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INTRODUCTION
Today, traditional microelectronics faces a number

of significant problems that hinder the increased per-
formance of computing systems in addition to
decreased size. One reason for this is the limitation on
the transistor switching rate due to the impossibility of
reducing the supply voltage while maintaining an
acceptable switching steepness (in traditional field
effect transistors, the current cannot increase by more
than ten times with an increase in gate voltage by
60 mV at room temperature). Therefore, devices with
lower supply voltages and a greater steepness of the
subthreshold characteristic are actively being devel-
oped instead of traditional silicon transistors. Studies
on tunneling field-effect transistors [1], field-effect
transistors with a “negative gate capacitance” [2], and
switches based on spin-orbital coupling [3] are partic-
ularly noteworthy.

Since the 1970s [4], the possibility of using individ-
ual molecules as active electronics elements captured
the interest of scientists. To date, significant progress
has been made in the theoretical description and, in
particular, experimental implementation of single-
molecule controlled conductors [5]. The most effec-
tive conductivity control for individual molecules is
the phenomenon of quantum interference. However,
frequently, one controls the destructive quantum
interference (DQI), which significantly reduces the
current through the molecule, i.e., “turns off” the
transistor, by electrochemical effects [6, 7] that is
unsuitable for creating scalable integrated circuits.
DQI can also be controlled by shifting the spectrum of
the molecule in the gate field [8, 9]. In this case, the

gate potential determines the position of the energy of
zero tunnel transparency of the conductor and can
practically “block” the conductivity of the molecule
when this energy coincides with the Fermi level. How-
ever, the switching slope of such devices is limited, like
in traditional field-effect transistors, so the supply
voltage cannot be significantly reduced at room tem-
perature [10]. The characteristics of advanced results
in the practical implementation of such devices have
not yet surpassed traditional transistors [11]. In [12], a
four-level model of a transistor with a significant
switching slope was theoretically considered, which
was interpreted by the authors as a consequence of
DQI due to tunneling through a highest occupied
molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO).

In [13], a new interference mechanism for con-
trolling the conductivity of quantum molecular con-
ductors was proposed. It is based on the resonance
coalescence effect [14] at an exceptional point of an
open quantum system formed by a molecular conduc-
tor and electrodes, accompanied by a DQI with a gate
controlled degeneracy of eigenstates of different pari-
ties. In [13], a general model was considered that takes
into account two levels that can become degenerate. In
this work, we study the general appearance of the
structure of interference molecular transistors in
which the effect of resonance coalescence is possible
and, as a result, which are capable of efficient switch-
ing by an external inhomogeneous gate field. It is
shown that the model [12] is a special case of the gen-
eral mechanism described in [13], and models with
similar switching properties are also considered.
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Fig. 1. General view of model of four-level system in tight-binding basis in HOMO–LUMO representation (a); general view
of model in site representation (b); three topologies of structure undergoing DQI and resonance coalescence (c–e).
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THEORETICAL MODEL

Let us consider the application of the general
approach developed in [13] to the description of the
system proposed in [12] as a quantum interference
transistor. As was shown in [12], DQI can take place in
the system schematically shown in Fig. 1a if the tunnel
matrix elements  between the side anchor groups
and the HOMO and LUMO of the central molecule
are the same: . In such a system, there are two
degenerate states if the HOMO and LUMO energies
are symmetric with respect to , i.e. if 
and . These degenerate states have
energy , and the corresponding symmetric and anti-
symmetric wavefunctions can be calculated from the
Hamiltonian  of the isolated system [12]:

(1)

Model (1) has a mixed atomic orbital character.
The electronic states of the anchor groups interacting
with the electrodes are described in the basis of atomic
orbitals, while the atomic structure of the molecule is
not specified, but the presence of two orbitals with
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given tunneling matrix elements is postulated. A more
general formalism [13] makes it possible to decipher
this structure and determine the relationship between
the parameters of the Hamiltonian and microscopic
atomic characteristics.

The normalized symmetric  and antisymmetric
 degenerate states have the following wavefunctions

(in the same basis as ):

(2)

In the basis of on-site localized states, interaction
with contacts in the wideband approximation [15] can
be described by the following vectors:

(3)

Here, at the ith vector position  is a tunnel matrix
element between the ith state of the system and the left
(right) electrode. Therefore, in the basis of states 
and , the interaction with the contacts can be writ-
ten as
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Thus, each of the states  and  has a coupling
with both the left and right contacts, which allows tun-
neling of carriers through both states. Moreover, due
to the different sign of the matrix coupling elements

in (4) for the - and -states, DQI of these contri-
butions is attained. As is seen from expression (2), the
states that determine the behavior of the transmission
coefficient of the system are localized mainly on the
anchor groups. The corresponding amplitudes with an
increase in energy split between the HOMO and
LUMO tend to constant values. Thus, it is the degen-
erate states of the side anchor groups that determine
the nontrivial evolution of the transmission coeffi-
cient, in contrast to the DQI mechanism proposed in
[12] due to tunneling through the HOMO and LUMO.

Let the gate potential shift the spectrum of the cen-

tral molecule by , i.e.,  and

. Moreover, the degeneracy of

states  and  is removed: εs = ε0 + 

and . Stationary current through such a system,
taking into account the contribution only from states

 and , can be calculated using the standard Lan-
dauer–Buttiker formula:

(5)

where  is the probability of tunneling through a
quantum conductor, which can be written in a stan-
dard form [16]:

(6)

Here,  is the advanced and retarded Green func-
tions of the system, taking into account only the states

 and ;  is the anti-Hermitian

component of the contact self-energy. Using rela-
tions (2) and (4), we can write the transmittance of the
system in a form common to any two-terminal quan-
tum conductor [17]:

(7)
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, where
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According to expression (7), the real zeros of the

function  correspond to zero transparency, and

the reals zeros of the functions , to perfect (unity)

transparency. For , Hamiltonian (8) describes
tunneling through a system with two degenerate levels.
Thus, the four-level model (1) [12] is effectively
reduced to two-level [13].

Since the zeros of function  are determined by
the eigenvalues of auxiliary non-Hermitian Hamilto-
nian (8), the exceptional point of this Hamiltonian

taking place at  corre-

sponds to the coalescence of resonances in this system

[17]. Moreover, if , the peaks of the tunneling

transparency (near the energies of levels  and )
will be less than unity and the minimum amplitude

 they reach for , when the symmetric and

antisymmetric states are degenerate. It is easy to calcu-
late that

(9)

For , we have , which exactly corre-

sponds to the result [12], a key feature of which is the

possibility of significant reduction of  and,

accordingly, an increase in the ratio of currents in

open and closed states with an increase of  ratio.

EXAMPLES OF FOUR-LEVEL STRUCTURES

The general formalism of [13] makes it possible to
explicitly construct specific microscopic realizations
of model [12], having determined the relationship
between the parameters of Hamiltonian (1) and the
geometry and microscopic characteristics of the mol-
ecule and anchor groups.

Four-site models. The simplest way to describe the
LUMO and HOMO of a central molecule in the site
representation is to consider the structure, the most
general form of which is shown in Fig. 1b. The

requirement of equality of all hopping integrals  in
the diagonal basis of the central molecule leads to only
three possible configurations:
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Here, all parameters are considered to be real. The
first configuration is the Hückel model for the
trimethylenemethane diradical, which was considered
in detail in [13]. The structures corresponding to the
given configurations are shown in Figs. 1c–1e. All
these structures can be brought into a highly symmet-
ric configuration with a pair of degenerate states. In
particular, degenerate states in the first system take

place for , and in the second and third for

.

Since these structures are described by the general
model formulated in the previous section, their most
important property, the minimum achievable tunnel-
ing transparency, is described by expression (9) for

 and  for the first structure, 

and  for the second, and J =

 and Δ =

 for the third. The evolution of the

transmission coefficient for these structures is shown
in Figs. 2a–2c, and the spectra of the transmission
coefficient in the case of degeneracy of the eigenstates
are shown in Figs. 2d–2f. Clearly, the peak values of
the transmission coefficients in this case agree very
well with the estimate obtained from expression (9).

It is important to note that a decrease in transpar-
ency by the same mechanism is possible in the case of

a four-site system in which effective jumps  between
the anchor side groups and the central molecule are
not necessarily equal to each other (Fig. 1a), which
was not noted in [12]. It is easy to establish that degen-
erate states in such a system take place for a continuous

set of parameters  (and not just the specific situation

with all  equal to each other). As an example, let us
consider a structure of the form, like in Fig. 1e. Study-
ing the properties of the eigenvalues of its Hamilto-
nian, we can conclude that this structure has degener-

ate states with energy  if the following condition is
met:
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els. For example, let us consider the case  and

, which clearly satisfies (10). By diago-

nalizing the Hamiltonian of the central part of the sys-
tem, we can conclude that in this structure

 and , where

(11)

Obviously, . Nevertheless, the resonances
coalesce, and an antiresonance forms (Fig. 2g). Fig-
ure 2h shows the spectrum of the smallest transmit-
tance of the system, the peak values of which also
agree well with estimate (9).

Three-site model. The scheme of a structure show-
ing coalescence of resonances and the formation of
DQI in Fig. 1a requires at least four states involved in
the tunneling process. However, the nature of this
phenomenon, as shown in [13], more likely imposes
restrictions on the symmetry of the system than on its
specific configuration. For a system to have at least
one pair of degenerate levels, its symmetry group must
have an irreducible representation of at least two
dimensions [18]. No two-site system can satisfy this
condition, but a three-site system can. Let us consider
the three-site structure shown in Fig. 3a, with the fol-
lowing Hamiltonian:

(12)

For , the system has triangular symmetry,
which group has an irreducible two-dimensional rep-
resentation. In this case, there are two degenerate

states with energy . The corresponding symmet-
ric and antisymmetric states can be written in the same
basis as Hamiltonian (12):

(13)

Following [13], it is easy to verify that the mini-
mum amplitude of the peaks of tunnel transparency in

this system is equal to  and cannot be reduced

by any change in parameters. Figure 1b shows the evo-
lution of the transmittance spectrum of this system,
calculated in the wideband approximation. Clearly, it
has the same behavior as in the case of four-level
structures (Fig. 2).
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Fig. 2. (Color online) Transmission control in four-level system. Evolution of transmittance spectrum with change in energy of

central molecule (a–c) for structures shown in Figs. 1a–1c, respectively; parameters:  and  are the same for all

cases,  (a),  (b), and  (c). Solid lines—unity transmittance; dashed lines—zero transmit-
tance. The resonance coalescence is indicated by bold dot. The worst transmittance spectra of these structures (d–f). Dashed
lines—estimate in accordance with expression (9). Evolution of transmission spectrum for structure similar to that shown in

Fig. 1c, but with  (g); parameters:  and . The worst transmittance spectrum of this

structure (h).
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INTERFERENCE TRANSPORT IN MORE 
COMPLEX SYSTEMS

Since the physical mechanism of the described
switching of system conductivity is based only on a
pair of degenerate states with different parity, the
hybrid four-state orbital structure proposed in [12] is
not universal. In fact, the Hückel models of some
molecular conductors, e.g., from disjoint diradicals,
cannot be reduced to such a structure. In [13], in par-
ticular, a divinylcyclobutadiene model was studied. In
this paper, we consider another example of a disjoint
diradical: tetramethyleneethane (TME) [19] (Fig. 4a).
NANOTEC
In the Hückel model, the Hamiltonian of electrons
at the p-orbital of carbon atoms in TME can be writ-
ten as

(14)
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Fig. 3. (Color online) Schematic representation of three-site structure (a). Evolution of transmittance spectrum of a system with

change of on-sete energy  ( ). Solid lines—unity transmittance; dashed lines—zero transmittance. Resonance

coalescence is indicated by bold dot (b). Worst transmittance spectrum with maximum estimate  (c).
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approximation, as
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It is important to note that the symmetry operation
in this system is not a mirror reflection, but a 180°
rotation around the axis perpendicular to the plane of
the molecule and passing through its center. For

 this system has degenerate states with energy ,

among which it is possible to distinguish even  and

odd  combinations with respect to the symmetry
operation:
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The transmittance of this system can be calculated
by general formula (6). Figure 4c shows the evolution

of the transmittance spectrum with a change in ;
Fig. 4d, the worst transmittance spectrum, corre-

sponding to the degenerate case for . Since the
molecule in question is a disjoint diradical, in the two-

level approximation (states  and ) in the degener-

ate case, tunneling is completely absent ( ). In

a real system, transparency is nonzero only due to con-
tributions of states remote by energy.

CONCLUSIONS

Based on the example of a number of molecular
structures with different geometries, we have demon-
strated the universal nature of the previously proposed
mechanism for a sharp change in tunneling transpar-
ency near an exceptional point of an open quantum
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system formed by a molecule and electrodes [13]. In
fact, we are dealing with a quantum phase transition in
the crossover mode, which can be initiated by a weak
external potential, and results in a substantial decrease
in the supply voltage and, accordingly, power con-
sumption. In all the examples considered, the leading
role in the switching mechanism is played by (almost)
degenerate levels near the Fermi level. Such levels are
absent in linear molecules and are present only in non-
simply connected configurations, which is directly
related to the interference nature of the considered
mechanism. There is no doubt that, in addition to the
molecules described in this article and in [13], there
are many others, in particular, belonging to the family
of diradicals [20], which have similar switching char-
acteristics. Study of the properties of such molecules
and molecular structures in the makeup of a device is
an urgent and important task in modern molecular
nanoelectronics. The possibility of practical imple-
mentation of logical integrated circuits based on simi-
lar molecular structures is largely determined by the
capabilities of planar technology. According to mod-
ern forecasts (ITRS 2.0, Imec), successful lithography
with atomic accuracy is expected at the beginning of
the next decade, which will make the transition to
active elements of integrated circuits based on molec-
ular structures highly probable.
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