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Abstract—A method is proposed for calculating the optical resonance properties of metal—dielectric core—
shell nanoparticles with an arbitrary number of layers in the shell. A formula is calculated for a particle with
a single-layer shell, which confirms the well-known experimental and theoretical result. A formula is derived
that relates the polarizability of a particle and its optical properties for the structure of a core with a spherical

double shell.
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INTRODUCTION

At the present developmental stage of natural sci-
ences with the rapidly expanding capabilities of the
latest technologies, of particular importance are disci-
plines that have arisen at the junction of several areas
of knowledge, such as nanophotonics and nanoplas-
monics. In particular, nanostructured composite
media are widely used in biological and medical appli-
cations. This is due to the interesting optical properties
of metal—dielectric spherical nanoparticles associated
with plasmon resonance. In the modern scientific ter-
minology, these are called core—shell particles. Inter-
est in the theoretical study of metal—dielectric core—
shell nanoparticles is confirmed by the large number
of publications on this subject in scientific journals
[1-7].

Calculation of layered spherical nanoparticles with
two or more layers in the shell refines experimental
data. At the same time, progress achieved in nano-
structure manufacturing technology makes it possible
to create nanocomposite structures with complex
inclusions, consisting of a core and several shell layers.
The resonance fields in them vary widely and are con-
trolled by the particle structure, which bodes well for
their practical application [8—10]. Various combined
materials for manufacturing complex nanoparticles
and various changes in shell and core thickness make
it possible to obtain particles with predetermined
properties.

The present article derives the polarizability for-
mula of a layered particle with one shell; for this, the
theory proposed in [11] was used. The advantage of
this calculation method is that it can be generalized to
a case differing from quasistatics; method is applicable
to spherical structures with an arbitrary number of
shells surrounding the core. A far as the author knows,
the paper also presents for the first time a formula
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obtained for the polarizability of a particle with a two-
layer shell.

THEORETICAL STUDY OF THE OPTICAL
PROPERTIES OF A MULTILAYER
NANOPARTICLE

Let us solve the quasistatic problem in the case of a
layered medium. In spherical symmetry, this is a
sphere with a shell. In the electric field of an incident
wave, a metal nanoparticle is polarized. The field of
the scattered wave in the case of dipole resonance is a
dipole field with the moment [12]

p =0k, (1)

where E| is the external field strength and o, the polar-
izability of a particle. Here, the dipole orientation is
assumed to be parallel to the direction of the electric
field strength, since the polarization of the sphere is
induced by the field. Let us find the expression that
determines this value. For this, we write the formula
derived in [11] for the field strength of the wave scat-
tered by the particle:

. ~ 2
£ = Y0014, SPCAD A,

where r is the radial coordinate, 4, — is the amplitude,
d — bis the sphere’s radius, Y;(0,¢p) — is the angular
part of the wavefunction of the dipole harmonic [10,
13], and a(r) is the phase function of the spherical
wave determined by the equation [11]:

1 aHe(l",e,Z) — & 3
Hor00  or \/E:ICOt(a(V)), (3)

where Hy(r,0,z) is the azimuthal component of the
magnetic field of the wave. The relationship between
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Fig. 1. (Color online) Schematic representation of spherical particle with single- (a) and two-layer (b) shell.

two phase functions determined by equality (3) in two
adjacent regions of a piecewise-homogeneous
medium with spherical symmetry (dielectric constants

of the media ¢, and ¢,) at their boundary with radius d
is given by the formula

(a(d)) = \/QCOt(a(d))- 4)
€

The last factor in the expression for field (2), taking
into account (4), can be represented as

sin(@(d))’ _ _cot(a(d))’ +1
sin(@@)’ L2 got(a(d)) +1

&

%)

where €,¢€, — is the dielectric constant of the sphere
and its medium, respectively. According to formula
[11], for the quasistatic approximation (k,d <« 1, where
ky = ®/c, o is the frequency of the electromagnetic
wave), the cotangent of the dipole harmonic phase
function cot(a(d)) at the particle boundary is V2.

Since the polarizability of a particle corresponds to
plasmon resonance, the cotangent of the phase func-

tion at the particle boundary is \/§ Summarizing,

€
taking into account (2) and (5), we arrive at the result

(6)

El — Yl(e’ (p)AO exp(—a(r)) (82 — 8l) .

(& +2¢,)

Let us decompose the initial wave into spherical

harmonics [10, 13]. Only the dipole harmonic in the

expansion of the incident wave enters into the reso-

nance; therefore, E, can approximately be repre-
sented as

Ey = Y,0.9)4, XECAD). Q)
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The dipole field is [12]

Hence, taking into account (1), (6), (7), we obtain the
polarizability of the particle:

— (82 — 81) d3.
(g, + 2¢,)

Determining the polarizability of a core—shell par-

ticle is a bit more complicated (Fig. 1a). The field

strength of the eigenmode at the particle boundary in
this case is

)

(&9

E, = 11(6,9)4,
»c 2sin(a(r) cot(a(d))* +1 cot(a(d,))’ +1 )
" Beotad)? + 12 cot(a(d,))? +1
€ €

2

where r is the radial coordinate, 4, is the outer radius
of the particle, ¢, is the dielectric constant of the shell,

and ¢, is the dielectric constant of the medium around
a complex particle. Hence, using the expressions
obtained in [11] for cot(a(d,)) at the second interface
between the media in the particle, we conclude that
the polarizability of the outer sphere in the field of a
wave scattered by the inner sphere, like any wave of
dipole harmonic, is

— (83 _82) d13.
(g5 + 2¢3)

Since the particle is polarized in the field penetrat-
ing inside it, the polarizability of a complex particle is
equal to the ratio of the sum of the polarizabilities of
the spheres, its components, to the transmittance of
the field inside the particle. The latter is equal to the
ratio of the fields inside and outside the particle near

(10)

A,
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the interface. When the direction of wave propagation
changes, the transverse field component also changes
to the opposite direction; taking this into account and
comparing the real parts of the field strengths deter-
mined by formulas (6) and (7), we arrive at the expres-
sion for the field transmittance

t=1

+_2££%?;.
d,
Writing the ratio and summing the terms, as well as

using Egs. (8)—(11), we write the result as an expres-

sion containing the dielectric constants of the three
media:

1

3
o, =d,

3
(&5 —&)(g + 2¢,) + [a’ij (& —&))(e; + 2¢5) (12)

X 1

3
(&1 +260)(e + 265) + 2[5} (e~ &) (e — )
1

This is a well-known and widely applied result
obtained in [14] using the Maxwell—Garnett rule for
calculating the effective dielectric constant [15]. This
formula was derived in a different way in monograph
[13]. The equality of the numerator and denominator
in expression (12) to zero determines the invisibility
and resonance polarization, respectively. If the polar-
izability of a particle is zero, it does not contribute to
the scattered field and does not absorb the external
wave energy; therefore, the scattering and absorption
cross sections of the particle are zero and there is no
external wave scattering. This makes it impossible to
detect the position of the particle; i.e., the particle is
invisible. The opposite effect occurs in the case of res-
onance. The external wave field increases without lim-
itation. This allows metallic nanoparticles to be used
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in medical applications, since this effect is responsible
for the giant field amplification in the Raman scatter-
ing of light by molecules [16, 17]. This calculation
method can also be applied to core—shell particles
with more than three layers. For this, we need to write
the electric field formula for a three-layer particle
under plasmon resonance conditions:

E, = Y,(0,¢)4, 250") 0

cot(a(d))* +1 cot(a(d,))’ +1 cot(a(d,))’ +1

S cot(a(d))’ + 12 cot(a(d,))’ + 12 cot(a(d,))* +1
& & &

where 7 is the radial coordinate, d, is the radius of the
inner shell, d, is the outer radius of the particle, €, is
the dielectric constant of the inner shell, €, is the
dielectric constant of the outer shell, and ¢, is dielec-
tric constant of the medium surrounding a complex
particle (Fig. 1b).

In the quasistatic approximation, we must set the
cotangent cot(a(d,)) in the numerator of the last factor

equal to i \/i’ and in the denominator, x/i, we write
€3

the expression for the polarizability of the outer sphere

in the field of dipole spherical harmonics

_ (&4 — &) 3
(65 +2¢,)

The expression for the polarizability of a complex
particle, as above, is written via the transmittance of
the field inside the particle, determined by formulas
(1) and (13). The final result, taking into account for-
mulas (13), (14), has the form

(14)

3

3 3
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The resulting formula can be used to calculate the
resonance conditions for particles with a double shell.
This tool can be used to predict the optical plasmon
resonance properties of metal—dielectric nanoparti-
cles and, accordingly, to design nanostructured com-
posite media. In this case, the resonance frequencies
of radiation, which is amplified by scattering by these
media, depend on the structure and material compo-
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2

sition of the particles; in the case of particles with a
double shell, they are located in a very wide range.
Since the calculation method can be applied to parti-
cles with an arbitrary number of layers in the shell,
almost any frequency range of visible and infrared
radiation can be used for theoretical research.

Let us consider this conclusion with the example of
particles with a double shell. Using the obtained for-
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Fig. 2. Dependence of absorption cross section (G) on wavelength of radiation () scattered by single-shell nanoparticles having
the following material and geometric parameters: €, = 12, €3 = 5, €| = €, where €, is the dielectric constant of gold (w, =9 eV
is the plasma frequency, T = 13 fs is the electron relaxation time), d = 1, d; = xd, x varies from 0 to 5 (a) and from 5 to 40 (b);

numerals on graph correspond to x values.
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Fig. 3. Dependence of absorption cross section (G) on wavelength of radiation (A) scattered by double-shell nanoparticles having

the following material and geometric parameters: €, = 12, g4 =5, &5 = €| =¢,,,, where ¢, is the dielectric constant of gold (®

pl =

9 eVis the plasma frequency, T = 13 fs is the electron relaxation time), d|/d, =1 (a), d|/d, =1/3 (b), d =1, d| =xd, x varies

from 0 to 40; numerals on graph correspond to x values.

mulas, we can easy calculate the absorption cross sec-
tion of nanoparticles with a shell. The relationship
between this quantity and the polarizability of a parti-
cle is determined by the equality [10]

0 = kygJ€ou ImaL, (16)

where G is the particle absorption cross section, o is
the polarizability of the particle, €, is the dielectric
constant of the external medium in which the particle
is placed.

Figure 2a plots the dependence of the absorption
cross section of a particle on the scattered if the parti-
cle has a gold core and an optically dense shell. In this
calculation using formulas (12) and (16), the ratio of
the outer and inner radii of the shell varies in the range
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(0, 5). Resonances span the spectrum from about 0.16
to 0.24 um. Varying the ratio of the shell radii in this
calculation in the range (5, 40), we arrive at the depen-
dence plotted in Fig. 2b. Clearly, in this case, the res-
onances are located in a narrow region of the spectrum
corresponding to a wavelength of 0.65 um. Changing
the shell’s dielectric constant and the core radius does
not significantly change the width and position of the
resonance regions in the spectrum of the scattered
wave.

The ratio of the radius of the core and the shell
closest to it was varied with a ratio of the external
radius of a complex particle to the radius of the bound-
ary of two shell layers 1 (Fig. 3a) and 3 (Fig. 3b). Two
features of the graphs are noteworthy: first, the regions

Nos. 9-10 2019
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of the spectrum where there is no resonance in a par-
ticle with one shell are overlapped by resonance, and
second, the absorption cross section maximum is 1000
times greater than Fig. 2.

Summing up the graphical analysis of formulas (12),
(15), (16), we can conclude that the use of nanoparti-
cles with a double shell significantly broadens the pos-
sible spectrum of resonance frequencies of the scat-
tered wave. Such nanoparticles lead to a sharp increase
in the field enhancement effect, which useful in gigan-
tic Raman scattering.

CONCLUSIONS

A method is considered for calculating the polariz-
ability of spherical core—shell nanoparticles with an
arbitrary number of layers in the shell. For the first
time, the polarizability formula for particles with a
double shell is derived. This formula, as well as the
expression for the polarizability of particles with a
more complex composition, also accessible for the
above calculation method, makes it possible to predict
the optical plasmon resonance properties of metal—
dielectric nanoparticles.
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