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Abstract—In this paper we consider a theory of integers with the successor function, divisibility
predicates, equality and a transitive closure operator. The order relation can be expressed in this
theory using the transitive closure operator.

We prove that given a formula with the transitive closure operator on a single pair of variables one
can effectively eliminate it.
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1. INTRODUCTION

The decidability problem is one of the most important problems of mathematical logic. There are
classical results concerning this problem. One of the first undecidable theories were found by Church
(see[3, 4, 2]) and Rosser (see [6]). In 1929 Presburger proved that arithmetic without multiplication is
decidable. An effective quantifier elimination method was employed. Given a formula 3z ¢, a new formula
1 = Jx¢ without quantifiers is effectively constructed.

[t’s well known that the transitive closure can not be expressed in relational algebra (see[1]). So one
can extend some first order theory with the transitive closure operator and consider its decidability.

We consider a first order theory of integers with an unary successor function s(z), divisibility
predicates Dy, (z), equality and a transitive closure operator.

An applying of the transitive closure operator to formulas containing only equality and divisibility
predicates is considered in [7]. It’s easy to prove that the transitive closure operator on two pairs of
variables makes it possible to express addition and multiplication of integers. Thus the transitive closure
operator on two pairs of variables makes the theory undecidable.

In this paper we consider the transitive closure operator on a single pair of variables.

2. DEFINITIONS

Definition 1. Let 1)(Z,y) be a formula, tuples Z and y have the same length. Then Ty 5 (¢ (Z,7))
is also a formula called transitive closure of ¢ (z,y) on z,y. A value of an individual variable x
is denoted by I(zx).

A formula Ty g (¢ (z,9)) is true iff 1(x) = I(y) or there is a sequence of tuples ai,...,ay
such that (ay,az) A p(ag,as) A Ap(an—1,an), and I(z) = a1, I(y) = a,. We call the sequence
ai,...,a, and a formula (z1,T2) N Y(ZT2,Z3) N+ ANY(Tp—1,Tp) NT =31 ANy =T, such that
Y(ay,ag) N(ag,as) A--- ANb(ap—1,a,) a path from a; to a, with a link . We call ay,...,a,
path nodes. We say that this path proves Ty 5 (¢ (Z,y)) with I(Z) = a1 and I(y) = an,.

An expression s(s(... s(x)...) is be denoted by s*(z).
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3. ORDER RELATION

Our main technical result can be represented with the following

Lemma 1. Formula

M
Ty ( [\/ < 5'(y) A Dp(s% (x)) A Dp(s" (y))]

Mo N
v [\/ x> 5% (y) A Dp(s% (x)) A Dp(s" <y>>} v [\/ x = s"(y) A Dy(s™ <x>>] ) :
j=1

i=1
where p > max |k;| is true iff there is a path and all of the path nodes are contained in (min(I(z),
(2

I(y)) — h,max(I(x),I(y)) + h), h = p(p® + p(M1 + M2) + 1)

Proof. Let the transitive closure be true. Then there is a path C' without repeats. Let a,,;,, be the least
node of C. Assume that I(xz) < I(y). If ain = I(z), then all of the path nodes are greater than I(z).
They are also greater than I(z) — h. If apn < I(x), then construct non-intersecting segments of length
p from I(x) to apn. Let 7 be the amount of these segments. Let’s enumerate them from right to left.
There is a node u in C' such that I(x) < w and number of u is greater than number of a,y;, in the path C.
Divide the path part from I(x) to w in two.The first part is from () to @, and the second part is from
amin to u. Let these parts be denoted by C” and C” respectively.

Consider the nodes of C” and extract a monotone decreasing subsequence (b;)?; such that by = I(z)
and b;y1 is a node less than b; with the least number. The last element of this subsequence is anp.
Extract a monotone increasing subsequence (ci)gil from the nodes of C” such that ¢; = an, and ¢4
is a node greater than ¢; with the least number. If b; < b;, then number of b; in C” is greater than number
of bj in C'. Similarly if ¢; > ¢;, then number of ¢; in C” is greater than number of ¢; in C”. If there is no
element of (b;) in some segment, then there is a “greater than” link in C” such that all of the path nodes
before this link are to the right of this segment. Then the path skipped this segment possibly returning
to it afterwards. Similarly if there is no element of (¢;) in some segment, then there is a “less than” link
in C" such that all of the path nodes before the link are to the left of this segment. Then the path skipped
this segment possibly returning to it afterwards. Therefore the paths C’ and C” can be shortened by
shifting appropriate path nodes by p. Such shift does not change the remainder of the division by p.

We can assume that there are no empty segments. Consider a segment such that it has at least one
element from (b;), it has no elements from (¢;). If there are at least p My such segments, then there is a
pair of segments o0;,, 0;,, (i1 < i2) such that elements wy € o0;, and wy € o4, from (b;) and |w; — wy| is
divisible by p and the path C" skips these segments using either a single link or the same link twice. If
the same link was used twice, then it can be replaced with a single link due to the sequence monotonicity.
The node after this link can be shifted by p. Therefore both C” and C” can be shortened reducing number
of segments between I(z) and a,;,,. The remaining case is considered in [7].

[t can be shown that similar manipulations can be performed in case there is at least one element from
(¢;) but there is no element from (b;) in the segment in order to shorten the path. One can shorten the
right part of the path between I(y) and a,,,, if necessary. Every operation reduces total sum of distances
between neighboring nodes. It means that this process eventually ends. It’s easy so see that such kind
of operations can be performed till there are more than p? + pM; + pM> segments concerned.

In case I(x) > I(y) the shortening procedure is similar. O
Remark 1. Consider

x < s (y) A Dy(s(x)) A Dp(s°(y))

and let d = [b_‘;_k} + 1. The least 1(y) satisfying (1)is I(y) = I(x) +a— b+ dp. Let (1) be true
andb=1(x)+a—b+dp. Then I(y) > band I(y) and b are equivalent modulo p.
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Remark 2. Similarly one can consider x > s*(y) A D,(s%(x)) A Dp(s(y)). The constant d =
{ F;k —1, iipdivides (b—a — k),
b—a—k
p

Lemma 2. for a formula

, otherwise.

there is an equivalent formula without order relations inside the transitive closure operator.

Proof. Substitute all of the order relations from (1) with equality according to remark 1 and build a
formula

My
B(a,y) = {\/ y = sH () £ Dy s ] [

7=1 =1
~ ~ - ~ -
@ )
Consider a formula
N 3) )

- N -~ -~ ~

Ty \/ z = sFi(y) A Dy(s™ (x ))] V3z | Judv | Typo (P(x, 1)) ATy, (B(v, 2))
=1

My
A !\/usagbg+dgp( ) A Dp(s ] (\/D Dy (s (y)))/\zgy . (1)
j=1

(10) ()

We prove (11)is equivalent to (1). Let (1) be true. Let C be its path. If there are no order links in C', then
it also proves (6). Otherwise we build a path C” by replacing all order links from C with corresponding
equality links. We also shift the nodes. Let I(u) and I(v) be any pair of nodes connected with a link from
(10) in C". Note that C’ proves (8)—(10). According to remark 1 the formula (7) is also true.

Let the formula (11) be true. If (6) is true, then the formula (1) is also true. Otherwise there are
paths C{ and C, proving (8) and (9) respectively. Both paths can be empty. Construct a new path C
by appending a link (10) after C{ and appending C} afterwards. Then replace every non-last occurrence
of any link from (10) in C' with corresponding order link without shifting the nodes. It’s possible due to
remark 1. Replace the last occurrence with the corresponding order link and shift the last node to make
it equal to I(y). It’s possible due to (7). Note that the result path proves the formula (1). m

Lemma 3. For a formula

My
Ty | |\ 2 <5 (y) ADy(s% (2)) A Dp(s" ()
j=1
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Mo ) N
\/ 2> s (y) A Dy(s” i(@)) A Dy( ] [\/ Dy(s™(z)) (12)
=1 =1

) (@2) - (@)

there is an equivalent formula without order relation inside the transitive closure operator.

Proof. Denote @1 vV ®5 V @3 by ®. Note that (12)is true iff there is a path C and one of the following
conditions holds:

(a) There are no order links in C'.

(b) There is at least one occurrence of “less than” link in C, but there are no “greater than” links in it.
(c) There is at least one occurrence of “greater than” link in C, but there are no “less than” links in it.
(d) There are occurrences of both “less than” and “greater than” links in C.

Consider each of these conditions.

If the condition (a) holds, a formula T}, y{ \/ x = ski(y) A Dp(s™i(x))] is true. Not that it does not

contain any order relations. According to lemma 2 the condition (b) is equivalent to the following formula

3z ( Juiv ( Tpu [®1(z,u) V O3(x,u)] ATy . [@1(v, 2) V @3(v, 2)]

/\(|:j\4/11usaﬂbﬂ+dﬂp( ) A Dy(s } (\/D D,(s (y))>Az<y))).

The condition (¢) is equivalent to a similar formula as mentioned above, but different in order relation
type.

Consider the condition (d). Replace all order relations from ® with equality according to remarks 1
and 2, denote the the result formula by ®'(x, y). Consider the following formula

az( (\/D Dy(s <y>>>>,

U(x, z) = JuiFviJugIvg ( [sz[@’(:p,ul)]] A [thu2 [@’(vl,ug)]]

where

A [Tm,z[cl)’(@,z)]} A [<<I>’1(u1,v1) A <I>’2(u2,v2)> Vv <<I>’2(u1,v1) A <I>’1(u2,v2)>]>.

The formulas @} and @, are constructed by replacing order relations with equality in ®; and @,
respectively. [t’s easy to see that the condition (d) is equivalent to the formula constructed. If we replace
order with equality, then we get a new end of the path equivalent to the original end modulo p. The shiit
itself is undefined as there are both “less than” and “greater than” links. O

4. EXTERNAL CONSTRAINTS

In this section we consider transitive closure operator for formulas containing individual variables
,Y, 21, - -, 2n Where x, y are transitive closure operator parameters. We consider order relation case.

Remark 3. /’s easy to see that it’s enough to consider non-intersecting intervals as external
constraints.

Definition 2. Given a set of non-intersecting intervals we say the link preserves an interval
iff both nodes to the left and to the right of the link are in the same interval. We say a link does
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not preserve the interval iff these nodes are in different intervals. We also call them preserving
or non-preserving respectively.

N/

Lemma 4. Consider a formula Tw,y< \/ G (x,y) A ng), where i, = AV, and Wy ; is
j=1
- P

M
eitherx < z;, ,or z;, < x,oraconjunction (z; < z)A(z < zijﬂ), i IS eithery < z;, ,or z;,, <4,
or a conjunction (z;; <y) A (y < zi;,,) and ¢;; does not contain any external constraints. This
formula is equivalent to a formula, where the transitive closure operator is applied to some
formulas without non-preserving links.

Proof. Let’s give a brief overview of the idea behind the proof. Let there be some non-preserving links
in (1). Consider the path C of the original formula. There are several options of the way C goes from one
interval to another.

The first one is the following: the equality link 2 = s*(y) is used. It means that the path node has to be
close to the border of the interval. It means that this link can be used at most &k times. Otherwise C' has
repeats and can be shortened. Therefore this link can be taken away from the transitive closure operator
by constructing the appropriate finite disjunction.

The second option is the following: some order link is used. Assume it is used more than once. The
path goes from some point with fixed residue modulo p from the first interval to some point with some
(but also fixed) residue modulo p from the second interval. We can assume this link is used only once. A

node before the first occurrence of the link can be connected with a node after the last occurrence of the
link. Therefore this link can be also taken away from the transitive closure operator. O

Lemma 5. Lef ¢ = ij(\/ij\i (Gi(@,y) A P(x) A P(y))) and x = ij(\/ij\i 1(gbi(az,y))), where
P(z) = (21 < z) A (x < z2) and there are no occurrences of individual variables different from z,y
in ¢i(x,y). Let there be a constant h such that x is true iff there is a path and all of this path nodes
are contained in (min(I(x),I(y)) — h,max(I(x),1(y)) + h). Then there is a formula equivalent to
& without occurrences of order relations with z1 or zo inside the transitive closure operator.

Proof. 1t’s easy to see that every path begins and ends with nodes from (I(z1),I(22)). Assume
|I(z1) — I(2z2)| < 3h. Then \/ st(z1) = 25 is true and every occurrence of P(z) can be replaces with

a finite disjunction:

3h N — _
\/ st(z1) =20 ATy \/ oi(x,y) \/ I(21) \/
1=1 i=1 j=1 j=1

Now assume that |[I(z1) — I(z2)| > 3h and consider all of the possible places I(z) and I(y) can take
within the interval.

Let I(z1) + h < I(z) < I(22) —h, I(z1) + h < I(y) < I(22) — h be true. Then the whole path is
within the interval concerned and

(x> s"(z1)) A (s"(2) S 22) A (y = 8" (21)) A (5"(y) < 22) ATy (\/ ¢i(z,y) >

denoted by ®; is true.

Let ¢ be some constant. There is a finite amount of paths with links from {¢1, ..., ¢x} having q or
less nodes, denote this amount by M, and enumerate them somehow. Let C; be a path with number <.
Consider a formula from Cj:

Giy (w1, 02) A P(1) A P(22) A=+ A iy (2, 2541) A P(x5) A P(xjpn) A =21) Ay = xj41).-
and construct the following formula
dzq, ..., 3$j+1 (gb“ (1‘1, 1‘2) AN P(l‘l) AN P(I‘Q) VAN
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Ay (g, xj41) A Pag) A P(zjen) Az = 21) Ay = j41)).

M,
Denote this formula by nf(z,y), let Ay(z,y) = \/q ni(x,y). Let I(x) € (I(21),1(z1) + h) and I(y) €
i=1
(I(#1),1(z1) + h). Then we have several options. The path can have 2(h — 1) or less nodes. Otherwise
there is at least one node from [I(z1) + h, I(z2) — h]. Denote the first such node by v and the last such
node by u. The path from I(z) to v has 2(h — 1) + 1 or less nodes. Similarly the path from u to I(y) has
2(h — 1) 4 1 or less nodes. Let

N
IA
N

S}
~

Ag—1y(z,y) v 32’3y < (2’ > s"(z1)) A (s"(2) < 22) A (s"(y
N
A (Y = s"(21)) A Dogory1(m,2") A Doy (Y, y) A T gy (\/ ¢i(, y’)))]

h—1 4 h—1
Construct formula ®5 = [ V x= sz(zl)] A [2\/ y=s'(z )] AT.
) A

i=1

The remaining cases I(x) € (I(z2) — h,I1(22)) N1 (y) € (I(22) — h,1(22)), I(x) € (I(z1),1(z1) +
h)NI(y) € (I(22) —h,1(22)),I(y) € (I(21),1(z1)+h)ANI(x) € (I(22) — h,I(22)) are considered sim-
ilarly and formulas ®3, ®4 and @/, are constructed respectively. Let

Q= | Ay (@, y) v 3 ( (@' > s"(z1)) A (s"(2) < 29)
/\A2(h_1)+1(az,x YA Ty (\/ oi(x' )y >>]
Qs Agn-1y(z,y) v VI’ ( (@' > s"(21)) A (s"(2) < 22)

A Dop—1y1 (2, y) A Ty o (\/@bzﬂﬂ x >>]

Let I(x) € (I(21),1(z1) + h) and I(z1) + h < I(y) < I(z2) — h. Construct a formula &5 = [ Vo=

s'(z0)] A (5" (21) S 9) A (") = 22)] A 0.

The remaining cases I(z) € (I(z2) —h,I(22)) AN1(z1) +h <I(y) <I(22)—h, I(y) € (I(22)—
h, I(z2)) N (z1) +h < I(x) < I(22) = h, I(y) € (I(21),1(21) + h) N(z1) +h < I(x) < I(22) — hare
considered similarly ®f, ®¢ and @ are constructed. In both ®¢ and ®g the formula 5 is used instead of
Q1. Thus we have considered all of the cases. The resulting formula is the following:

((s?’h(zl) < 29) A P(z) A P(y) A <(ac SR RVIC SRV SAVE SRV JRVE JRVE SAVE YAVE IV cpg)))

N -1 ' -1 ‘
\/\/( 21) =20 Ny (\/ [qﬁi(m,y)/\ x=5(21) A ysj(zl)])).
i=1 j=1 j=1

Now we can prove our main result.

Theorem 1. The theory of integers with a successor function, divisibility predicates, the order
relation and the transitive closure operator on one pair of variables is decidable.

Proof. A way to effectively eliminate transitive closure operator is given in [7] and lemmas 2—5.
Therefore the theory is decidable because Presburger arithmetic is decidable ([2]). O
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