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Abstract—In the present paper we establish the necessary and sufficient conditions for two general-
ized Abel differential equations to be locally equivalent under the action of the pseudogroup of linear
transformations of the form {x �→ f(x), y �→ g(x) · y + h(x)}. These conditions are formulated in
terms of differential invariants.
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1. INTRODUCTION

The first kind Abel differential equation is the ODE of the form

y′ = a(x)y3 + b(x)y2 + c(x)y + d(x). (1)

It was introduced by Abel in the paper [1]. In what follows we assume that the functions a, b, c, d are of
class C∞ and that a �= 0.

The pseudogroup G of point transformations of the form

x �→ f(x), y �→ g(x) · y + h(x), f, g, h ∈ C∞(R), (2)

preserves the class of such ODEs. The problem of equivalence of equations (1) under the action of
this pseudogroup was studied in the papers of Liouville [4] and Appell [2]. There are two basic relative
invariants (i.e. functions F in coefficients of ODE (1) and their derivatives, for which the equality F = 0
remains invariant under the action of G):

s1 = a, s3 = a′b − b′a + abc − 2
9
b3 − 3a2d.

Starting from s3 one can construct a sequence of relative invariants by the formula

s2n+1 = a
ds2n−1

dx
− (2n − 1)s2n−1

(
a′ + ac − 1

3
b2

)
, n ≥ 2.

Using these, one obtains a sequence of absolute invariants (i.e. functions that remain invariant under
the action of G):

J1 = s3
5/s

5
3, J2 = s5s7/s

4
3, J3 = s9/s

3
3, . . . (3)

Appell proved that this sequence can also be obtained from two basic absolute invariants J1, J2, by
expressing J2 as a function of J1 and then differentiating the result with respect to J1. Using the
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transformations (2) one can reduce the Abel equation to the canonical form Y ′ = Y 3 + R. Moreover,
the transformations

X̃ = K−2(X + h), Ỹ = KY, where K,h ∈ R, K �= 0 (4)

send one canonical form to another one.
Theorem 1 ([2, 6]). Two Abel equations are equivalent if and only if they have the same

canonical form modulo transformations (4).
The problem of equivalence of Abel equations with non-constant invariants was also considered by

Cheb-Terrab and Roche in [3]. Note that R = 0 if and only if s3 = 0 (see, e. g., [2, 6]). It follows that all
Abel equations satisfying s3 = 0 are equivalent.

2. ANOTHER APPROACH TO THE EQUIVALENCE OF Abel ODEs

We formulate another theorem about the equivalence of Abel equations under the action of G. Every
Abel equation E is a section of the 4-dimensional bundle

π : R
5 → R, (x, a, b, c, d) → x

and the pseudogroup G acts on these sections. The Lie algebra g corresponding to G consists of vector
fields

X = ξ(x)
∂

∂x
+ (η(x) · y + ζ(x))

∂

∂y
.

The representation of the Lie algebra g into the Lie algebra of vector fields on π has the form

X̂ = ξ
∂

∂x
− (2η + ξ′)a

∂

∂a
− (ξ′b + 3ζa + ηb)

∂

∂b
+ (η′ − ξ′c − 2ζb)

∂

∂c

+ (ζ ′ − ζc + ηd − ξ′d)
∂

∂d
.

Definition 1. By an (absolute) differential invariant of order k of the action of G on π we
understand a function I ∈ Jk(π) which is constant along the orbits of the prolonged action of G.

The infinitesimal version of this definition is the equality X̂(k)(I) = 0 for all X ∈ g, where X̂(k)

denotes the k-th prolongation of X̂ to Jk(π). The set of all differential invariants is an algebra.

We denote the fiber coordinates in Jk(π) by a′, a′′, . . . . Let

D

Dx
=

∂

∂x
+ a′

∂

∂a
+ b′

∂

∂b
+ c′

∂

∂c
+ a′′

∂

∂a′
+ b′′

∂

∂b′
+ c′′

∂

∂c′
+ . . .

denote the total derivative operator with respect to x. We say that an invariant derivation is an operator

∇ = A
D

Dx
, A ∈ C∞(J∞(π)), (5)

which is invariant under the prolonged action of G. This is equivalent to the fact that [∇, X̂] = 0 for
every X ∈ g. The coefficient A satisfies a certain PDE system, see [5]. For every differential invariant I,
the function ∇I also is an invariant. Obviously, for every differential invariant J the operator J · ∇ also
is an invariant derivation. It follows easily that any two invariant derivations (5) are proportional.

The first nontrivial differential invariant is J1, it appears in order 2. One can easily verify that

∇ = s1

s
2/3
3

D
Dx is an invariant derivation. Note that invariants (3) satisfy the equality J2 = ∇(J1/3

1 ) + 15J1.

The submanifold {s3 = 0} ⊂ J1(π) is a singular orbit for the action of G. We call the point zk ∈ Jk(π)
regular, if s1s3 �= 0 at this point. In what follows we consider only the orbits of regular points.

Let J be a differential invariant such that DJ/Dx �= 0 on some open interval Δ. Then for every
function F on Δ one has

DF

Dx
= λ

DJ

Dx
.
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The coefficient λ is called the Tresse derivative of F and is denoted by λ = DF/DJ . The operator
D/DJ is an invariant derivation (see [5]). For any invariant derivation ∇ one has ∇ = K · D/DJ for
some invariant K. Substituting J into this equality we see that K = ∇J . Thus,

∇ = ∇J · D

DJ
(6)

for every invariant J and invariant derivation ∇.
Theorem 2. The algebra of differential invariants of the action of G on π is generated by the

invariant J1 and the invariant derivation ∇. This algebra separates regular orbits.

Proof. One can easily see that the k-th prolongation of X̂ depends on the (k + 1)-jets of functions ξ,
η, ζ . Let Ξk

i , Hk
i , Zk

i denote the components of the decomposition

X̂(k) =
k+1∑
i=0

(
ξ(i)(x)Ξk

i + η(i)(x)Hk
i + ζ(i)(x)Zk

i

)
.

The vector fields Ξk
i , Hk

i , Zk
i , i = 0, . . . , k + 1, generate the completely integrable distribution on Jk(π)

and its integral submanifolds are exactly orbits of the action of G.

Let Ok be an orbit in Jk(π). Its projection Ok−1 = πk,k−1(Ok) ⊂ Jk−1(π) is an orbit in Jk−1(π).
Let zk−1 ∈ Jk−1(π) be a point such that X̂(k) is πk,k−1-vertical over it. Since the components of X̂(k)

depend on ξ(k+1), η(k+1), ζ(k+1), it follows that the bundles πk,k−1 : Ok → Ok−1 are 3-dimensional for
k ≥ 2. Orbits in the space of 2-jets can be found by direct integration of 12-dimensional completely
integrable distribution generating by the vector fields Ξk

i , Hk
i , Zk

i , i = 0, 1, 2, 3.

Since the bundles πk,k−1 : Jk(π) → Jk−1(π) are 4-dimensional, it follows that for k ≥ 2 there is one
differential invariant of pure order k and so the dimension of algebra of differential invariants of order ≤k
equals k − 1.

The invariant J1 generates the space of differential invariants of pure order 2 and separates regular
orbits in J2(π). Moreover, J1 is linear in second order derivatives a′′ and b′′ (and does not depend on c′′,

d′′), and the coefficient s1/s
2/3
3 in ∇ is the function on J1(π). It follows that for k ≥ 1 the invariant ∇kJ1

is linear in a(k+2), b(k+2) and thus generates the space of differential invariants of pure order k + 2 and
separates regular orbits. �

Consider the space R
2 with coordinates (j1, j11). For every Abel ODE E we define the map

σE : Δ → R
2 by j1 = JE

1 , j11 = (∇J1)E , where Δ ⊂ R is an open interval and the superscript E means
that the invariants are evaluated at the coefficients of E . Clearly, the image ΣE = im(σE) ⊂ R

2 depends
only on equivalence class of E .

Definition 2. We say that the equation E is regular at a point x ∈ R, if:
i) 2-jets of coefficients of E belong to regular orbits;
ii) σE(Δ) is a smooth curve in R

2 for some open interval Δ, containing x;
iii) one of the functions j1, j11 can be chosen as a local coordinate on ΣE .

Theorem 3. Two regular equations E and E are locally G-equivalent if and only if

ΣE = ΣE . (7)

Proof. The necessity is obvious.

Assume that (7) holds. Let us show that E and E are equivalent.

Without loss of generality, we may suppose that j1 is a local coordinate on ΣE . Let JE
11 = jE11(j1) on

ΣE and JE
11 = jE11(j1) on ΣE . The condition (7) means that

JE
11 = JE

11. (8)

One can see by (6) that the invariant derivation ∇ is proportional to the Tresse derivative D/DJ1 with
coefficient ∇J1. It follows from (8) and from Theorem 2 that the restrictions to E and E of differential
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invariants of all orders coincide. Since the algebra of differential invariants separates regular orbits, it
follows that E and E are G-equivalent. �

Remark 1. Note that, by the inverse function theorem, the conditions ii)-iii) in the definition of a
regular equation are equivalent to the condition that either J1(x) or ∇J1(x) have non-zero derivative at
a point x, that is either ∇J1(x) �= 0 or ∇2J1(x) �= 0.

3. EQUIVALENCE OF GENERALIZED Abel ODEs

By a generalized Abel differential equation we mean an ODE of the form

y′ = ak(x)yk + ak−1(x)yk−1 + · · · + a1(x)y + a0(x), ak(x) �= 0.

We suppose all functions a0(x), . . . , ak(x) to be of class C∞. We consider the problem of equivalence
of such ODEs under the action of the pseudogroup of linear transformations for the cases k = 4
and k = 5. The computations of differential invariants were performed using the Maple packages
DifferentialGeometry and JetCalculus by I.M. Anderson.

3.1. Regular Case for k = 4

We start with the case k = 4, that is, the equation

y′ = a(x)y4 + b(x)y3 + c(x)y2 + d(x)y + e(x), a(x) �= 0. (9)

These equations can be identified with the sections of the 5-dimensional bundle

π : R
6 → R, (x, a, b, c, d, e) → x.

The representation of g into the Lie algebra of vector fields on π consists of vector fields

X̂ = ξ
∂

∂x
− (3η + ξ′)a

∂

∂a
− (ξ′b + 4ζa + 2ηb)

∂

∂b
− (ξ′ + 3ζb + η)

∂

∂c

+ (η′ − 2ζc − ξ′d)
∂

∂d
+ (ζ ′ − ζd + ηe − ξ′e)

∂

∂e
.

Definition 3. The function F ∈ C∞(Jkπ) is called the relative differential invariant of k-th order,
if for all g ∈ G there holds g∗F = μ(g) · F, where μ : G → C∞(J∞π) is a smooth function, called the
weight function. The function F ∈ C∞(Jkπ) is called the absolute differential invariant of k-th
order, if g∗F = F for all g ∈ G.

Again, we denote the fiber coordinates in Jk(π) by a′, a′′, etc. There are four basic relative invariants
– two of order 0 and two of order 1:

I0 = a, I1 = 8ac − 3b2, I2 = 3(ab′ − a′b) + ac2 − 3abd + 12a2e,

I3 = 8aa′(4ac − 3b2) + 24a2bb′ − 32a3c′ − 3b5 + 64a3cd − 24a2b2d − 32a2bc2 + 20ab3c.

Definition 4. We say that the point zk ∈ Jk(π) is regular, if I0I1 = a(8ac − 3b2) does not vanish at
this point.

In this subsection we consider orbits of regular points only. First absolute invariants appear in order
1. They are

J1 = I2I0/I
2
1 , J2 = I3/|I1|5/2.

One can verify that the invariant derivation is

∇ =
I2
0

|I1|3/2

D

Dx
.

Theorem 4. The algebra of differential invariants of the action of G is generated by J1 and
J2 and the invariant derivation ∇. This algebra separates regular orbits.

Proof. The proof is similar to that of Theorem 2. We just mention the differences.
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One expects four differential invariants in the order ≤2. They are J1, J2, ∇J1 and ∇J2. These
invariants are linear in first order and second derivatives respectively. Thus, they generate the space
of differential invariants of order ≤2 and separate regular orbits.

The bundles πk,k−1 : Jk(π) → Jk−1(π) are 5-dimensional, hence for k ≥ 3 there are two differential
invariants of pure order k. The dimension of algebra of differential invariants of order ≤k equals 2k. It
follows that for k ≥ 2 the invariants ∇kJi, i = 1, 2, are linear in a(k+1), b(k+1), c(k+1). The latter two
invariants generate the space of differential invariants of pure order k + 1 and separate regular orbits. �

Consider the space R
4 with coordinates (j1, j2, j11, j12). For every generalized Abel ODE E of the

form (9) define the map σE : R ⊃ Δ → R
4 by

j1 = JE
1 , j2 = JE

2 , j11 = (∇J1)E , j12 = (∇J2)E ,

where the superscript E means that the invariants are evaluated at the coefficients of E .
Definition 5. We say that the equation E is regular at a point x ∈ R, if:
i) 2-jets of coefficients of E belong to regular orbits;

ii) ΣE = σE(Δ) is a smooth curve in R
4 for some open interval Δ, containing x;

iii) one of the functions j1, j2, j11, j12 can be chosen as a local coordinate on ΣE .
The proof of the following Theorem 5 is similar to that of Theorem 3.

Theorem 5. Two regular equations E and E are locally G-equivalent if and only if ΣE = ΣE .

One can check that using the transformations (2) the equation (9) may be reduced to the canonical
form Y ′ = Y 4 + R1Y

2 + R2, R1 �= 0. The transformations X̃ = K−3(X + h), Ỹ = KY map one
canonical form to another one.

3.2. Singular Case for k = 4

Let us now consider the case when I1 vanishes identically, that is, the class of ODEs (9) for which
8ac = 3b2. This class consists of ODEs of the form

y′ = (p(x)y + q(x))4 + r(x)y + s(x), p(x) �= 0. (10)

These equations can be identified with the sections of the 4-dimensional bundle π : R
5 → R,

(x, p, q, r, s) → x and the representation of g into the Lie algebra of vector fields on π consists of vector
fields

X̂ = ξ
∂

∂x
− 1

4
(3η + ξ′)p

∂

∂p
+

1
4
((η − ξ′)q − 4ζp)

∂

∂q

+ (η′ − ξ′r)
∂

∂r
+ (ζ ′ + (η − ξ′)s − ζr)

∂

∂s
.

There are three basic relative invariants:

L0 = p, L1 = q′p − p′q + p2s − pqr,

L2 = p(pq′′ − qp′′) + 6p′(p′q − pq′) + p′p(9qr − 4ps) − 5rp2q′ − p2qr′ + p3s′ + 4p2r(qr − ps).

In fact, they are restrictions of relative invariants from the regular case.
We restrict ourselves to the orbits of the points for which L1 does not vanish. Then there is one

absolute invariant of order 2

J =
L2

L2
0 · |L1|7/2

.

The invariant derivation is

∇ =
|L0|1/2

|L1|3/4

D

Dx
.

The following two theorems are proved in the same manner as above.
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Theorem 6. The algebra of differential invariants of the action of G is generated by J and
the derivation ∇. This algebra separates regular orbits.

Theorem 7. Two ODEs E and E of the form (10) are G-equivalent in the neighborhood of a
point x if and only if

JE = JE , (∇J)E = (∇J)E

and one of the functions JE or (∇J)E has non-zero derivative at x.

Note that the canonical form of the ODE (10) is Y ′ = Y 4 +
L1

L0
exp(−r). Thus, the ODEs (10)

having L1 = 0 are all equivalent to the ODE Y ′ = Y 4.

3.3. Regular Case for k = 5

Now we deal with the equations of the form

y′ = a(x)y5 + b(x)y4 + c(x)y3 + d(x)y2 + e(x)y + f(x), a(x) �= 0. (11)

These equations can be identified with the sections of the 6-dimensional bundle

π : R
7 → R, (x, a, b, c, d, e, f) → x.

There are following basic relative invariants of the action of G:

K0 = a, K1 = 5ac − 2b2, K2 = 4b3 − 15abc + 25a2d,

K3 = 50ab′ − 50ba′ + 8b2d + 5acd − 50abe − 3bc2 + 250a2f,

K4 = 2500a2da′ + 1500a2bc′ − 2500a3d′ − 1500a2cb′ + 825a2c2d + 6000a2b2f − 495abc3

+ 1440ab2cd − 3000a2bd2 − 288b4d − 1500a2bce + 7500a3de − 15000a3cf + 108b3c2.

Definition 6. We say that the point zk ∈ Jk(π) is regular, if K0K1 = a(5ac − 2b2) does not vanish
at this point. In this subsection we consider orbits of regular points only.

The action of G has the following three basic absolute invariants, one of order 0 and two of order 1:

J0 =
K2

2

K3
1

, J1 =
K3K

2
0

|K1|5/2
, J2 =

K4K
2
0

|K1|7/2

and the invariant derivation is

∇ =
K3

0

K2
1

D

Dx
.

Theorem 8. The algebra of differential invariants of the action of G is generated by J0, J1, J2

and the derivation ∇. This algebra separates regular orbits.

Theorem 9. Two ODEs E and E of the form (11) are G-equivalent in the neighborhood of a
point x if and only if

JE
0 = JE

0 , JE
1 = JE

1 , JE
2 = JE

2 ,

(∇J0)E = (∇J0)E , (∇J1)E = (∇J1)E , (∇J2)E = (∇J2)E

and at least one of the above six functions has non-zero derivative at x.
The canonical form of the ODE (11) with respect to the action of G is

Y ′ = Y 5 + R1Y
3 + R2Y

2 + R3, R1 �= 0.

The transformations X̃ = K−4(X + h), Ỹ = KY permute the canonical forms.
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3.4. Singular Cases for k = 5

The first singular case arises when K1 vanishes, that is, when 5ac = 2b2. It corresponds to the ODEs
of the form

y′ = (p(x)y + q(x))5 + r(x)y2 + s(x)y + t(x), p, r �= 0. (12)

The action of G on the class of ODEs (12) has the following basic relative invariants

M0 = p, M1 = r, M2 = −p′q + q′p + q2r − pqs + tp2,

M3 = 5p′r + 3prs − 6qr2 − pr′.

They provide two absolute invariants of order 1:

J0 =
L2 · p4/3

r5/3
, J1 =

L3 · p2/3

r7/3
.

The invariant derivation is

∇ =
p5/3

r4/3

D

Dx
.

Theorem 10. Two ODEs E and E of the form (12) are G-equivalent in the neighborhood of a
point x if and only if

JE
0 = JE

0 , JE
1 = JE

1 , (∇J0)E = (∇J0)E , (∇J1)E = (∇J1)E

and at least one of the above functions has non-zero derivative at x.
The canonical form for such ODEs is Y ′ = Y 5 + R2Y

2 + R3. The second singular case arises when
both K1 and K2 vanish and corresponds to the ODEs of the form

y′ = (p(x)y + q(x))5 + s(x)y + t(x), p �= 0. (13)

The relative invariants are

M0 = p, M2 = −p′q + q′p − pqs + tp2,

M4 = p(pq′′ − qp′′) + 7p′(p′q − pq′) + p3t′ − p2qs′ − 6p2sq′ + p′p(11qs − 5pt) + 5p2s(qs − pt).

For the subclass of ODEs for which M2 �= 0 there is one basic absolute invariant

J =
M4

p2/5 · M9/5
2

and the invariant derivation

∇ =
p3/5

M
4/5
2

D

Dx
.

The canonical form for such ODEs is Y ′ = Y 5 + R3 and the case M2 = 0 corresponds to R3 = 0.

Theorem 11. Two ODEs E and E of the form (13) are G-equivalent in the neighborhood of
a point x if and only if JE = JE

0 , (∇J)E = (∇J0)E and at least one of the above functions has
non-zero derivative at x.
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