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Abstract—The experimental foundations and some aspects of the theory and modeling of transport properties
(thermal conductivity, viscosity, heat-transfer coefficient) of f luids in the critical and supercritical regions are
considered. The theoretical and experimental information on the critical anomaly of thermal conductivity is
analyzed in detail. A brief historical reference is given to the first experiments on the thermal conductivity in
the critical region, which were carried out mainly by Soviet researchers. The features of measuring the ther-
mal conductivity in the critical region and various interpretations of its critical anomalies are considered. Var-
ious approaches to describe the critical anomaly of the transport properties of supercritical f luids, primarily
the crossover approach, are discussed. It is shown that the critical anomalies of thermal conductivity, which
are described using the mode coupling theory of dynamic critical phenomena, can be represented by a sim-
plified model with two critical amplitudes and one cutoff parameter  (the boundary value of the wavenum-
ber), which is characteristic of a particular f luid. A procedure to determine these specific parameters is devel-
oped based on the principle of corresponding states. This makes it possible to develop a universal method for
describing the critical anomalies of transport properties of supercritical f luids. In a pulse experiment, condi-
tions were found under which anomalies of properties do not manifest themselves.

Keywords: thermal conductivity, critical amplitudes, critical point, supercritical f luid, crossover model, heat-
transfer coefficient
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INTRODUCTION

In determining thermal conductivity as the typical
transfer coefficient, higher standards are demanded of
the choice of the experimental conditions and their
maintenance during long-term measurements. This is
dictated by the procedure of measuring the thermal
conductivity of a substance. In this context, the reli-
ability of the results is determined not only by the
accuracy of measuring the variables (stationary meth-
ods used in the critical region measure the lengths of
segments and the potential differences, which are used
to determine the temperature difference), but also by
the degree of approximation of the experimental con-
ditions to the requirements of the model within which
the primary data are converted to the thermal conduc-
tivity values. The key requirement in this context is to
ensure the immobility of the medium in the measuring
volume. Meeting this requirement in the vicinity of the
critical point is a challenge, which was noted by most
of the researchers (see, e.g., [1, 2] and references
there). The search for a way to suppress convection has

been reduced to a tendency of decreasing the charac-
teristic size of the measuring cell and the temperature
difference. The highest consistency of matching the
experimental conditions with the model requirements
was ensured, in our opinion, by Michels and Sengers
[3]. Their three articles on the measurement of the
thermal conductivity of carbon dioxide [3–5] became
classical. It is not improbable that the complete solu-
tion of this problem is beyond the responsibility of the
experimenter. The fundamental inevitability of the
motion of the medium in the vicinity of the critical
point was indicated, in particular, by Polezhaev and
his colleagues [6]. Their conclusions were based on the
results of a sophisticated work done under orbital
f light conditions [7].

A natural result of the multiplicity of factors affect-
ing the experimental integrity in the vicinity of the
critical point became the multiyear discussion on the
presence or absence of the peak of the thermal con-
ductivity in the near supercritical region [2, 8–10]. An
intermediate outcome of the discussion was the accep-
tance of the correction of the tabular standards of the
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1172 ABDULAGATOV, SKRIPOV

Fig. 1. Measured and calculated values of the thermal conductivity of CO2 along supercritical isotherms as functions of (a) density
and (b) pressure. The points represent the experimental values from the NIST database [35], the continuous curves were calcu-
lated by the equation [36] (REFPROP [37]).
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transfer coefficients for water and carbon dioxide, pri-
marily, thermal conductivity [11, 12]. Because of the
correction, the values of the Prandtl number in the
critical region turned out to be significantly (by a fac-
tor of two or more) decreased. Thus, the new standard
required the revision of the approaches developed by
thermophysicists, including Soviet ones (see, e.g.,
Kurganov et al.’s fundamental work [13]), to evaluate
the heat transfer at supercritical pressures in such
practically important fields as heat power engineering.

Below, we successively considered data on the ther-
mal conductivity of water, carbon dioxide, ammonia
[9, 14–20], and some other substances, as well as data
on the heat transfer under natural convection1 of car-
bon dioxide and sulfur hexafluoride at sub- and super-
critical parameters of a substance [21–24]. Unlike the
data on the thermal conductivity of supercritical f luid,
the peak of the heat-transfer coefficient in supercriti-
cal isobars/isotherms was detected by virtually all
researchers. Its existence cannot be doubted and is
conventionally related to the phenomena of the
increase in the thermal conductivity and the convec-
tive mobility of the medium in the vicinity of the crit-
ical point considered above. The discussion of the
experimental data given below on heat transfer is
mainly aimed at determining the possibility of using
this phenomenon in practical applications.

Critical Anomalies of the Thermal Conductivity 
of Molecular Liquids in the Critical Region

The stationary experiments [4, 8, 9, 16–20, 25–27]
and theoretical studies [28–33] demonstrated that the
thermal conductivity of liquids significantly increases
near their liquid–vapor critical point (Fig. 1). To

1 The state of the art of studies of the heat transfer under forced
convection of a heat-transfer medium at supercritical pressures
was analyzed by Kurganov et al. [13].
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explain this phenomenon, the experimentally
observed thermal conductivity λ is represented as the
sum of the anomalous component ΔλC and the back-
ground, or regular, part λb [34]:

(1)
Here, ΔλC is due to large-scale critical f luctuations,
and λb is the thermal conductivity and is the value that
should be expected in the absence of critical f luctua-
tions.

The contribution of the critical part ΔλC of the
thermal conductivity is significant over quite a wide
range of densities and temperatures in the supercritical
region. This phenomenon is illustrated in Figs. 2 and 3,
which, as an example, show the ranges of densities,
temperatures, and pressures in which the critical
increase in the thermal conductivity contributes more
than 1% of the actual thermal conductivity for CO2
[38] and H2O [39].

As is seen from Figs. 2 and 3, the critical increase in
the thermal conductivity in the supercritical region is
significant over a wide range of reduced densities
0.06 < ρ/ρC < 2.27 and temperatures 0.81 < T/TC <
1.44. The phenomenon of the critical increase in the
thermal conductivity over a wide range of T and P in
the supercritical region was observed for all pure sub-
stances. Consequently, the phenomenon of the critical
anomaly of thermal conductivity not only is of scien-
tific interest but also should be taken into account in
practical applications of supercritical f luids, e.g., in
cycles of electricity generation and cooling, and in
supercritical f luid technologies [40].

A theoretical description of the critical anomalies
ΔλC of thermal conductivity was performed by a num-
ber of researchers [25, 28, 29, 41–46]. The developed
methods were applied to generalize the experimental
data on the thermal conductivity of various substances
in the critical and supercritical regions. Perkins et al.

λ = Δλ + λC b.
F PHYSICAL CHEMISTRY B  Vol. 15  No. 7  2021



THERMODYNAMIC AND TRANSPORT PROPERTIES OF SUPERCRITICAL FLUIDS 1173

Fig. 2. Contribution of the critical anomalies to the thermal conductivity of supercritical carbon dioxide in the ranges of densities
ρ, temperatures T, and pressures P reduced to their critical values ρC, TC, and PC, respectively, where the contribution of the crit-
ical anomalies to the thermal conductivity exceeds 1% of the observed value [38].
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Fig. 3. Ranges of densities ρ, temperatures T, and pressures P reduced to their critical values ρC, TC, and PC, respectively, where
the contribution of the critical anomalies to the thermal conductivity exceeds 1 and 5% of the observed value [39].
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[41] presented a general procedure to describe the crit-
ical anomalies of the thermal conductivity of a large
number of molecular liquids for practical applications,
including liquids on which only limited experimental
information is available. In particular, Perkins et al.
[47] considered a simplified solution, which was
originally developed by Olchowy and Sengers [28],
and relates the critical anomalies of the thermal
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
conductivity to the thermodynamic properties of
the liquid, to the correlation length of long-range
critical f luctuations, and to the cutoff parameter 
(the boundary value of the wave number). This
parameter is determined as follows: the wavenum-
ber ranging from 0 to ∞ in the case of critical f luc-
tuations is limited (cut off) by a certain value, which
characterizes a specific liquid.
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Fig. 4. Measured and calculated values of the thermal diffusivity of carbon dioxide along supercritical isotherms as functions of
(a) pressure and (b) density. The points represent the experimental values of the thermal diffusivity from the NIST database [35];
the continuous curves were calculated by the equation [36] (REFPROP [37]): (1) 304.45 K, (2) 307.97 K, (3) 315.15 K, (4) 325.15
K, (5) 335.15, (6) 345.15 K.
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The rate of decay of critical f luctuations in f luids
near the liquid–vapor critical point is determined by
their thermal diffusivity D = λ/ρCP, where ρ is the
density, and CP is the heat capacity at constant pres-
sure. According to the representation of the thermal
conductivity as the sum of the critical and regular
components (see Eq. (1)), the thermal diffusivity
can also be expressed as the sum of the critical con-
tribution ΔDC = ΔλC/ρCP and the regular contribu-
tion Db [34]: D = ΔDC + Db.

At the critical point, both contributions and,
hence, the D value become zero. This phenomenon was
called the critical fluctuations slowing down (Fig. 4).

The regular term Db is a classical contribution to
the critical f luctuation slowing down at which the dif-
fusion coefficient decreases proportionally to : Db
= λb/ρCP. The shear viscosity can also be written as the
sum of the critical component ΔηC and the regular
component ηb components:

Unlike the critical increase ΔλC in the thermal con-
ductivity, the critical anomalies of viscosity are weak
and are restricted to a narrow temperature range near
the critical point [48] (Fig. 5).

The mode coupling theory of dynamic critical phe-
nomena [30, 31] predicts the behavior of the critical
contributions to the thermal diffusivity and the shear
viscosity as a system of coupled integral equations:

−1
PC

η = Δη + ηC b.
RUSSIAN JOURNAL O
(2)

(3)

where kB is the Boltzmann constant; T is temperature;
and θ and φ are the azimuthal and polar angles,
respectively, of the wavevector k with respect to q.

Because of the long-range action of critical f luctu-
ations, it is necessary to take into account the depen-
dence of ΔDC and ΔηC on the wavenumber q of the
fluctuations. The integration is taken over all the val-
ues of the wavevector k = |k| up to the maximum value
qD corresponding to the scale of the length that divides
long-range critical f luctuations, which obeys the
mode coupling theory of dynamic critical phenom-
ena, and short-range f luctuations. As we can note, D,
η, and CP depend only on the wavevector of the critical
f luctuations. To calculate the critical contributions to
the experimentally observed thermal diffusivity, ther-
mal conductivity, and the shear viscosity, it is neces-
sary to solve the system of Eqs. (2) and (3) in the
hydrodynamic limit q → 0. As the critical point is
asymptotically approached, the expression for ΔDC
transforms into the Stokes–Einstein equation:
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Fig. 5. Measured and calculated values of the viscosity of carbon dioxide along supercritical isotherms. The points represent the
experimental values of the viscosity of CO2 from the NIST database [35]; the continuous curves were calculated by the standard
Laesecke–Muzny equation [49] (REFPROP [37]): (a) the dependence on pressure at (1) 315.15 K, (2) 310.15 K, (3) 308.15 K,
(4) 306.15 K, and (5) 304.19 K; (b) the dependence on density at (1) 304.25 K, (2) 305.15 K, and (3) 343.15 K.
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where ξ is the correlation length, and RD is the univer-
sal ratio between the dynamic amplitudes [31, 32].
According to various theoretical estimates, RD are
within the range from 1.0 [30, 31] to 1.065 [46, 50–52].
In the asymptotic vicinity of the critical point, the vis-
cosity behaves as [53]:

(5)

where z is the universal dynamic critical exponent, and
Q is the system-dependent coefficient.

Asymptotic estimation using Eq. (3) gives z =
8/15π2 = 0.054 [42]. The currently accepted value of
the dynamic critical exponent is z = 0.068 [54, 55].
The critical anomalies of viscosity are quite weak;
therefore, in practical problems, they can be neglected.
Hence, in Eq. (2), the variable η(k) can approximately
be replaced by η ≈ ηb, which is independent of the wav-
enumber k. This approximation decouples two integrals
of the coupled modes, and Eq. (2) in the limit q → 0
reduces to the form

(6)

We introduced the universal dynamic amplitude
RD in Eq. (6); therefore, Eq. (6) now represents the
asymptotic behavior of ΔDC near the critical point.
Near the critical point, ρD(k)/η in the integrand in
Eq. (6) becomes very small because the thermal diffu-
sivity becomes zero at the critical point. Far from the
critical point, its contribution is positive. Hence,
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neglecting this term leads to an overestimation of the
integral. Because this term is never large, the overesti-
mation can be compensated by integration to a lower
wavenumber  < qD:

(7)

Interestingly, Eq. (6) is identical to the simple cou-
pled-mode integral, which was originally considered
by Kawasaki [30] and Ferrell [56], except for the pres-
ence of the finite upper wavenumber . The preserva-
tion of the finite upper limiting number is a significant
and necessary condition for obtaining a physically real-
istic description of the nonasymptotic critical behavior
of thermal conductivity. To integrate relation (7), the
dependence of the specific heat CP(k) on the wave-
number was determined through the isothermal com-
pressibility χ = ρ(∂ρ/∂P)T using a well-known ther-
modynamic relation (see Eq. (16) below) and the Orn-
stein–Zernike equation. Under some approximations,
Olchowy and Sengers [29] represented the critical
anomaly of thermal conductivity in the form

(8)

where  is the crossover function defined as

(9)

and k = CP/CV.
In the limit y = ξ → ∞, Eq. (6) reproduces the

asymptotic behavior of ΔλC according to Eq. (4).
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The integrals of coupled modes (2) and (3) do not
become zero far from the critical point because the
coupled modes take into account the so-called contri-
butions of the long tail of the integral to the transport
properties far from the critical point, which are con-
tained in the regular part λb of thermal conductivity.
The second term in Eq. (9) is to subtract this residual
contribution to guarantee that the critical thermal
conductivity tends to zero in the limit y = ξ → ∞,
i.e., far from the critical point. Note that the expres-
sion for the critical anomaly of thermal conductivity
depends on the heat capacitie CP and CV, the shear vis-
cosity η, the correlation length ξ, and the system-
dependent parameter . The asymptotic behavior of
these properties near the critical point is governed by
the simple scaling power laws

(10)

where the critical amplitudes obey the universal rela-

tion  = 0.058 + 0.001 predicted by the theory of

critical phenomena [61–64] (see also Part 1 of this
review [57]). According to the principle of two-factor
universality,  = 0.266 ± 0.003. The
amplitudes  and  are directly related to the exper-
imental data on the heat capacity and the coexistence
curve (see Eq. (10)).  and  were previously used as
the main information source for developing the empir-
ical dependences of the amplitudes A0 and B0 on the
acentricity factor [47]:

(11)

The critical amplitude  can be calculated as  =

. Using the obtained correlation (Eq. (11)) for

the critical amplitude  of heat capacity, the critical
amplitude ξ0 of correlation length can be estimated at

ξ0 = 0.266 , where vC = (NρC)–1 is the molec-

ular volume at the critical point. ξ0 is seen to depend
on not only vC but also the acentricity factor through
the critical amplitude  of heat capacity.

To describe the critical part of thermal conductiv-
ity, it is necessary to estimate the parameter  (the
boundary value of the wavenumber) in Eq. (8). As was
shown previously [47], the dependence of  on 
can be represented as

(12)

where the values  and  are expressed in nano-
meters.
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Thus, for practical applications, the critical part
ΔλC of thermal conductivity can be represented by
expression (8) with the universal parameters RD =
1.02,  = 1.5, v = 0.630, and γ = 1.239. The critical
amplitude  of susceptibility can be calculated from

the relation  =  with the amplitudes  and

 taken from relations (11) or (12). The amplitude ξ0
of the correlation length can be calculated as ξ0 =

0.266  using the values of the critical ampli-

tude  of the heat capacity from Eq. (11). Finally, the
parameter  is calculated from relation (12).

This procedure describes the critical part of ther-
mal conductivity without using any fitting parameters;
in particular, it can be calculated from the fundamen-
tal equation of state for the thermodynamic properties,
provided that there are equations for the regular parts
of viscosity and thermal conductivity. As an example,
Figs. 6 and 7 present the results of calculating the ther-
mal conductivity of water and isobutane in the critical
region according to this procedure together with the
published experimental data [58].

The parameter  is sensitive to the equation for
the regular part of thermal conductivity because it is
very difficult to exactly separate the critical part
caused by large-scale f luctuations in the critical
region. For this reason, the parameter  is often
found by simultaneous optimization of the equations
for the critical and regular parts of thermal conductiv-
ity. Applying this theory to liquids for which there is
sufficient experimental information on the thermal
conductivity in the critical region, we can determine
the effective value of the parameter . However, we
propose to use the universal representation of ΔλC and
merely derive an equation for the regular component
of thermal conductivity. Moreover, in the absence of
the experimental data on the thermal conductivity in
the critical region, the proposed universal representa-
tion gives a realistic estimate of the critical contribu-
tion to thermal conductivity, depending on tempera-
ture and density.

As relations (4) and (8) show, in the asymptotic
region near the critical point, the critical part of ther-
mal conductivity can be written as

(13)

Similar expressions were proposed by a number of
researchers [28, 42–44]. All these equations include
the asymptotic limit (13) of the Stokes–Einstein equa-
tion but also contain more complete expressions for
the crossover function  in Eq. (8). The solution
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Fig. 6. Thermal conductivity of water in the critical region as a function of density along supercritical isotherms. The points rep-
resent the experimental values of the thermal conductivity [58]; the continuous curves were calculated using the universal repre-
sentation of the critical part ΔλC of thermal conductivity and the equation for the regular component λb [39].
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Fig. 7. Thermal conductivity of isobutane in the critical region as a function of density along supercritical isotherms. The points
represent the experimental values of the thermal conductivity [59]; the continuous curves were calculated using the universal rep-
resentation of the critical part ΔλC of thermal conductivity and the equation for the regular component λb [26].
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of coupled-mode equations (2) and (3) has the form
[28, 42]

(14)

Consequently, the first correction term to the
asymptotic Stokes–Einstein equation coincides with

−= − +
π

…

12( ) (1 )arctan( )Y y k y
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expression (9). Nonetheless, it contains many addi-
tional terms, which were approximated through
(2/π)k–1y. Expression (9) for  is a simplified
version of the published expression [28, 42]. Kiselev
and Kulikov [43, 44] also separated Eq. (2) from
Eq. (3), neglecting the dependence of viscosity on the
wavenumber.

( )ξDY q
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Mathias et al. [60] proposed a very simple empiri-
cal estimate of the critical part of thermal conductivity
for practical calculations:

(15)

where a and b are fitting parameters determined from
the experimental data on thermal conductivity.
According to this approach, as the critical point is
asymptotically approached, the critical part ΔλC of
thermal conductivity diverges as ΔλC ∝ χb. It is of
interest to compare the asymptotic behavior ΔλC ∝ χb

with the prediction of relation (13), which follows
from the mode coupling theory of dynamic critical
phenomena. CV diverges weakly at the critical point,
CV ∝ (T – TC)–α, and, hence, depends weakly on the
wavevector k. In this case, the (∂P/∂T)ρ remains finite
at the critical point. Therefore, in the Ornstein–
Zernike approximation for susceptibility, χ(k) =
χ(0)/(1 + k2ξ2) [65], as applied to the heat capacity CV
as a function of the wavevector, we have

(16)

Hence, we have ρCP = ρCP(0) and diverges as χ,
whereas the correlation length ξ according to the
equation

diverges as χv/γ. Because the viscosity diverges weakly,
this divergence can be neglected (by replacing the vis-
cosity by a regular term). Then, from relation (13), we
have ΔλC ∝ χ1–v/γ. Consequently, the exponent b in
Eq. (15) should be a universal parameter b = 1–v/γ =
0.49 rather than a fitting parameter. The value of this
parameter that was calculated by Mathias et al. [60]
differs significantly from the universal value.

Thus, we showed that crossover model (8) together
with Eq. (9) predicts the behavior of the critical anom-
aly of the thermal conductivity of supercritical f luids.
This approach requires us to know the equation of
state for thermodynamic properties and the equation
for viscosity. The equation of state should ensure the
correct description of the compressibility and capacity
heat of f luids in the critical region (typically, they are
scaling-type crossover equations). Systematic errors in
the compressibility and heat capacity in the equation
of state lead to systematic errors in predicting the crit-
ical part of thermal conductivity. In this context, in
this model, it is not recommended to use a cubic equa-
tion of state, such as the Peng–Robinson equation, in
the critical region. Moreover, to use this model, it is
necessary to know two critical amplitudes (  and ),

 Δλ = χ ρ 
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which is characteristic of the liquid, and one boundary
value  of the wavenumber. In the absence of reliable
experimental data on the critical amplitudes, they can
be estimated using relation (11). In the presence of
reliable experimental data on the thermal conductivity
in the critical region, the boundary value of the wave-
number can, in principle, be found by fitting them to
the crossover model expressed by Eqs. (8) and (9).
However, for practical applications, the  value can
be sufficiently accurately estimated from Eq. (12).
Consequently, the procedure described in this work
(see also [47]) can be used to quantitatively describe
the critical anomalies of the thermal conductivity of
many molecular liquids even in the absence of reliable
experimental data on the thermal conductivity in the
critical region.

EXPERIMENTAL STUDIES OF THE CRITICAL 
ANOMALIES OF THE THERMAL 

CONDUCTIVITY OF SUPERCRITICAL 
FLUIDS: A HISTORICAL REFERENCE

Probably, one of the first studies in which all efforts
were made to suppress the effect of convective transfer
was performed by Kh.I. Amirkhanov, Corresponding
Member of the Academy of Sciences of the USSR,
with his colleagues at the Dagestan Branch, Academy
of Sciences of the USSR, Makhachkala, Dagestan,
USSR [14, 15]. The data on the thermal conductivity
of carbon dioxide [14] (and later water [15]) were
obtained by two complementary methods, namely, the
absolute method of a parallel-plate and the relative
method of concentric cylinders. Experimental setups
allowed us to vary the characteristic size of the mea-
suring cell (gap width) and the temperature difference
and were tested in experiments with substances with
known properties. Special attention was given to the
purity of carbon dioxide, which was 99.96%. The
experiments were carried out along the saturation line
and detected no anomalous phenomena: in the critical
state, two branches of the thermal conductivity
smoothly merged. More precisely, an increase in the
heat transfer in the critical region did occur, but only
after decreasing the requirements for the suppression
of convective transfer. Indeed, whereas at a gap width
of 0.3 mm, no dependence of the measured data on ΔT
was observed, at a gap width of 0.59 mm, an increase
in the heat transfer was detected above ΔT ≈ 0.2 K
(Fig. 8).

Sirota and other researchers who obtained data on
the characteristic λ-shaped curve of the thermal con-
ductivity as a function of the density of a substance
along close supercritical isotherms [8, 9, 11], in dis-
cussing the smoothness of Amirkhanov’s data, indi-
cated the following methodological feature of his
experiments. The discussed measurements [14] were
made along the saturation line, i.e., at temperatures
that were very close to the critical value, but, nonethe-

Dq

Dq
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Fig. 8. Thermal conductivity of carbon dioxide along the saturation line; the parameter is ΔT at a gap width of 0.59 mm: (1,
3) 0.07–0.15°C and (2, 4) 0.2–0.5°C.
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less, somewhat lower. Under such conditions, the
phenomenon of excess thermal conductivity might not
occur. Moreover, the density in the saturation line
changes significantly with a shift in temperature by
tenths of a degree, which corresponds to the tempera-
ture difference detected in the experiments. In this
context, two things are perplexing: first, the width of
the range in the supercritical region in which there are
critical anomalies of thermal conductivities (Figs. 2
and 3), and second, the impossibility to directly con-
trol the density of the substance under the experimen-
tal conditions.

A systematic study of the thermal conductivity of
water was conducted by Sirota and colleagues at the
Dzerzhinsky All-Union Thermal Engineering Insti-
tute, Moscow, USSR (see summarizing works [16, 27]
and references there). They used the parallel-plate
method with an original design of the measuring unit
for the purpose of decreasing the distortions of the
temperature fields. The nonisothermality at the
boundaries of the layer was estimated [9] as the most
probable source of convection. To increase the reli-
ability of the results, the design of the setup and the
measurement procedure were revised as the data were
accumulated. Particular attention was given to check-
ing the isothermality of the lower plate, the angle
between the plate and the horizon, the calibration of
thermocouples, their readings in the course of the
experiment lasting many hours and determining the
so-called zero readings of the thermocouples as
sources of systematic errors. The gap width was 1.4
mm, but in some sets of experiments in the critical
region, it was decreased to 0.4 mm. The sign of the
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
absence of convection, as before [3], was considered
the absence of the dependence of the measurement
results on the gap width (from 1.4 to 0.4 mm and taking
into account the corresponding change in the correction
for radiant heat transfer), and also on the angle between
the plates and the horizon (at small angles) [17].

In the supercritical isobars, sharp peaks of the ther-
mal conductivity of water near its critical isochore
were detected. The fact of their existence was con-
firmed by repeated versatile check of the experimental
results. The peaks of the thermal conductivity with
increasing pressure smoothened more rapidly than the
known maximums in the CP curves and virtually
ceased to be resolved at pressures of about 25 MPa.
The lines of the maximums of the thermal conductiv-
ity as a function of the calculated density λ(ρ) in iso-
bars and isotherms did not coincide with each other.
They also did not coincide with each other in the ρ–T
diagram or with the lines of maximums of the specific
heat capacity CP, which suggested the absence of a
simple correlation between the data on thermal con-
ductivity and heat capacity.

It proved that, in this region of the phase diagram,
the discussed results (see Fig. 9 and [58]) differ signifi-
cantly from the values recommended by the reference
books based on the 1964 International Skeleton Steam
Table, an international table of thermal conductivity
data. This contradiction favored the acceptance of the
new standards mentioned above [13]. In discussing the
results, the complexity of the dependence of the line of
maximums on density was indicated. Note also the
scale of the change in the density of a substance in the
critical region, the core of the remarks on Amirkha-
l. 15  No. 7  2021
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Fig. 9. Thermal conductivity of water along supercritical isotherms as a function of density.
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nov’s results [14], and the impossibility of the experi-
mental determination of the measuring-cell-section-
average density of a substance. In view of all these cir-
cumstances, the form of the representation of the
results on the thermal conductivity as a function of
density, a parameter that is most difficult to determine
in the critical region [20], appears to be debatable.

Let us further consider the thermal conductivity of
polar substances in in the critical region. This problem
was studied in detail by Ivanov [20, 67] by the example
of ammonia using both the results of the direct mea-
surements of the thermal conductivity [19], and the
static light scattering data [68]. Investigation of static
light scattering is not accompanied by introducing gra-
dients of whatever physical quantity to the system,
which is extremely important in experiments near the
critical point. As a result, the combination of the two
methods increased the informativeness of the conclu-
sions in comparison with the pioneering works [14–
18]. In particular, Ivanov succeeded in obtaining the
data on the critical amplitudes and exponents that are
necessary to describe the thermal conductivity in the
critical region. An assumption was made of the com-
mon dynamic critical behavior of polar and nonpolar
pure liquids under a noticeable effect of various dis-
turbing factors.
RUSSIAN JOURNAL O
Tufeu et al. [19] performed their studies in 1978–
1979 at the Laboratory of Materials Science and High
Pressures (Laboratoire d’Ingénierie des Matériaux et
des Hautes Pressions, LIMHP), Université Paris 13,
Villetaneuse, France. The thermal conductivity was
measured by the method of concentric cylinders in
stationary mode. The setup on which the measure-
ments were made has received worldwide recognition due
to the investigation of the thermal conductivity of many
substances at high and superhigh pressures [69, 70]. The
gap width between the cylinders was 0.26 mm. The
temperature difference between the cylinders
decreased at the critical point to 0.15 K. The correc-
tion for convection, which was calculated using the
properties of ammonia (the purity of the sample was
no less than 99.96%) and the measuring cell, was max-
imum in the isotherm closest to the critical point and
did not exceed 2.5%. The behavior of the thermal con-
ductivity of ammonia was explored over a wide range
of variables, including along the critical isochore,
namely, in the temperature range 3 × 10–5 ≤ τ ≤ 0.18,
where τ = (T – TC)/TC and TC = 405.4 K.

In experiments [20, 71], as previously for water,
carbon dioxide, and some other substances [4, 8–12,
72–74], the maximum of the thermal conductivity was
detected. In subsequent processing of the results [20,
F PHYSICAL CHEMISTRY B  Vol. 15  No. 7  2021
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Fig. 10. Dependence of the excess thermal conductivity of ammonia on its density at various temperatures according to the pub-
lished data [20, 71].
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67], attention was paid to the fact that the nonmono-
tonicity of the curve of the thermal conductivity in the
vicinity of the critical isochore occurs quite far from
the critical point, actually, as far as one hundred
degrees (see Fig. 10, and also Figs. 2 and 3). This result
was obtained after eliminating the background part of
the thermal conductivity from the experimental data.
The determination of specific mechanisms transfer-
ring the effect of the critical point to the static and
dynamic characteristics of a substance sufficiently far
from this point was assigned by Ivanov [67, 71] to the
key issues determining the understanding of the nature
of critical phenomena.

At the same laboratory (LIMHP) by the same
method, several studies were made of the thermal con-
ductivity of pure substances in the sub- and supercrit-
ical regions of parameters [70], also with the participa-
tion of researchers of the Laboratory of Theoretical
Foundations of Thermal Engineering, Kazan Chemi-
cal Technological Institute, now Kazan National
Research Technological University, Kazan, Russia
[75]. The thermal conductivity of HFC-134a f luoro-
carbon [73] and hexane [74] was studied in detail in
fairly many isotherms. By analyzing the results, the
singular pat of the thermal conductivity was separated,
its behavior in the critical isochore and noncritical iso-
chores was described, and also the critical exponent of
thermal conductivity was estimated. In this context,
note two significant issues. First, the determination of
the background part of thermal conductivity is diffi-
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
cult because it requires us to use a large body of exper-
imental data over a wide temperature range of mani-
festation of excess properties [71, 76]. Second, f luoro-
carbons are considered as promising supercritical f luid
extractants, and the knowledge of their properties over
a wide range of variables is important for modeling the
relevant technological processes [40].

By and large, the investigation favored the develop-
ment of the theory of critical phenomena and also
showed the possible way to increase the efficiency of
heat exchangers. To determine practically important
details, it was necessary to allow the convective heat
transfer, which is suppressed in the thermal conduc-
tivity experiments. The features of the heat transfer in
the critical region under natural convection in a sub-
stance are discussed below.

HEAT-TRANSFER COEFFICIENT 
IN THE CRITICAL REGION

A pioneering work aimed at measuring the heat-
transfer coefficient along isotherms and isobars in the
region of continuous supercritical transition and visu-
ally observing the free-convection heat transfer was
done by Academician V.P. Skripov in the 1960s [21–
24]. A variant of the method of thin wire probe heated
by direct current was used [77]. The method proved to
be sufficiently convenient to use and informative and
was developed at the Ural Thermal Physics School
[78], in particular, to determine the critical parameters
l. 15  No. 7  2021
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Fig. 11. Convective motion of supercritical carbon dioxide in the isotherm 305.15 K at a pressure of 7.56 MPa over the surface of
a probe 100 μm in diameter at a temperature difference of 0.5 K (left) and 6.4 K (right) [84].
of thermally unstable liquids [79, 80] and study the
supercritical heat transfer at the scale of short charac-
teristic times and sizes [81–83]. A combination of this
method with shadow photography enabled one not
only to determine the shape of the curve for the heat-
transfer coefficient along supercritical isotherms but
also to identify the structure of convective f lows in the
case of the horizontal (Fig. 11) and vertical positions of
the heater [22, 24].

The experiments were carried out under the follow-
ing conditions. The length of a wire probe—resistance
thermometer—was 80 mm. Probes of five thicknesses
from 20 to 200 μm in diameter were used. Most of the
measurements were performed with a probe 29 μm in
diameter. The measuring system of the setup com-
prised an electric power supply circuit of the probe as
a heat source and a potentiometric circuit of the probe
as a resistance thermometer. The heating power was
chosen so that the temperature difference once the
stationary mode was established was about 0.5°C. The
primary experimental data (the voltage drops across
the probe and a reference resistor) were converted to
the probe temperature, the specific heat f lux, and the
heat-transfer coefficient. The parameter was the pres-
sure in the thermostated cell with temperature T > TC.
The samples were carbon dioxide and sulfur hexafluo-
ride (TC = 318.71 K, PC = 3.76 MPa). The purity of the
samples was 99.8 and 99.7%, respectively.

It was found that the heat-transfer coefficient
passes through a maximum. This is due to the extremal
change in the thermophysical properties, first of all,
the heat capacity and the volumetric expansion coeffi-
cient in the supercritical region. To the maximum val-
ues, a developed fine-structural convection throughout
the observable space corresponded (Fig. 11). As in the
case of heat capacity, as the critical temperature
receded, the height of the maximum decreased, and
the peak shifted toward higher pressures (Fig. 12). The
convection was localized near the heater.
RUSSIAN JOURNAL O
The detection of the characteristic peaks of the
heat capacity, the heat-transfer coefficient, and, under
certain assumptions, the thermal conductivity stimu-
lated the exploration of new applications of supercrit-
ical phenomena. At the same time, specific features of
the supercritical heat transfer manifested themselves
in the fact that an increase in the temperature differ-
ence at a constant temperature in the cell leads to a
decrease in the detected heat-transfer peak (Fig. 13).
This was observed at all the diameter values and all the
spatial orientations of the probe. Within a phenome-
nological approach, such a result was explained based
on the structure of the free-convection heat-transfer
equation in dimensionless variables [21–24, 84].
Finally, the following challenge was identified: low
heat f luxes, at which the peak occurs, are not difficult
to remove; the problem is the guaranteed removal of
high-density heat f luxes [13].

DISCUSSION
Let us now return to the discussion of the behavior

of the thermal conductivity in the critical region. Let
us list out some arguments for the existence of the
peak:

—the results of sets of careful experiments per-
formed by stationary methods at various laboratories
worldwide;

—the consistency of the theory of dynamic critical
phenomena [1, 20];

—the indirect support by the results of free-con-
vection heat-transfer experiments in the stationary
mode [21–23, 84], which were represented as equa-
tions in dimensionless variables.

Let us also present arguments for other options:
—the absence of anomalies of the thermal conduc-

tivity in the vicinity of the liquid–liquid critical point
of solutions capable of phase separation, which was
F PHYSICAL CHEMISTRY B  Vol. 15  No. 7  2021
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Fig. 12. Heat-transfer coefficients α along supercritical isotherms of (a) carbon dioxide at 304.65 K and (b) sulfur hexafluoride
at ΔT ≈ 0.5 K. The parameters are the position of the probe with respect to the horizon ((1) horizontal and (2) vertical) and tem-
perature, respectively.
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detected using a precision scheme of compensation
measurements [85], against the background of the char-
acteristic peak of the specific heat in this vicinity [86];
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
—the hypothesis of the impossibility of suppres-
sion of the convective motion under actual experi-
mental conditions [87];
l. 15  No. 7  2021
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Fig. 13. Heat-transfer coefficients α along supercritical isotherms of (1) carbon dioxide (cell temperature 307.15 K, pressure
8.0 MPa) and (2) sulfur hexafluoride (319.2 K, 3.86 MPa) as functions of temperature difference.
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—the detection of a decrease in the heat-transfer
intensity during the rapid transition of a compressed
liquid (P > PC, T < TС) to the region of supercritical
temperatures along an isobar in conductive heat-
transfer experiments during powerful local heat
release, which were performed at the scales of short
times and sizes (such an approach allowed us to elim-
inate the effect of convection and gravitation on the
results of the experiments).

The last phenomenon has a threshold nature in the
vicinity of the critical temperature and is observed up
to pressures of 3P/PC for all the studied substances
[83, 88] over a wide range of rates of crossing the crit-
ical region [89–91]. This result was proposed to be
taken into account as a criterion for choosing the
working pressure for equipment with a supercritical-
pressure heating medium the operating conditions of
which do not rule out the possibility of a powerful
local heat release [92].

As an example, Fig. 14 presents the results of the
pulsed experiment mentioned above. The primary
data are the results of measuring the change with time
in the voltage drops across the probe and a series “cur-
rent” resistor [81, 93]. From these data, the integral-
average temperature of the probe at each time is calcu-
lated. As judged from Fig. 14, the chosen experimental
conditions do not feel the contribution made to the
heat transfer by the maximum of the thermal conduc-
tivity, let alone the maximum of the heat capacity.
Conversely, crossing the vicinity of the critical tem-
perature from below gives rise to an additional thermal
resistance, whereas crossing it in the opposite direc-
tion (Fig. 15) leads to the restoration of the normal
heat transfer.
RUSSIAN JOURNAL O
Such behavior of the critical heat transfer does not
cancel out the existence of the maximums of thermo-
physical quantities, which are known from stationary
measurements. Rather, it suggests the significant
complexity of the phenomenon under discussion and
the diversity of its manifestations, depending on spe-
cific experimental conditions [90, 91]. It is natural to
take into account, first, the remark of the fragilty of
fluctuations in the presence of gravity, boundaries,
gradients, etc. [67, 71]; and second, the Filippov–
Kravchun hypothesis [94] of the emergence of addi-
tional thermal resistance in the transition from a one-
to a two-component system and the results of experi-
ments based on this hypothesis, which were carried
out in the more general case of the transition of a
homogeneous to an inhomogeneous system [95–98].
It is known (see, e.g., [10, 99–101] and Part 1 of this
review [57]) that a supercritical f luid is not a homoge-
nous medium; consequently, it can exhibit a low
intensity of conductive heat transfer as compared to
the case of a compressed liquid.

Interestingly, the fact of the propagation of this
decrease into the high-pressure range (1–3P/PC [88–92])
resonates with Ivanov’s observations [71] discussed
above in the context of Fig. 10. Thus, it is logical to
assume that, at high heat f lux densities, high tempera-
ture gradients, and short times of response of the heat-
release surface, long-range critical correlations do not
form. Hence, the anomalies of the properties [102],
which are known from stationary measurements, do
not manifest themselves. The possibility to reach a
state with a low fluctuation amplitude and, as a conse-
quence, with nonsingular thermodynamic functions
in the case of sufficiently rapid propagation into the
near-critical region was assumed by Y.B. Zel’dovich
F PHYSICAL CHEMISTRY B  Vol. 15  No. 7  2021
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Fig. 14. Change in the probe temperature in water (23 MPa, 25°C) while heating the probe by a constant-power pulse into the
supercritical temperature range: (1) experiment, (2) calculation from reference data with taking into account the peaks of the ther-
mal conductivity and the heat capacity [82], and (3) the expected shape of the curve if the properties of the substance are constant.
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[103]. He considered a rarefaction shock wave, which
was experimentally observed [104] as a convenient
tool to study such states of matter. It is important to
determine the spatial-temporal scale that is character-
istic of the suppression of anomalies, such as the Fren-
kel line dividing “the solid-like hard liquid and quasi-
gaseous f luid” (cited from [105]) according to the
physically substantiated sign.
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
The discussion above showed that the acceptance
of the new tabular standards of transfer coefficients of
water and carbon dioxide and the development of the
universal method to describe critical anomalies of
transport properties of supercritical f luids do not put
an end to the investigation of the thermal physics of
critical and supercritical phenomena. Indeed, “the
behavior of matter near … the liquid–vapor critical
point turned out to be much more complex than it was
l. 15  No. 7  2021
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assumed by van der Waals and Landau” [103]. The lit-
erally first change in the scales of time and size of the
experimentally system led to a qualitative change in
the results. The clarity of the results was ensured by
processing the primary experimental results free of
model restrictions. The fact of their existence is hardly
mentioned in reviews of studies of the heat transfer in
supercritical f luids, in particular, the problem of heat
transfer weakening [106], which has been debated
since 1960s [107]. Nonetheless, the results of nonsta-
tionary experiments are expediently taken into
account in designing industrial units the working
medium in which is a supercritical medium, and the
operation of which do not rule out the possibility of
a powerful local heat release. Due to the general ten-
dencies toward the intensification of technological
processes and the mitigation of their environmental
impact, the knowledge of the picture of a nonsta-
tionary heat transfer can be required for improving
the equipment of nuclear power stations [13] and
implementing various supercritical f luid technolo-
gies [40, 108].
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