le 1} (x, h)\nu^n(\{s\}, dx) \right)^2.
$$
\n
$$
J_t^n = [X^n]_t - [M^n]_t = \sum_{0 < s \le t} ||\Delta X_s^n||^2 I(||\Delta X_s^n|| > 1)
$$
\n
$$
+ 2 \sum_{0 < s \le t} \left(\Delta X_s^n I(||\Delta X_s^n|| \le 1), \int_{||x|| \le 1} x\nu^n(\{s\}, dx) \right)
$$
\n
$$
- \sum_{0 < s \le t} \left| \int_{||x|| \le 1} x\nu^n(\{s\}, dx) \right|^2.
$$

Thus, it suffices to show that

$$
(9,R) \Rightarrow J_t^n(h) \xrightarrow{P} 0, \quad J_t^n \xrightarrow{P} 0, \quad t > 0.
$$
 (11)

In the proof of Theorem 2 in [11] it has been shown that for $s > 0 \int_{H \setminus \{0\}} x \nu^n(\{s\}, dx) = 0$ a.s. From this and $V_t(B^n) \stackrel{P}{\longrightarrow} 0, t > 0$ we have

$$
|J_t^n(h)| \le ||h||^2 I_t^n, \quad |J_t^n| \le I_t^n,
$$

$$
I_t^n = \sum_{0 < s \le t} ||\Delta X_s^n||^2 I(||\Delta X_s^n|| > 1) + 2V_t(B^{nd}) + V_t^2(B^{nd}). \tag{12}
$$

From the condition (9) and the corollary of Lenglart inequality [14] imply that

$$
\sum_{0 < s \le t} ||\Delta X_s^n||^2 I(||\Delta X_s^n|| > 1) \xrightarrow{P} 0. \tag{13}
$$

We have already proved the implication $(9, R) \Rightarrow V_t(B^n) \stackrel{P}{\to} 0$. Thus from $V_t(B^{nd}) \leq V_t(B^n)$, (13) and (12) we get (11).

So, the implications 1), 2), 3), 6) and 8) are proved and implications 4), 5) and 7) follow from [12]. This completes the proof of the theorem 1.

Corollary 1 is the evident consequence of Theorem 1.

3.2. The Proof of Theorem 2 and Corollaries

In the proof of Theorem 1, it was shown that $(R,1)\Rightarrow V_t(B^n)\stackrel{P}{\to} 0,$ $t>0.$ Hence the condition (4) is satisfied. Further (4) \Rightarrow (10). Then from (9) and (4) implies the equivalence of (1) \Leftrightarrow (7) therefore $(4,1) \Rightarrow (9,10,6) \Rightarrow X^n \stackrel{D}{\longrightarrow} M.$

On the other hand $(4, X^n \stackrel{D}{\longrightarrow} M) \Rightarrow (4, 9, 6) \Rightarrow (1)$. Since the function B^n is continuous a.s. for quasi-left continuous process X^n [15] then corollary 2 follows from theorem 2.

The proof corollary 3. For $X^n \in \mathcal{M}^2_{loc}(\mathbb{H})$ we have

$$
X_t^n = X_t^{nc} + \int\limits_0^t \int\limits_{\|x\| \le \varepsilon} x(\mu^n - \nu^n)(ds, dx) + \int\limits_0^t \int\limits_{\|x\| > \varepsilon} x\mu^n(ds, dx) + B_t^{n\varepsilon},
$$

where $B^{n\varepsilon}_t=-\int_0^t\int_{||x||>\varepsilon}x\nu^n(ds,dx)$ and

$$
\sup_{s\leq t}||B^{n\varepsilon}_s||\leq \int\limits_0^t\int\limits_{||x||>\varepsilon}x\nu^n(ds,dx)\leq \frac{1}{\varepsilon}\int\limits_0^t\int\limits_{||x||>\varepsilon}||x||^2\nu^n(ds,dx)\xrightarrow{P}0.
$$

Note that $s > 0$, $\int_{H \setminus \{0\}} x \nu^n(\{s\}, dx) = 0$ a.s. (see proof theorem 2 in [11]), therefore

$$
\langle (X^n, h) \rangle_t = \langle (X^{nc}, h) \rangle_t + \int_0^t \int_{H \setminus \{0\}} (x, h)^2 \nu^n(ds, dx),
$$

$$
[(X^n, h)]_t = \langle (X^{nc}, h) \rangle_t + \int_0^t \int_{H \setminus \{0\}} (x, h)^2 \mu^n(ds, dx),
$$

the same way

$$
\langle X^n \rangle_t = \langle X^{nc} \rangle_t + \int_0^t \int_{H \setminus \{0\}} ||x||^2 \nu^n(ds, dx),
$$

$$
[X^n]_t = \langle X^{nc} \rangle_t + \int_0^t \int_{H \setminus \{0\}} ||x||^2 \mu^n(ds, dx).
$$

Condition (8) and the corollary of Lenglart inequality [14] imply that $\int_0^t \int_{||x||>\varepsilon} ||x||^2 \mu^n(ds,dx) \stackrel{P}{\longrightarrow} 0.$ With these remarks Corollary follows easily from [12] and conditions (8).

4. THE COROLLARY FOR SUMS OF RANDOM VARIABLES

Let $X_t^n=\sum_{k=0}^{[nt]} \xi_{nk},$ $\mathcal{F}_t^n=\sigma\{X_s^n,s\leq t\},$ $0\leq t\leq 1,$ $\xi_{n0}=0,$ (ξ_{nk}) is the arrays of random variables with values in Hilbert space, $0 \le k \le n$, $n \ge 1$. Later on we will be denote by $W = (W_t, \mathcal{F}_t; \mathbb{H})$ Hilbert-valued Wiener process with covariance operator S (S-operator), i.e. a continuous process with independent increments that for any $u < t$, $h \in \mathbb{H}$ the real random variable $(W_t - W_u, h)$ has a Gaussian distribution with zero mean and variance $(t - u)(\mathbb{S}h, h)$ [16].

Corollary 4. Let for any $n \geq 1$ a sequence $\xi^n = (\xi_{nk}, \mathcal{F}_k^n; \mathbb{H})$ is a martingale difference (*i.e.* $|E||\xi_{nk}|| < \infty, E(\xi_{nk}|\mathcal{F}_{k-1}^n) = 0, 1 \leq k \leq n)$ and the set of random variables $(\sup_{0 \leq k \leq n} ||\xi_{nk}||)_{n \geq 1}$ *is uniformly integrable. Then the conditions*

$$
\sum_{k=0}^{[nt]} (\xi_{nk}, e_i)(\xi_{nk}, e_j) \xrightarrow{P} t(\mathbb{S}e_i, e_j), \quad i, j \ge 1,
$$
\n(14)

$$
\sum_{k=0}^{[nt]} ||\xi_{nk}||^2 \xrightarrow{P} tTr\mathbb{S}
$$
 (15)

are necessary and sufficient for the convergence of $X^n \overset{D}{\longrightarrow} W.$

Proof. This corollary is a simple restatement of Theorem 1 for this special case.

Corollary 5. Let for each $n \geq 1$ a sequence $\xi^n = (\xi_{nk}, \mathcal{F}_k^n; \mathbb{H})$ is a square-integrable martingale d *ifference* (i.e. $E||\xi_{nk}||^2 < \infty$, $E(\xi_{nk}|\mathcal{F}_{k-1}^n) = 0, 1 \leq k \leq n$ and $\xi_{n0} = 0$ for any $n \geq 1$).

1) Let for all $t \in [0,1]$ the following conditions are satisfied:

$$
\sum_{k=1}^{n} E(||\xi_{nk}||^2 I(||\xi_{nk}|| > \varepsilon) | \mathcal{F}_{k-1}^n) \xrightarrow{P} 0, \quad \varepsilon > 0,
$$
\n(16)

$$
\sum_{k=1}^{[nt]} E((\xi_{nk}, e_i)(\xi_{nk}, e_j)|\mathcal{F}_{k-1}^n) \xrightarrow{P} t(\mathbb{S}e_i, e_j), \quad i, j \ge 1,
$$
\n(17)

$$
\sum_{k=1}^{n} E(||\xi_{nk}||^2 | \mathcal{F}_{k-1}^n) \xrightarrow{P} tTr\mathbb{S},
$$
\n(18)

then $X^n \stackrel{D}{\longrightarrow} W$.

2) *The conditions* (14) *and*

$$
E\left|\sum_{k=0}^{[nt]}||\xi_{nk}||^2 - tTr\mathbb{S}\right| \to 0
$$
\n(19)

are also sufficient for the convergence of $X^n \overset{D}{\longrightarrow} W.$ 3) *Let* for any $y \in \mathbb{H}$

$$
\limsup_{n} \sum_{k=1}^{n} E(\xi_{nk}, y)^2 \le (\mathbb{S}y, y), \quad i, j \ge 1,
$$
\n(20)

then conditions (14) and (16)–(19) are also necessary for the convergence of $X^n \stackrel{D}{\longrightarrow} W.$

Proof. The sufficiency of (16)–(18) follows from Corollary 3.

It follows from (19) (see the proof of Corollary 6 in [2]) that

$$
E\sum_{k=1}^{n}||\xi_{nk}||^2I(||\xi_{nk}||>\varepsilon)\to 0.
$$

Hence, from the condition of (14), (19), applying Corollary 3 we obtain the convergence of $X^n \stackrel{D}{\longrightarrow} W.$

To prove the necessity we set $y\in\mathbb{H}$ and we note that the convergence of $X^n\stackrel{D}{\to} W$ implies the convergence of

$$
\frac{(X^n, y)}{\sqrt{(\mathbb{S}y, y)}} \xrightarrow{D} w = \frac{(W, y)}{\sqrt{(\mathbb{S}y, y)}},
$$
\n(21)

where w is standard real Wiener process.

By Theorem 2 in [17] from (20) and (21) it follows that

$$
E\left|\sum_{k=1}^{[nt]} E((\xi_{nk}, y)^2 \Big| \mathcal{F}_{k-1}^n) - t(\mathbb{S}y, y)\right| \to 0,
$$
\n(22)

$$
E\left|\sum_{k=1}^{[nt]}(\xi_{nk},y)^2 - t(\mathbb{S}y,y)\right| \to 0,
$$
\n(23)

i.e. conditions (17) and (14) are fulfilled. Further, we note that for any $N > 1$

$$
E\left|\sum_{k=0}^{[nt]}||\xi_{nk}||^2 - tTr\mathbb{S}\right| \le \sum_{i=N}^{\infty}\sum_{k=1}^{n} E(\xi_{nk}, e_i)^2 + \sum_{i=1}^{N-1} E\left|\sum_{k=1}^{[nt]}(\xi_{nk}, e_i)^2 - t(\mathbb{S}e_i, e_i)\right| + \sum_{i=N}^{\infty} (\mathbb{S}e_i, e_i).
$$

Hence, (20) and (23) imply condition (19) and, as shown above, the condition (16).

The necessity of (18) follows from (20) , (22) and the following relationship:

$$
E\left|\sum_{k=1}^{[nt]} E(||\xi_{nk}||^2 | \mathcal{F}_{k-1}^n) - tTr\mathbb{S}\right| \le \sum_{i=N}^{\infty} \sum_{k=1}^n E(\xi_{nk}, e_i)^2 + \sum_{i=1}^{N-1} E\left|\sum_{k=1}^{[nt]} E((\xi_{nk}, e_i)^2 | \mathcal{F}_{k-1}^n) - t(\mathbb{S}e_i, e_i)\right| + \sum_{i=N}^{\infty} (\mathbb{S}e_i, e_i).
$$

Remark 1. For the scheme of series of independent (for each *n*) random variables (ξ_{nk}) , $1 \leq k \leq n$, in Corollary 4 and 5 conditional expectations are replaced by unconditional. For a fixed $t = 1$ Corollary 5 implies the following central limit theorem for series such random variables.

Corollary 6. *Suppose for a scheme of series of independent square integrable random variables with values in Hilbert space* $(\xi_{nk}), 0 \leq k \leq n, n \geq 1$, *the following conditions:*

$$
\sum_{k=1}^{n} E(\xi_{nk}, e_i)(\xi_{nk}, e_j) \to (\mathbb{S}e_i, e_j), \quad i, j \ge 1, \quad \sum_{k=1}^{n} E||\xi_{nk}||^2 \to Tr\mathbb{S}.
$$
 (24)

If, moreover,

$$
\sum_{k=1}^{n} E||\xi_{nk}||^2 I(||\xi_{nk}|| > \varepsilon) \to 0
$$
\n(25)

then $X^n = \sum_{k=1}^n \xi_{nk} \stackrel{d}{\rightarrow} \mathcal{N}(0, \mathbb{S}).$

Remark 2. Let \mathbb{S}^n is S-operator defined by $(\mathbb{S}^n y, y) = E \sum_{k=1}^n (\xi_{nk}, y)^2, y \in \mathbb{H}$. Conditions (24) can be rewritten as follows:

$$
(\mathbb{S}^n e_i, e_j) \to (\mathbb{S}e_i, e_j), i, j \ge 1,
$$
\n
$$
(26)
$$

$$
Tr\mathbb{S}^n \to Tr\mathbb{S}.\tag{27}
$$

One can easily verify that under the assumption (26) condition (27) is equivalent to compactness of the family S-operator $\{\mathbb{S}^n\}$, i.e.

$$
\sup_{n}\sum_{i=1}^{\infty}(\mathbb{S}^{n}e_{i},e_{i})<\infty,\quad\sup_{n}\sum_{i=r}^{\infty}(\mathbb{S}^{n}e_{i},e_{i})\to 0,r\to\infty.
$$
\n(28)

Thus, the conditions (24) are equivalent to (26) , (28) , which have been used in the works [4, 5] in the proof of the corresponding central limit theorem, i.e. Corollary 6. It has been shown in [5] that under the additional assumption

$$
\max_{1 \le k \le n} P(||\xi_{nk}|| > \varepsilon) \to 0, \quad \varepsilon > 0,
$$

condition (25) is also necessary.

Remark 3. For $t = 1$ the first part of Corollary 5 is proved in [9]. The functional central limit theorem for continuous processes built by partial sums of square-integrable martingale differences with a few more stringent assumptions than (16) – (18) , has been obtained in [8].

The first assertion of Corollary 5 implies the corresponding results of [4, 5, 8, 9].

REFERENCES

- 1. R. Sh. Liptser and A. N. Shiryaev, Z. Wahrscheinlichkeitstheorie verw. Gebiete **59** (3), 311–318 (1982).
- 2. R. Sh. Liptser and A. N. Shiryaev, Theory Probab. Appl. **26** (1), 130–135 (1981).
- 3. J. Jacod and A. Shiryaev, *Limit Theorems for Stochastic Processes* (Springer, Berlin etc., 2002).
- 4. N. Kandelaki and V. Sazonov, C. R. Acad. Sci. Paris **256**, 2095–2096 (1963).
- 5. N. P. Kandelaki and V. V. Sazonov, Theory Probab. Appl. **9**, 38–46 (1964).
- 6. V. M. Kruglov, Theory Probab. Appl. **17**, 199–217 (1972).
- 7. V. M. Kruglov, Studia Sci. Math. Hungar. **9** (102), 33–44 (1974).
- 8. H. Walk, Z. Wahrscheinlichkeitstheorie verw. Gebiete **39**(3), 135–150 (1977).
- 9. A. Jakubowski, *On Limit Theorems for sums of dependent Hilbert space valued random variables*, Lect. Notes Statist. **2**, 178–187 (1980).
- 10. V. V. Lavrentyev, *Canonical Representations of Hilbert-valued Semimartingales*, Herald of Tver State University. Series: Applied Mathematics **20**, 123–130 (2011) [in Russian].
- 11. V. V. Lavrent'ev, Vestn. Tv. Gos. Univ. Ser. Prikl. Mat., No. 17, 13–19 (2010).
- 12. V. V. Lavrent'ev, Sov. Math. Dokl. **27**, 548–552 (1983).
- 13. D. L. McLeish, Ann. Probab. **6**, 144–150 (1978).
- 14. E. Lenglart, Ann. Inst. H. Poincare. Sect. B ´ **13** (2), 171–179 (1977).
- 15. L. I. Gal'chuk, Theory Probab. Appl. **23** (4), 751–763 (1979).
- 16. M. Metivier and J. Pellaumail, *Stochastic Integration* (Academic, New York, 1980).
- 17. P. Gänssler and E. Häusler, Z. Wahrscheinlichkeitstheorie verw. Gebiete 50 (3), 237–243 (1979).