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Abstract—The results of comparing the accuracy and speed of two numerical algorithms for calculating the
electric potential in the Earth’s ionosphere are presented. Several test problems for which exact analytical
solutions are available are considered. It is shown that both approaches can be used to calculate the electric
potential in models of the upper atmosphere, including in the regions of the equatorial electric jet. The com-
bined use of the finite element method and the Fedorenko multigrid method with a preliminary transition to
the problem for special potentials leads to a much more accurate and faster solution of the two-dimensional
electrical conductivity equation in the ionosphere than the method used earlier in the block for calculating
the electric potential of the global self-consistent model of the thermosphere–ionosphere–protonosphere.
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1. INTRODUCTION

The ionosphere is the propagation medium for
radio waves. Terrestrial radio communications, navi-
gation of aircraft and ships, radar, and direction find-
ing are carried out through it. Therefore, it is neces-
sary to foresee those (sometimes catastrophic)
changes in the parameters of the ionosphere which
lead to disruption and sometimes to the complete dis-
appearance of radio communication [1]. Electric
fields and currents have a significant effect on the heat
balance, dynamics, and structure of the upper atmo-
sphere at all latitudes [2–5]. Their role especially
increases during periods of magnetospheric distur-
bances, when the ionosphere experiences significant
changes [6–9].

In order to obtain a spatiotemporal picture of the
variations of the electric field in the ionosphere, there
are not enough observational data either under calm
conditions or, even more so, during geomagnetic
storms in each specific case. Self-consistent models of
the Earth’s upper atmosphere are currently helping us
to eliminate this shortcoming [10, 11]. One of the main
mechanisms of plasma transport in the Earth’s iono-
sphere is electromagnetic drift, which is important to
correctly take into account when modeling the iono-
sphere, especially the upper one. To study the space-
time distribution of the electric field in the Earth’s

ionosphere and the physical mechanisms of its gener-
ation, numerical models of the electric field in the
ionosphere are being developed. Due to the existence
of two main types of electric fields in the ionosphere
(of ionospheric and magnetospheric origin), there are
two types of numerical models: the electric dynamo
field in the Earth’s ionosphere [12–15] and the elec-
tric field of magnetospheric convection [3, 16–19].
Note that sometimes a third source should be taken
into account, namely, the global electric circuit asso-
ciated with lightning activity [20] and the fields of
underground generators [21], the electric field of
which is taken into account only in individual cases,
although at night it can be important.

In the existing global numerical models, the poten-
tial of a large-scale electric field is found from the
solution of the two-dimensional electrical conductiv-
ity equation, which is obtained from the three-dimen-
sional balance equation of the total current in the ion-
osphere by integrating it along the geomagnetic field
lines under the assumption that the longitudinal con-
ductivity is infinite. For example, a block for calculat-
ing the potential of the electric field in the global self-
consistent model of the thermosphere–ionosphere–
protonosphere (GSM TIP) is organized [22–24]. The
results of calculations by this model were used to inter-
pret variations in ionospheric parameters under quiet
geomagnetic conditions and during geomagnetic
1008
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storms [25–27]. It should be noted that, in the block
for calculating the electric field of the GSM TIP
model, a method for solving an elliptic two-dimen-
sional equation for the electric potential in the iono-
sphere is used, which has an insufficiently high accu-
racy and convergence rate. Preliminary estimates have
shown that, as a result, the time costs increase signifi-
cantly when carrying out numerical calculations using
the GSM TIP model. In this article, we present the
results of comparing the accuracy and speed of two
numerical algorithms for calculating the electric
potential in the Earth’s ionosphere.

2. STATEMENT OF THE PROBLEM 
OF MODELING THE ELECTRIC FIELD
The basic equations for stationary electric field E

and current density j in the Earth’s ionosphere that we
use in our numerical models are the equations describ-
ing Faraday’s law, the law of conservation of charge,
and Ohm’s law:

(1)
(2)

(3)

where  is the conductivity tensor;  is the local time
derivative of the electric charge density brought by the
external current, which in a stationary process must be
compensated by the conduction current [28]. Because
vector function  satisfies Eq. (1), electric potential 
can be introduced such that

(4)
Then system of equations (1)–(3) is reduced to the

electrical conductivity equation:

(5)

Three-dimensional equation (5) is reduced to a
two-dimensional form by integrating over the thick-
ness of the current-conducting layer of the ionosphere
along the geomagnetic field lines, the conductivity
along which is much greater than the transverse con-
ductivities. We solve this two-dimensional equation
using two models. In the first model (hereinafter
referred to as model 1 [23]) used in the GSM TIP
model, the solution of the elliptic equation (5), written
in the difference form, is carried out by the method of
successive lower relaxation with a relaxation parame-
ter equal to 0.9. The iterative process is carried out
with a predetermined accuracy of 10–6. This model of
the electric field was used to study the effect of atmo-
spheric tides [29] and magnetospheric–ionospheric
current systems [24] on the distribution of the electric
potential in the ionosphere.

Another model (hereinafter referred to as model 2)
is presented in [30, 31]. The article [32] describes how
to replace the boundary value problem for the electric
potential in the ionosphere with a problem with a self-

=rot 0,E

=div ,qj

σ= ,ˆj E

σ̂ q

E ,V

= −grad .VE

( )− =div σgrad  .ˆ V q
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adjoint positive definite operator for special poten-
tials, and the principle of the minimum of the qua-
dratic energy functional is proved. This allows mini-
mizing the functional instead of solving the boundary
value problem. This variational principle is useful for
obtaining an approximate or numerical solution, since
it allows the use of many classical algorithms. The
numerical method for such a problem is described in
detail in the book [33], including a new statement of
the boundary value problem, the finite element
method, the multigrid method, and some test calcula-
tions. The finite element method uses regular inho-
mogeneous grids and piecewise linear approximating
functions. The equations of the finite element method
are obtained as conditions for the minimum of the
energy functional. Fedorenko’s multigrid method is
used to solve this system of linear algebraic equations.
The effectiveness of the developed multigrid method
has been shown in testing and calculating electric
fields and currents in the Earth’s ionosphere, includ-
ing the model presented in [34]. Typical examples are
discussed below.

3. DESCRIPTION OF TEST BOUNDARY 
VALUE PROBLEMS

To compare the numerical results of the two mod-
els described above with analytical solutions, we con-
sidered several idealized cases. When modeling the
electric field in the Earth’s ionosphere, spherical geo-
magnetic coordinates are most often used: colatitude
and longitude,  the geomagnetic latitude

 Let us build some reference area on
the plane with Cartesian coordinates  the points of
which identify all the magnetic field lines of interest to
us [30]. Let us transform the Northern Hemisphere
into a unit circle with polar coordinates (radius 
and angle ):

We conformally transform the resulting circle into a
strip  

Because  we are interested in a solution
that is periodic in  The constructed band has no
physical meaning, but it is convenient for a numerical
solution and helps avoid the difficulties associated
with the peculiarity of conductivity in the equatorial
ionosphere [35]. In such a strip, after the necessary
geometric transformation, the two-dimensional elec-
trical conductivity equation obtained from Eq. (5)
looks like this:

θ ϕ ;,m m

( )λ = π − θ2 .m m
, ,x y

ρ < 1
< α < π0 2

( ) ( )( ) ρ = θ + − θ α = ϕ
  

1 221.5sin 1 1 0.75sin , .m m m

< < π0 2 ,x > 0:y

( )= − ρ = αln , .y x

= α = ϕ ,mx
.x
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Fig. 1. Input parameters and calculation results for the third task: (a) latitudinal profiles of the Hall (solid line) and Pedersen (dot-
ted line) conductivities; (b) isolines of the analytical solution for the electric potential in kV; and (c, d) isolines of errors in calcu-
lating the potential in kV in models 1 and 2, respectively, in the form of differences between the analytical and numerical solutions.
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(6)

where  and  are the Pedersen and Hall integral
conductivities [28] and  generally defined by three
sources. First, this is the divergence of the external
current inside the ionosphere, i.e., the right side of
Eq. (2) integrated along the magnetic field line. Sec-
ondly, it is atmospheric currents  and  entering
the ionosphere through the ends of the magnetic field
line in the Northern and Southern hemispheres.
Thirdly, it is magnetospheric–ionospheric field-
aligned currents. In the test problems under consider-
ation, atmospheric and magnetospheric–ionospheric
currents are absent.

The border  = 0 corresponds to the lowest mag-
netic field lines, which are considered ionospheric.
Their peaks are on high  km at the geomagnetic
equator, while their lowest points are at  km. This
avoids the zero length of these last lines and the asso-
ciated zero coefficients in Eq. (6). It also makes the

 ∂ ∂ ∂− + ∂ ∂ ∂ 

 ∂ ∂ ∂− − + = ∂ ∂ ∂ 

Σ Σ

Σ   Σ ,

P H

H P

V V
x x y

V V Q
y x y

ΣP ΣH
Q

N
atmJ ,S

atmJ

y

= 90eqh
=1 80h
RUSSIAN JOURNAL O
right hand side in the boundary condition derived
from the charge conservation law nonzero:

(7)

where  includes atmospheric currents  and

 entering the ionosphere through the lowest mag-
netic field lines. The consideration of conductors in
the magnetosphere [31] shows that auroral zones are
equivalent to almost ideal conductors, since they are
connected parallel with good magnetospheric con-
ductors. We approximate them as ideal conductors
with a given electric potential distribution  There-
fore, the boundary condition has the form

(8)

The partial differential equation (6) is an elliptic
type equation, and the boundary value problem (6)–
(8) has a unique solution [32].

The integral conductivities calculated on the noon
meridian at low solar activity on the day of the vernal
equinox are approximated using the following formulas:

( )
=

 ∂ ∂− + = ∂ ∂ 

0

0

Σ   Σ ,H P eq
y

V V J x
x y

( )0
eqJ x N

atmJ

,S
atmJ

.V

( ) ( )= = .
aur

aury y xV V x
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Fig. 2. Same as in Fig. 1 for the fourth task.
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where  are given constants. To simplify
the calculations, we assume the continuity of the Hall

conductivity:  The layer corresponding to

 is a narrow strip near the border  and cor-
responds to the region of equatorial electric jets. We

presume  and  = 1.6265, which corre-

sponds to the height  km and latitude 75° and

set the following values:  S, β = 1.5, μ = 2,

 S, and  The latter give the Cowling

conductivity value  S, whose integral in the

region of the electric jet  km is about

MS m, like in the real midday ionosphere.
Boundary conditions (7) and (8) in the test have the
form

(10)

where  kV.

We find the exact solution of problem (6), (10) as

the real part of the complex function 
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where

where i is an imaginary unit.

At ,

(11)

where

If we exclude the region of the electric jet and
determine in the entire region

we obtain a simpler test. For the same boundary con-
ditions (see (10)), the exact solution has the form (11)

with the same  but
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Fig. 3. Input parameters and calculation results for the fifth task: (a) latitudinal profiles of the Hall (dashed lines), Pedersen (dot-
ted lines), and Cowling (solid lines) conductivities; (b) fragment of height profiles of these conductivities at the geomagnetic
equator (black shows the conductivities calculated using the IRI model and gray shows the approximations of these conductivities
described in Section 2); (c) isolines of the analytical solution for the electric potential in kV; (d, e) isolines of electric potential
distributions in kV; (f, g) isolines of potential calculation errors in kV in models 1 and 2, respectively.
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It is easy to ensure that this solution is obtained

from the previous one for 

4. RESULTS

To test the two methods we have chosen for solving
the electrical conductivity equation for the electric
potential in the Earth’s ionosphere for accuracy and
speed, five problems with exact analytical solutions
were considered. The solution of the two simplest

( ) ( )[ ]

−λ + β= = −
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1 2 1

1 2
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, 1
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problems—in the first of which formulas (9) use the

values    at  (i.e., ΣP =

1 S, and ΣH = 0 cm) and in the second  

 at  (i.e., ΣP = 1 S, and ΣH = 1.5 S)—

is not given in this article. We only note the high accu-
racy of both methods in solving these two idealized
problems. At the same time, the accuracy in the
method used in model 2 is 4–6 times higher near the
equator, and the computation time is 3 times less than
in the method used in model 1.

In the third problem, formulas (9) considered the

region  at    (i.e.,

, and ΣH = 0). For the case of the

=0Σ 1 S, μ = 0, β = 0 < <0 ay y
=0Σ 1 S, μ = 0,

β = 1.5 < <0 ay y

< <0 ay y =0Σ 200 S, μ = 2, β = 0

( )= −Σ 200 exp 2P y
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3rd problem, Fig. 1 shows the latitudinal profiles of
the Hall and Pedersen conductivities and the analyti-
cal solution in the absence of the Hall conductivity
and with the Pedersen conductivity varying exponen-
tially from the equator to high latitudes and constant in
longitude. The same figure shows the errors of models
2 and 1 in the form of differences between the analyti-
cal and model solutions. It can be seen that the accu-
racy of model 2 is 5–15 times higher than that of
model 1. The maximum error of model 1 was 0.15 kV
near the equator and 0.3 kV at high latitudes, while the
error of model 2 in the same place was 0.01 and 0.05 kV,
respectively. At the same time, the counting time is 3–
5 times less for model 2 compared to model 1.

In the fourth problem, just as in the three previous

ones, in formulas (9) the area  at 

  (i.e.,  and ΣH =

). For the fourth problem, Fig. 2 shows

the latitudinal profiles of the Hall and Pedersen con-
ductivities and the analytical solution for the Pedersen
and Hall conductivities varying exponentially from the
equator to high latitudes and constant in longitude.
This figure also shows the errors of models 2 and 1. It
can be seen that the accuracy of model 2 is 8–20 times
higher than that of model 1. The maximum error of
model 1 was 0.2 kV near the equator and 0.4 kV at high
latitudes, while the error of model 2 in the same place
was 0.01 and 0.05 kV, respectively. At the same time,
the counting time is 3 times less for model 2 compared
to model 1.

The fifth, most general, problem is described in
detail in Section 2. It differs from the previous ones in
that it takes into account the region of the equatorial
electrojet with high values of the Cowling conductivity

 For the fifth problem, Fig. 3 shows the latitudinal
profiles of the Hall, Pedersen, and Cowling conduc-
tivities, a fragment of their altitude profiles at the geo-
magnetic equator, and functions approximating them,
which make it possible to obtain an analytical solution.
It should be noted that the given height profiles of
conductivities are close to the mean climatic profiles
obtained using the IRI reference model of the iono-
sphere [36] and presented in Figs. 3. The same figure
shows the distributions of the electric potential and the
errors obtained for this case in models 2 and 1. The dif-
ferences between the analytical and model distribu-
tions of the electric potential for this case at high and
middle latitudes are practically not visible. These dif-
ferences increase near the equator. The accuracy of
model 2 is 3–5 times higher than that of model 1. The
maximum error of model 1 near the equator was 0.1 kV
(~8%) and, at high latitudes, 0.15 kV (~0.6%), while
the error of model 2 there was 0.015 kV (~1.5%) and
0.05 kV (~0.2%), respectively. In this case, the count-
ing time is 3 times less for model 2.

Since the layer of equatorial electric jets corre-

sponding to  corresponding to magnetic

field lines whose peaks are in the height interval of
90–120 km (thousands of times thinner than the
boundary length (40000 km)), it can be effectively
studied as a boundary layer. Such a theory was devel-
oped by Richmond [37]. The corresponding modeling
of the boundary layer with a special boundary condi-
tion replacing condition (7) was presented in the book
[33], including the formulation of the problem with a
self-adjoint positive definite operator and its numeri-
cal version. When using this modification of our
numerical method, the computation time for the ana-
lyzed test is reduced by about 7 times, while the error
remains the same.

5. CONCLUSIONS

This article presents the results of test calculations
of two numerical models of the electric field potential
in the Earth’s ionosphere. The errors of the models
obtained in solving various problems showed that both
models can be used to calculate the electric potential
in models of the upper atmosphere, including in the
region of the equatorial electric jet. However, the
combined use of the finite element method and the
Fedorenko multigrid method with a preliminary tran-
sition to the problem for special potentials leads to a
much more accurate and faster solution of the two-
dimensional electrical conductivity equation in the
ionosphere than the finite difference method used in
the electric potential calculation unit of the GSM TIP
model.
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