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Abstract—We continue to develop a new first-order combinatorial approach presenting a concep-
tual framework for investigations concerning expressive power of first-order logic. In this work,
we consider the case of infinitary first-order combinatorics. Based on the universal construction of
finitely axiomatizable theories, we introduce some common scheme yielding finitely axiomatizable
theories with pre-assigned sets of model-theoretic properties. At an initial stage, a maximum
common Turing’s computation is performed (one can say, computable Brute Force). Starting from
an input block of parameters, the computation yields a computably axiomatizable theory T . Finally,
by applying an available version of the universal construction, the theory T is transformed into a
finitely axiomatizable theory F that inherits model-theoretic properties of T within the infinitary
semantic layer. We also give three demonstrations showing possibilities of this method.
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INTRODUCTION

Universal construction of finitely axiomatizable theories, cf. [5, Ch. 6], can control model-theoretic
properties within the infinitary semantic layer MQL whose fundamental nature is established in the
framework of a new combinatorial approach for first-order predicate logic, [7]. There are two types of
first-order combinatorics: finitary versus infinitary. In this work, we present a general method intended
for decision of a class of problems concerned with the infinitary layer of expressiveness of first-order
predicate logic by way of constructions of finitely axiomatizable theories with pre-assigned sets of model-
theoretic properties. Three typical demonstrations are given showing possible variants of application of
this method. At an initial stage, we create an abstract project of Stone space of a theory together with
a design of a so-called skeleton for the computably axiomatizable theory T we are going to construct;
after that, we specify axiomatic of the theory that would provide the required block of model-theoretic
properties of different complete extensions of this theory. Finally, we perform a transformation from
the theory T to a finitely axiomatizable theory F in correspondence with the standardized scheme
for infinitary first-order combinatorics. Adequate coordination of details of the construction with the
purposes of the problem under consideration successfully realizes a solution to the problem.
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408 PERETYAT’KIN

PRELIMINARIES

Theories in first-order predicate logic with equality are considered. General concepts of model theory,
algorithm theory, Boolean algebras, and constructive models can be found in Hodges [2], Rogers [8],
and Ershov and Goncharov [1]. Generally, incomplete theories of finite or enumerable signatures are
considered.

A finite signature is called rich, if it contains at least one nary predicate or function symbol for n � 2,
or two unary function symbols. The following notations are used: FL(σ) is the set of all formulas of
signature σ, FLk(σ) is the set of all formulas of signature σ with free variables x0, . . . , xk−1, SL(σ)
is the set of all sentences (i.e., closed formulas) of signature σ. An entry Nom Ψ denotes number of the
sentence Ψ in a fixed Gödel numbering of the set of all sentences of a given signature. By L(T ), we denote
the Tarski–Lindenbaum algebra of formulas of theory T without free variables, while L(T ) denotes
the Tarski–Lindenbaum algebra L(T ) considered together with a Gödel numbering γ; thereby, the
concept of a computable isomorphism is applicable to such objects. By Wn, we denote nth computably
enumerable set in Post’s numbering, while W t

n denotes a finite part of Wn that can be computed for t
steps. By ϕn(x), we denote nth partial computable function in Kleene’s numbering, while ϕX

n (t) denotes
nth partial function in computation with an oracle X.

The set of all finite tuples α of the form α = 〈α0, α1, . . . , αn〉, αi ∈ {0, 1}, is denoted by 2<ω, while
2ω denotes the set of all infinite tuples α = 〈αi; i < ω〉, αi ∈ {0, 1} For a Boolean algebra B, by B[a], we
denote the restriction of B on the set of all subelements of the element a ∈ B counting that 1 = a and
−x is defined as a � x in B[a]. If b is an element of a Boolean algebra and α ∈ {0, 1}, then bα means b for
α = 1 and −b for α = 0. Similarly, if Φ is a formula and α ∈ {0, 1}, then Φα means Φ for α = 1 and ¬Φ
for α = 0.

Symbol P(X0, . . . ,Xa), shortly P, is specialized to denote a propositional formula of signature
σ∗ = {X0,X1, . . . ,Xk, . . . ; k ∈ N} (i.e., consisting of propositional variables), while a points out the
number of variables occurred in the formula. By PRO, we denote the set of all such formulas, while
Pi(X0, . . . ,Xa(i)), i ∈ N, is a fixed Gödel numbering of the set PRO. By P(Ψ0, . . . , Ψa), we denote the
result of substitution of arbitrary formulas Ψ0,. . . ,Ψa instead of the variables in the formula P. A formula
P(X0, . . . ,Xa) ∈ PRO is said to be primitive if it has the form Xα1 ∧ · · · ∧ Xαp ∧ ¬Xβ1 ∧ · · · ∧ ¬Xβq

with indices satisfying {α1, . . . , αp} ∪ {β1, . . . , βq} ⊆ {0, 1, . . . , a}, and {α1, . . . , αp} ∩ {β1, . . . , βq} =
∅.

Lemma 0.1. Each propositional formula is equivalent to a finite disjunction of primitive
propositional formulas.

Proof. Immediately. �

For a set A ⊆ N and propositional formula P(X0, . . . ,Xa), an entry A |= P denotes the value of the
Boolean term P(χA(0), χA(1), . . . , χA(a)), where χA(x) is characteristic function of the set A. In this
situation, propositional formula P plays the role of a table condition applicable for the set A ⊆ N.

Formulation to the universal construction FU of finitely axiomatizable theories can be found in [5,
Ch. 6]. Main definitions connected with semantic layers are found in [7]. We use notation MQL for the
model quasiexact semantic layer presenting infinitary first-order combinatorics, cf. [7].

1. GÖDEL NUMBERS AND C.E. INDICES OF THEORIES

Let σ be a signature, and Σ be a subset of SL(σ). Denote by [Σ]σ a theory of signature σ generated by
Σ as a set of its axioms. There is another variant of the definition. Let Σ ⊆ SL(σ) be a set of sentences.
By [Σ]�, we denote a theory of a signature σ′ ⊆ σ generated by Σ as a set of its axioms, where σ′ contains
only those symbols from σ that occur in formulas of the set Σ.

In further definitions we use a fixed finite rich or enumerable signature σ. We also consider a fixed
enumerable maximaum large infinite signature σ∞. Signature σ∞ contains countably many constant
symbols, symbols of propositional variables, and predicate and function symbols of each arity n > 0. We
use a fixed Gödel numbering Φk, k ∈ N, for the set of sentences of signature σ, and Φ∞

k , k ∈ N, for the
set of sentences of the maximum large signature σ∞.

Based on the Post numbering of the family of all computably enumerable sets Wn, n ∈ N, we
construct an effective numbering for the class of all computably axiomatizable theories. If a theory T
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of signature σ is defined by the set of axioms {Φi|i ∈ Wm}, the number m is called a computably
enumerable index or simply index of T ; we denote this theory by T σ{m}, m ∈ N. Another version
represents indices for c.a. theories of arbitrary enumerable signatures. Given m ∈ N. Consider the set
of axioms Σ = {Φ∞

i |i ∈ Wm} and construct the theory T = [Σ]�. The number m is called a weak
computably enumerable index or simply weak index of T ; we denote this theory by T �{m}, m ∈ N.

Any finitely axiomatizable theory F is determined by a finite system A of axioms; therefore, by a
single formula Φ which is a conjunction of the formulas from A. If a theory F of signature σ is defined
by an axiom Φm, this number m is called a Gödel number or strong index of F ; we denote this theory
by F σ{m}, m ∈ N. Another version represents universal indices for finitely axiomatizable theories of
arbitrary finite signatures. Given m ∈ N. If a theory F is defined as follows F = [Φ∞

m ]�; this number m
is called a universal Gödel number or universal strong index of F ; we denote this theory by F �{m},
m ∈ N.

2. STANDARD SCHEME OF TRANSFORMATIONS OF THEORIES CORRESPONDING
TO INFINITARY FIRST-ORDER COMBINATORICS

In this section, we specify a method of construction of finitely axiomatizable theories with pre-
assigned model-theoretic properties. In the most common case of such a construction, the target theory
depends on some block C of objects of algorithmic nature that, in fact, can be presented via a single
c.e. index. Let the input parameter be an index n. We are going to construct a finitely axiomatizable
theory F = F (n) of a given finite rich signature ς, which would satisfy definite (pre-assigned) model-
theoretic properties. First, we build an intermediate computably axiomatizable theory T = T (n) using
some particular method.

Our project of a computably axiomatizable theory T should provide a realization of two aims:
(Space) –– we have to realize a definite isomorphism type of the Tarski–Lindenbaum algebra of the
theory; a particular method of parametric Stone spaces is applied here that requires to choose a
computable sequence of sentences presenting a generating system for the Tarski–Lindenbaum algebra;
(Extension) –– we have to provide that different complete extensions of the theory would have definite
model-theoretic properties adequate to purposes of our project; this aim is realized by choice appropriate
axiomatic based on the specified generating sequence of sentences.

Let us turn immediately to a realization of the project. We use the following signature for the theory T :

σ = {Xi|i ∈ N} ∪ σ′, (2.1)

where Xi, i ∈ N, is a sequence of propositional variables (i.e., nulary predicates), and σ′ depends on the
aims of our construction. We will count that the nulary predicates Xi given in (2.1) represent the required
generating sequence of sentences for the Tarski–Lindenbaum algebra of the target theory (computability
of the sequence is obvious). Thereby, the following property should be guaranteed by our construction:

sentences Xk, k ∈ N, represent a generating system for L(T ). (2.2)

Axioms of the theory T consist of three following groups: Frm (Frame), Spa (Space), and Ext
(Extension), each having some particular form.

Reference_Block (2.3)

Frm: represents a group of axioms describing some general form of a skeleton of the theory; these
axioms depend on the aims of the construction;

Spa: formulas of the form P(X0, . . . ,Xa), with P ∈ PRO;
Ext: formulas of the form P(X0, . . . ,Xa) → Ψ , with P ∈ PRO and Ψ ∈ SL(σ′).

End_Ref

Further, by applying the universal construction FU, we build a finitely axiomatizable theory F =
F (n) = FU(T, ς) of the demanded finite rich signature ς together with a computable isomorphism

μ : L(T ) → L(F ) (2.4)

between the Tarski–Lindenbaum algebras preserving model-theoretic properties of their completions
within the infinitary semantic layer MQL.
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Introduce the following notation

θi = μ(Xi), i ∈ N. (2.5)

For an arbitrary set A ⊆ N, we denote

T [A] = T + {Xi|i ∈ A} ∪ {¬Xj |j ∈ N � A},
F [A] = F + {θi|i ∈ A} ∪ {¬θj|j ∈ N � A}. (2.6)

By construction, the theory T we are going to build is computably axiomatizable. Therefore, the set of
provable in T formulas is computably enumerable. Thus, we can find a natural number m, such that

Wm = {k|T 
 Pk(X0, . . . ,Xa(k))}. (2.7)

After that, we can introduce the following notation:

Ω(m) = {A ⊆ N|(∀k ∈ Ω(m))A |= Pk}. (2.8)

The set Ω(m) is said to be parametric Stone space defined by an index m. The block of transformations
n �→ T �→ F is said to be normalized if the following condition is satisfied:

T 
 P(X0, . . . ,Xa) ⇔ T .Spa 
 P(X0, . . . ,Xa), for all P ∈ PRO. (2.9)

All objects involved in the transformation n �→ T �→ F are presented via appropriate computably
enumerable indices or Gödel numbers such that the whole passage n �→ T �→ F is defined by an effective
operator on indices and Gödel numbers.

Now, we formulate the principal statement of the work:
Theorem 2.1. [Standardized scheme for infinitary first-order combinatorics] Given a sequence of

transformations n �→ T �→ F of the form presented above. The following assertions are satisfied:
(a) T [A], A ∈ Ω(m), represents the family of all complete extensions of T ,
(b) F [A], A ∈ Ω(m), represents the family of all complete extensions of F ,
(c) isomorphism μ in (2.4) maps T [A] to F [A], for all A ∈ Ω(m),
(d) for all A ∈ Ω(m), complete theories T [A] and F [A] have identical model-theoretic proper-

ties within the infinitary semantic layer MQL,
(e) effectively in a system of axioms of T , one can find s ∈ N such that function ϕA

s (t) is
characteristic for the set Nom(T [A]), for all A ∈ Ω(m),

(f) effectively in a system of axioms of T , one can find s ∈ N such that function ϕA
s (t) is

characteristic for the set Nom(F [A]), for all A ∈ Ω(m).

Remark A: Signature (2.1) of theory T = T (n) may depend on the input parameter n; in this
case, we have to use weak c.e. indices with the universal construction. However, signature of T
should not depend on the set A presenting an oracle in this computation.

Remark B: Having an axiomatization of theory T in the form (2.3), we can transform it in
another (primitive) form for which group Ext consists of formulas of the form P(X0, . . . ,Xa) →
Ψ , where P is primitive propositional and Ψ ∈ SL(σ′).

Remark C: In the case when the complex of transformations n �→ T �→ F satisfies normaliza-
tion condition (2.9), we can use group of axioms T .Spa in definition (2.7) instead of the whole
theory T .

Proof. of Theorem 2.1. First, we consider the situation as a whole. Based on (2.7), introduce the
following notation

Σ0 =dfn {Pk|T 
 Pk(X0, . . . ,Xa(i))} = {Pi(X0, . . . ,Xa(i))|i ∈ Wm}. (2.10)

Notice that, relation (2.10) together with (2.2) ensures the following equality:

T = Σ0. (2.11)

According to the upper notation in (2.6), for an arbitrary set A ⊆ N we have T [A] = T + Σ1[A], where
Σ1[A] = {Xi|i ∈ A} ∪ {¬Xj |j ∈ N � A}. Inductively, by the length of a formula, one can prove that for
all i ∈ N:

Σ1[A] 

(
Pi(X0, . . . ,Xa(i))

)α
, with
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α = the value of “A |= Pi(X0, . . . ,Xa(i))”, α ∈ {0, 1}, (2.12)

where P1 = P, P0 = ¬P, cf. Mendelson’s Lemma 1.12 in [3, Ch. 1, Sec. 4]. By adding all formulas of
the form (2.12) with α = 1 (provable from Σ1[A]), we obtain a new presentation for the theory

T [A] = T + Σ2[A], where Σ2[A] = {Pi(X0, . . . ,Xa(i))|A |= Pi(. . . )}. (2.13)

Moreover, we obviously have Σ1[A] ⊆ Σ2[A]. The following dependencies take place:

Σ2[A] ∪ Σ̄2[A] = FL(σ), Σ2[A] ∩ Σ̄2[A] = ∅,

where Σ̄2[A] = {Pj(X0, . . . ,Xa(j))|A �|= Pj(X0, . . . ,Xa(j))}. (2.14)

By construction, either Pi(X0, . . . ,Xa(j)) ∈ Σ2[A] or ¬Pi(X0, . . . ,Xa(j)) ∈ Σ2[A] for each i ∈ N.
Thereby, by virtue of (2.2), presentation (2.13) ensures that T [A] is a complete theory whenever it is
consistent.

Let us prove that the following relation holds for the sets introduced above:

A ∈ Ω(m) ⇔ Σ0 ⊆ Σ2[A]. (2.15)

First, we assume that A ∈ Ω(m). Consider an arbitrary Φ ∈ Σ0. By (2.10) we have Φ = Pk0(X0, . . . ,
Xa(k0)) for some k0 ∈ Wm. Since (∀k ∈ Wm)A |= Pk by definition (2.8) and the choice of m, we
obtain that A |= Pk0(X0, . . . ,Xa(k0)); thus, by (2.13), we have Pk0(X0, . . . ,Xa(k0)) ∈ Σ2[A], obtaining
finally that Φ ∈ Σ2[A]. Now, we assume that Σ0 ⊆ Σ2[A]. We obtain from (2.10) and (2.13) that
for all i satisfying T 
 Pi(X0, . . . ,Xa(i)), we have A |= Pi(X0, . . . ,Xa(i)). Applying again (2.10) we
conclude that (∀i)

[
i ∈ W (m) ⇒ A |= Pi(X0, . . . ,Xa(i))

]
obtaining finally A ∈ Ω(m) by definition (2.8).

Thus, (2.15) is indeed satisfied.
Now, we are going to prove that

(a) A ∈ Ω(m) ⇒ T [A] is consistent and complete,

(b) A �∈ Ω(m) ⇒ T [A] is contradictory. (2.16)

We consider two following cases.
Case 1: A ∈ Ω(m). From (2.13), we have T [A] = T + Σ2[A]. Consider a finite set Δ = {Ψ0, . . . ,

Ψt−1} ⊆ Σ2[A]. We are going to show that T + Δ is consistent. Let Ψ be conjunction Ψ0 ∧ · · · ∧ Ψt−1.
From Ψi ∈ Σ2[A], i < t, by rule (2.12), we obtain Ψ ∈ Σ2[A]. By (2.14), we have ¬Ψ ∈ Σ̄2[A], thus
¬Ψ �∈ Σ2[A]. By (2.11) and (2.15), we have T = Σ0 ⊆ Σ2[A]; thus,¬Ψ �∈ T . From this, we conclude that
T + Ψ is consistent; thereby, T + Δ is consistent as well. Applying Maltsev’s Compactness Theorem,
we obtain that theory T [A] is consistent. By virtue of (2.13) together with (2.14) we obtain that for all
i ∈ N, either sentence Pi(X0, . . . ,Xa(i)) or its negation ¬Pi(X0, . . . ,Xa(i)) belongs to T [A] ensuring,
by (2.2), that this theory is complete.

Case 2: A �∈ Ω(m). In this case, by (2.11) and (2.15), we obtain T �⊆ Σ2[A]. Let Ψ be a sentence in
T � Σ2[A]. By (2.14), we have Ψ ∈ Σ̄2[A]; thus, ¬Ψ ∈ Σ2[A]. As a result, we obtain Ψ ∈ T ⊆ T [A] and
¬Ψ ∈ Σ2[A] ⊆ T [A]. This shows that the theory T [A] is contradictory.

Thereby, both implications (2.16)(a) and (2.16)(b) are indeed satisfied.
Now, we turn to proofs of the particular parts formulated in Theorem 2.1.
(a) From definition (2.6), it follows that, for any complete extension T ∗ of T , there is a set A ⊆ N

such that T [A] ⊆ T ∗. Based on this fact, together with (2.16)(a) and (2.16)(b), we immediately obtain
the statement in Part (a).

(b) This statement is a simple consequence of Part (a) together with availability of an isomorphism μ
between the Tarski-Lindenbaum algebras of theories T and F , cf. (2.4).

(c) Immediately, from (2.5) and (2.6), based on the fact that μ is an isomorphism between the Tarski-
Lindenbaum algebras of theories T and F .

(d) Immediately, from the fact that the isomorphism μ preserves all model-theoretic properties within
the semantic layer MQL.

(e) We use notations found in [8, Sec. 9.2]. For finite sets Du,Dv ⊆ N of natural numbers, we
introduce a notation for the following primitive propositional formula: Pu,v =

∧
i∈Du

Xi ∧
∧

j∈Dv
¬Xj .
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Let A be a subset of N and Ψ be a sentence of signature of theory T . By virtue of Part (a), theory T [A]
is complete for all A in Ω(m). This means that either Ψ or ¬Ψ are provable in theory T [A]. Based on
presentation of axioms for T [A] in (2.6), we obtain that there is a pair of finite sets Du and Dv with
Du ∩ Dv = ∅, and a Boolean value α ∈ {0, 1}, satisfying the following relation

T 

(
Pu,v(X0, . . . ,Xa(u,v)) → Ψα

)
, (2.17)

where Ψ0 = ¬Ψ and Ψ1 = Ψ .

By construction, theory T is computably axiomatizable. Therefore, the set R of all sequences
〈u, v,Nom Ψ,α〉 satisfying condition (2.17) is computably enumerable. Thereby, we obtain the following
presentation

T [A] 
 Ψα ⇔ (∃u, v)
[
〈u, v,Nom Ψ,α〉 ∈ R ∧ Du ⊆ A ∧ Dv ⊆ N � A

]
. (2.18)

By construction, the set R is regular relative to the cases with consistent T [A], i.e., the value of α
depending on Ψ in the left-hand side expression in (2.18) is uniquely determined for all A ∈ Ω(m); as for
the cases A �∈ Ω(m), the value of α in (2.18) does not matter for our purposes. Find an integer s such that
Ws = R. It can be simply checked that the index s is found effectively in T , thereby s is found effectively
in the input parameter n. Consider the passage to a normalized set Ws �→ Wρ(s), where both the term
’normalized’ and the function ρ are defined in [8, Sec. 9.2]. By construction, the normalization procedure
does not change cases involved in relation (2.18) with A ∈ Ω(m). We obtain finally the following new
form of the relation which is an immediate reformulation of (2.18) for all Ψ ∈ SL(σ), A ∈ Ω(m) and
α ∈ {0, 1}:

T [A] 
 Ψα ⇔ (∃u, v)
[
〈u, v,Nom Ψ,α〉 ∈ Wρ(s) ∧ Du ⊆ A ∧ Dv ⊆ N � A

]
. (2.19)

On the other hand, in accordance with [8, Sec. 9.2], we have the following standard presentation for
computability with an oracle:

ϕA
s (t) = α ⇔ (∃u, v)

[
〈u, v, t, α〉 ∈ Wρ(s) ∧ Du ⊆ A ∧ Dv ⊆ N � A

]
. (2.20)

Combining (2.19) and (2.20) together, we obtain the following summary relation T [A] 
 Ψα ⇔
ϕA

s (Nom Ψ) = α, for all Ψ ∈ SL(σ), A ∈ Ω(m), α ∈ {0, 1}, that is exactly what is required for (e).

(f) This statement is a routine consequence of the established Part (e) together with availability of the
isomorphism μ between the Tarski–Lindenbaum algebras of theories T and F , cf. (2.4).

Theorem 2.1 is proved.

Comment to Remark B: Consider a formula P(X0, . . . ,Xa) → Ψ , with P ∈ PRO. By Lemma 0.1,
there are primitive propositional formulas P1, . . . ,Pt, such that P is equivalent to P1 ∨ · · · ∨ Pt. We
have the following chain of equivalences P → Ψ ∼ (P1 ∨ · · · ∨ Pt) → Ψ ∼ (P1 → Ψ) ∧ · · · ∧ (Pt →
Ψ). Thus, it is possible to omit the old axiom P → Ψ in the group Ext, including a finite set of new
axioms P1 → Ψ, . . . ,Pt → Ψ instead. An alternative confirmation to the statement in Remark B can be
found in the proof of Part (e).

Let us consider a useful technical statement.

Lemma 2.2. Let m be defined by rule (2.7), while m′ be defined by a normalized rule (2.7) with
T.Spa substituted instead of T . We have Ω(m) ⊆ Ω(m′); moreover, the following assertions are
equivalent with each other: (a) Ω(m) = Ω(m′); (b) each extension T [A], A ∈ Ω(m′), is consistent.

Proof. The set of sentences in (2.7) provable from T.Spa is a subset of that provable from T . This
ensures inclusion Ω(m) ⊆ Ω(m′). Implication (a) ⇒ (b) is obvious. Now, assume that (b) is held. In
this case, collection T [A], A ∈ Ω(m′), represents a set of complete extensions of T extending the set
T [A], A ∈ Ω(m). By Theorem 2.1, we must have Ω(m) = Ω(m′). �
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3. STANDARDIZATION PRINCIPLE

Now, we formulate some complementary statement for Theorem 2.1.
Statement 3.1 [Standardization principle for infinitary first-order combinatorics]. Given an ar-

bitrary effective transformation n �→ T ′ �→ F ′, where T ′ is a computably axiomatizable theory
constructed by an arbitrary method from an input parameter n, and F ′ is a finitely axiomatizable
theory of signature ς obtained from T ′ by the universal construction. This scheme can equivalently
be transformed in the form of a standardized scheme n �→ T �→ F (cf. Section 2).

Proof. Let σ′ be the signature of theory T ′, and Φi, i ∈ N, be a Gödel numbering for the set
SL(σ′). Consider a new extended signature σ = {Xi|i ∈ N} ∪ σ′, and add to T ′ all sentences of the
form Xk ↔ Φk, k ∈ N, obtaining a new theory T of signature σ. Include in Spa all formulas of the
form (2.3)(Spa) which are provable in T , while in Ext, all those formulas of the form (2.3) (Ext) which
are provable in T . As for Frm, we include in this group all axioms of the theory T ′ (actually, each project
of a theory with preassigned model-theoretic properties is based on a particular design of the frame
axioms). By construction, the sequence of sentences Xi, i ∈ N, must represent a generating set for the
Tarski–Lindenbaum algebra L(T ).

It can easily be checked that all required properties, cf. Section 2, for the obtained scheme of
transformations n �→ T �→ F are satisfied. Moreover, we can easily establish equivalence between the
old scheme and the new one. �

4. DEMONSTRATION: AN EXISTENCE THEOREM

In this section, we are going to construct an example of finitely axiomatizable theory applying
the standardized scheme for infinitary first-order combinatorics. We will construct a theory with pre-
assigned values of the model-theoretic property p = “theory has a model with first-order definable
elements”, as well as, of some close to it property. Both are controlled by the universal construction.

Theorem 4.1. There is a finitely axiomatizable theory F without finite models of a given finite
rich signature ς satisfying the following properties: the set of all complete extensions of F
consists of a countable sequence Fk, k ∈ N ∪ {ω}, such that, each of the theories F0, F1, F2, . . .
is finitely axiomatizable over F and has a model with first-order definable elements, while Fω is
not finitely axiomatizable over F , and has neither model with first-order definable elements nor
a countable minimal model.

Proof. No input parameter is used in this construction. We first have to construct a computably
axiomatizable theory T whose properties are analogous to those posed in Theorem 4.1 for theory F .

Signature of theory T is σ = {X0
n|n ∈ N} ∪ {U1

n,i(x)|n, i ∈ N}. Axioms of T include the following
groups of sentences:

Spa:
1◦. Xn → ¬Xm, for all cases satisfying n �= m,
Frm:
2◦. (∀x)

(
Un,i(x) ∧ Un,i(y) → x = y

)
, for all n, i ∈ N,

3◦. (∀x)
(
Un,i(x) ∧ Un,j(y) → x �= y

)
, for all cases satisfying i �= j,

4◦. (∃�kx)(x = x), for all k ∈ N,
Ext:
5◦. Xn ⇐⇒ (∃x)Un,i(x), for all n, i ∈ N.
Notice that, the sentences listed in Axiom 5◦ can be reduced to a correct form presented

in (2.3) (Ext). Choose an integer parameter m such that Wm = {k|T.Spa 
 Pk(X0, . . . ,Xa(k))}.
Thus, we use a normalized version of the demand (2.7). According to Axiom 1◦, we have Ω(m) =
{∅, {0}, {1}, . . . , {n}, . . . : n ∈ N}. Denote T [{n}] by Tn, while T [∅] denote by Tω . By the standard
scheme for infinitary first-order combinatorics, the sequence Tn, n ∈ N together with Tω, represents
the set of all complete extensions of theory T provided that Lemma 2.2 is applicable. Let n ∈ N. By
axioms 1◦, 2◦, 3◦, and 5◦, each of the predicates Un,i(x), i ∈ N, distinguish a single element in theory
Tn; moreover, Un,i(x) and Un,j(x), with i �= j, distinguish different elements in the theory. The other
predicates Um,j(x), m �= n, are identically false. Thus, theory Tn has a model with first-order definable
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elements. Relation Tn = T + {Xn} ensures that Tn is finitely axiomatizable over T . As for theory
Tω = T [∅], its axioms require that all predicates Un,i(x) are identically false; in addition, Axiom 5◦

requires that all models of T are infinite. Thereby, Tω represents a theory of an equality relation on an
infinite set. Thus, the theory Tn has neither models with first-order definable elements nor countable
minimal models.

By applying the universal construction, we obtain a finitely axiomatizable theory F of a wished finite
rich signature ς satisfying all posed properties.

Theorem 4.1 is proved. �

5. DEMONSTRATION: COMPLEXITY ESTIMATE
FOR A SEMANTIC CLASS OF MODELS

In this section, we apply the standardized scheme for infinitary combinatorics to the problem of
complexity of first-order theory of a semantic class of models.

Hereafter, we fix a finite rich signature ς; furthermore, Φn, n ∈ N, is a Gödel numbering of the set
of all sentences of this signature. We denote by Def(ς) the class of models of signature ς with first-
order definable elements, and by Dec(ς), the class of all models of signature ς having a decidable theory.
Intersection of these classes DecDef(ς) = Dec(ς) ∩ Def(ς) is the main object of our further study.

Theorem 5.1. Th(DecDef(ς)) ≈ Π0
3.

Proof. Let us denote K = DecDef(ς). We are going to prove that

“Φn has a K-model” represents a ∃∀∃-condition. (5.1)

Indeed, a formula Φ ∈ SL(ς) has a K-model iff there are m,n ∈ N such that Dom(ϕm)∩Dom(ϕn) = ∅,
Dom(ϕm) ∪ Dom(ϕn) = N; moreover, the set of sentences T = {Φk|k ∈ Dom(ϕm)} is a complete
theory such that Φ ∈ T and for all ψ(x) ∈ FL1(ς) satisfying T 
 (∃x)ψ(x), there is a formula θ(x) ∈
FL1(ς) satisfying T 
 (∃x)θ(x), T 
 (∀xy)[θ(x) ∧ θ(y) → (x = y)], and T 
 (∀x)[θ(x) → ψ(x)]. De-
tailed calculation gives prefix ∃∀∃ for this condition. From this, we have Φ ∈ Th(K) ⇔ ¬Φ does not
have a K-model, obtaining prefix ∀∃∀ as an upper estimate for the theory Th(K).

For the lower estimate, we will use the following m-universal in Σ0
3 set, cf. [8, Cor. 14-XVI, p. 328]:

E3 = {n|Wn is cofinite}. (5.2)

Given an integer parameter n. Effectively in n, we construct a theory T (n) of signature (depending on
the input parameter n): σ(n) = {X0

p |p ∈ N}∪ {R1
p(x)|p ∈ N}∪ {cp,i|p ∈ Wn, p > 0, i ∈ N}∪ {dp,i|p, i ∈

N}. Axioms of T (n) include the following sentences of signature σ(n) whose indices are supposed to be
restricted by the condition of inclusion in the signature.

Spa:
1◦. Xp → ¬Xq, for all cases satisfying p �= q,
Frm:
2◦. (∀x)

(
Rp(x) → ¬Rq(x)

)
, for all cases satisfying p �= q,

3◦. (∃�kx)Rp(x), for all p, k,
4◦. ci,j �= ck,t, for all cases satisfying 〈i, j〉 �= 〈k, t〉,
5◦. di,j �= dk,t, for all cases satisfying 〈i, j〉 �= 〈k, t〉,
6◦. ci,j �= dk,t, for all i, j, k, t,
7◦. Rp(cp,i), for all p, i satisfying p > 0,
Ext:
8◦. ¬X0 ∧ .. ∧ ¬Xp−1 → R1(dq,i), p, q, i ∈ N, q + i � p,
9◦. ¬X0 ∧ .. ∧ ¬Xp−1 ∧ Xp → Rt(dq,i), p, q, i ∈ N, q + i > p, t = min{p, q}.
Propositional variables Xi, i ∈ N, play the role of generating sentences for the Tarski–Lindenbaum

algebra of T . Owing to Axiom 1◦, we obtain the following sequence of extensions of T = T (n):

T
(n)
k = T (n) + {Xk}, k ∈ N, and T (n)

ω = T (n) + {¬Xi|i ∈ N}. (5.3)
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One can check that, in any of the theories (5.3), each constant ci,j and each constant dk,t is completely
specified relative to regions distinguished by the unary predicates Ri(x), i ∈ N. Since the form of T is
very simple, this means that all extensions (5.3) of T are complete theories. Particularly, the series (5.3)
represents all possible complete extensions of T ; thus, Lemma 2.2 is applicable. By construction, region

R0(x) is free of any signature constants in the extension T
(n)
ω . Thereby, theory T

(n)
ω does not have a

K-model for all n.
As for the other extensions in (5.3), existence of a K-model for them depends on the input

parameter n.
First, we consider the case n ∈ E3. In this case, by (5.2), there is k0 such that each number k > k0

belongs to Wn. By construction, Axiom 7◦ provides that all regions Rp(x), p > k0 include infinitely many
values of signature constants. Additionally, Axiom 9◦ ensures that all regions Rq(x), q � p, include

infinitely many values of signature constants in theory T
(n)
p . Thereby, for p > k0, theory T

(n)
p must have

a model with first-order definable elements; moreover, this theory is decidable since it is computably
axiomatizable and complete.

Now, we consider the other case n �∈ E3. In this case, by (5.2), there are infinitely many k such

that k �∈ Wn. Thereby, demands of Axioms 7◦, 8◦, and 9◦ are such that for any theory T
(n)
p , p ∈ N,

there are infinitely many regions Rk(x), k ∈ N, which are free of signature constants. Thereby, each

theory T
(n)
p , p ∈ N, cannot have a model with first-order definable elements; particularly, theory T

does not have such a model. As a result, we have established that the following relation is satisfied:
n ∈ E3 ⇔ T (n) has a K-model.

We have described an effective construction of a theory T (n) depending on a parameter n; particularly,
weak c.e. index of the theory T (n) is found effectively in n. Applying the universal construction, we
can find, effectively in n, a finitely axiomatizable theory F of signature ς defined by a sentence Φg(n) as
an axiom, together with a computable isomorphism μ : L(T ) → L(F ), that preserves model-theoretic
properties of the infinitary semantic layer MQL, where g(x) is a general computable function. The
property p = “theory has a model with first-order definable elements” belongs to MQL; moreover,
the isomorphism μ maps decidable complete extensions of T in decidable completions of Φg(n). Thus,
we obtain n ∈ E3 iff Φg(n) has a K-model. This relation can be reformulated in the following form
n �∈ E3 ⇔ ¬Φg(n) is satisfied on all K-models, ensuring the necessary lower estimate N � E3 �m

Nom Th(K).
Theorem 5.1 is proved. �

6. DEMONSTRATION: ALGORITHMIC COMPLEXITY OF THE TARSKI–LINDENBAUM
ALGEBRA OF A SEMANTIC CLASS

Now, we apply the standardized scheme to a more common problem concerning complexity of the
Tarski–Lindenbaum algebra of a semantic class of models. We consider the same class of models that
was studied in Section 5. We use notations and conventions introduced at the beginning of Section 5.

Theorem 6.1. The following assertions hold :
(a) L(DecDef(ς)) is a Boolean Π0

3-algebra,
(b) computable ultrafilters of L(DecDef(ς)) represent a dense set among arbitrary ultrafilters

in the algebra,
(c) for an arbitrary Boolean Σ0

2-algebra (B, ν) with a dense set of computable ultrafil-
ters among arbitrary ultrafilters there is a sentence Φ of signature ς, such that (B, ν) ∼=
(L

(
Th(Mod(Φ) ∩ DecDef(ς))

)
, γ), where γ is a Gödel numbering of the set of sentences of

signature ς.
(d) for an arbitrary Boolean Π0

3-algebra B there is a sentence Φ of signature ς, such that
B ∼= L

(
Th(Mod(Φ) ∩ DecDef(ς))

)
.

Proof. By virtue of (5.1), we obtain that sentences Φ and Ψ are equivalent on the class DecDef(ς) if
and only if (Φ ∧ ¬Ψ) ∨ (Ψ ∧ ¬Φ) does not have a model in this class. This gives prefix ∀∃∀ for (a).
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Let T be a complete theory extending Th(DecDef(ς)), and Ψ ∈ T . Obviously, Ψ has a model M ∈
DecDef(ς). From this we have that complete decidable theory T ′ = Th(M) presenting a computable
ultrafilter in St(Th(DecDef(ς))), is found in the neighborhood Ψ of a given ultrafilter T of this Stone
space. Thus, we obtain the required density property posed in (b). As for Part (d), it is a consequence
of Part (c) together with Theorem 1 and Theorem 2 in [4] ensuring a possibility of reductions Π0

n+1 �
Δ0

n+1 � Σ0
n for Boolean algebras, for all n ∈ N.

Now, we prove Part (c). We use notation K = DecDef(ς) in the proof below.
Given a numerated Boolean Σ0

2-algebra (B, ν). By Lemma 6 in [6], there is a numeration ν ′ of B such
that (B, ν ′) is a Boolean Σ0

2-algebra whose computable ultrafilters represent a dense set in the set of all
ultrafilters. For the sake of simplicity, we assume that the source algebra (B, ν) has this property, that is:

computable ultrafilters of (B, ν) form a dense set in St(B). (6.1)

We also assume, that B is a nontrivial algebra. By definition, signature operations ∪, ∩ and − in B
are presentable by computable functions on ν-numbers, and the equality relation is a Σ0

2-relation in
numeration ν satisfies ν(x) = ν(y) ⇔ H(x, y), H ∈ Σ0

2. Consequently, there exists a unary relation
H∗ in Σ0

2 such that for any finite tuple of zeros and ones α = 〈α0, α1, . . . , αn〉, we have ν(0)α0 ∩ ν(1)α1 ∩
. . . ∩ ν(n)αn = 0 ⇔ 〈α0, α1, . . . , αn〉 ∈ H∗, H∗ ∈ Σ0

2.

We will use the following m-complete in class Σ0
2 set: E2 =

{
n|Wn is finite

}
, cf. [8, Th. 13-VIII,

p. 264]. Since any Σ0
2-set is m-reducible to E2, there is a general computable function f(x) such that

for an arbitrary tuple α ∈ 2<ω , α = 〈α0, . . . , αk〉, we have

ν(0)α0 ∩ ν(1)α1 ∩ . . . ∩ ν(k)αk = 0 ⇔ Wf(α) is finite, (6.2)

or equivalently,

ν(0)α0 ∩ ν(1)α1 ∩ . . . ∩ ν(k)αk �= 0 ⇔ Wf(α) is infinite. (6.3)

By virtue of (6.3), Stone space of algebra B is presented by tuples α ∈ 2ω, α = (αi : i < ω), satisfying
(∀k)[Wf(〈α0 ,...,αk〉) is infinite]; i.e, the pointed out sequence α presents a filter Fα of B generated by
elements of the form in the left-hand side of (6.3). There is a natural one-to-one correspondence between
the set 2ω and the power-set P(N) = {A|A ⊆ N} which is defined by the rules

α �→ Aα = {i|αi = 1}, and A �→ αA = (αi : i < ω), αi =

{
1, if i ∈ A,

0, if i �∈ A.
(6.4)

It is possible to check that α is computable iff Aα is computable for all α ∈ 2ω .
Now, we start to describe a computably axiomatizable theory T depending on an integer parameter

n. Stone space of theory T (n) will be presented by all sets A in P(N); i.e., we do not include any
demands in the group Spa. Our goal is to establish the following relation for an arbitrary tuple α ∈ 2ω,
α = 〈α0, α1, . . . , αk, . . . 〉, and corresponding set A = Aα:

T [A] has a K-model ⇔ α computable ∧ (∀k ∈ N)[Wf(〈α0,...,αk〉) infinite]. (6.5)

Signature of theory T is σ = {X0
i |i ∈ N} ∪ {R1

i |i ∈ N} ∪ {ci,j |i, j ∈ N}. The following sentences are
axioms of T :

Spa: this group is an empty set,
Frm:
1◦. (∀x)[Ri(x) → ¬Rj(x)], for all cases i �= j,

2◦. (∃�tx)Rk(x), for all k, t,
Ext:
3◦. Xα0

0 ∧ · · · ∧ Xαk
k → Rk(ck,t), if W t+1

f(〈α0,...,αk〉) � W t
f(〈α0,...,αk〉) �= ∅,

4◦. Xα0
0 ∧ · · · ∧ Xαk

k → R0(ck,t), if W t+1
f(〈α0,...,αk〉) � W t

f(〈α0,...,αk〉) = ∅.

For complete extension T [A] of T corresponding to the filter Fα of B, α = αA, Axiom 3◦ defines
in the regions Rk(x) as many signature constants ck,t how many elements are computed in the set
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Wf(〈α0,...,αk〉); another Axiom 4◦ puts a constant in the trash region R0(x) in the dummy cases. In the
case when all sets Wf(〈α0,...,αk〉) are infinite, each region Rk(x) gets infinitely many signature constants,
thus T [Aα] is a complete theory having a model with first-order definable elements. In the other case,
when one of the sets Wf(〈α0,...,αk〉) is finite, corresponding region Rk(x), includes finitely many signature
constants, while Axiom 2◦ requires that this region is infinite. In this case, T [Aα] is a complete theory
without a model with first-order definable elements.

Thereby, the principal property (6.5) is indeed satisfied.
Having constructed theory T , let us pass to a formula Φ ∈ SL(ς) which is an axiom of finitely

axiomatizable theory F = FU(T, ς); moreover, a computable isomorphism μ : L(T ) → L(F ) preserving
infinitary layer MQL is also available, cf. (2.4). Consider an arbitrary finite tuple α = 〈α0, . . . , αk〉
in 2<ω . Construct an elementary intersection of elements in B by the rule bα = ν(0)α0 ∩ ν(1)α1 ∩
· · · ∩ ν(k)αk , as well as an elementary conjunction of corresponding sentences (2.4) by the rule
βα = θα0

0 ∧ θα1
1 ∧ · · · ∧ θαk

k .
Claim A. For any α ∈ 2<ω, bα �= 0 if and only if Φ ∧ βα has a K-model.
Proof. Assume that bα �= 0. By (6.1), computable ultrafilters form a dense set among arbitrary

ultrafilters in (B, ν). Thus, there is an infinite sequence α∗ = 〈αi|i < ω〉 extending α such that the set
A related to α∗ is computable, and ν(0)α0 ∩ · · · ∩ ν(i)αi �= 0, for all i ∈ N. By (6.3), we obtain that each
set Wf(〈α0,...,αi〉), i ∈ N, is infinite. Thereby, theory T [A] is consistent, complete, and, by (6.5), has a
K-model N. This ensures that the formula Φ ∧ βα (since it is provable from F [A]) is satisfied in the
model N.

Now, assume that Φ ∧ βα has a model N in the class K. Consider the set

A = {θi|N |= θi}, (6.6)

which is computable because Th(N) is decidable. Build an infinite sequence α∗ = 〈αi|i < ω〉 related
with A by rule (6.4). By virtue of description in Section 2, theory F [A] is consistent and complete.
Moreover, this theory is decidable by Janiczak Theorem since it is computably axiomatizable. By (6.6),
all axioms of F [A] are satisfied in the model N. Thereby, we have that A is computable and F [A] has a
K-model. Applying (6.5), we finally obtain bα �= 0.

Claim A is proved. �

Let us map elements ν(i), i ∈ N, of Boolean algebra B to sentences θi, i ∈ N, of signature ς by the
rule:

λ∗(ν(k)) = θk, k ∈ N. (6.7)

Now, we will extend the partial mapping (6.7) up to a computable isomorphism of the algebras under
consideration by the rule: for an arbitrary finite sequence of finite binary tuples α0, α1, . . . αn ∈ 2<ω , we
put λ(bα0 ∪ bα1 ∪ · · · ∪ bαn) = βα0 ∪ βα1 ∪ · · · ∪ βαn .

Based on Claim A, it is a simple exercise to show that the mapping λ is an isomorphism that is
computable in numerations ν and γ obtaining finally the required computable isomorphism λ : (B, ν) →(
L

(
Th(Mod(Φ) ∩ K)

)
, γ

)
.

Thereby, Theorem 6.1 is completely proved. �

CONCLUSION

This work describes in detail a general scheme of construction of finitely axiomatizable theories with
pre-assigned properties. It shows that, in terms of natural model-theoretic properties, expressive power
of finitely axiomatizable theories in first-order logic coincides with that of computably axiomatizable
theories thereby presenting a good chance to solve various problems concerning finitely axiomatizable
theories by way of their regular reduction to a much simpler case of computably axiomatizable theories.
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