
ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2021, Vol. 15, No. 6, pp. 935–948. © The Author(s), 2021. This article is an open access publication.
ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2021. © The Author(s), 2021. This article is an open access publication.
Russian Text © The Author(s), 2021, published in Khimicheskaya Fizika, 2021, Vol. 40, No. 12, pp. 3–17.

ELEMENTARY PHYSICAL 
AND CHEMICAL PROCESSES
A Hard Sphere Model for Bimolecular Recombination
of Heavy Ions

V. M. Azriel’a, V. M. Akimova, E. V. Ermolovaa, D. B. Kabanova,
L. I. Kolesnikovaa, L. Yu. Rusina, *, and M. B. Sevryuka

a Tal’rose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center of Chemical Physics,
Russian Academy of Sciences, Moscow, 119991 Russia

*e-mail: rusin@chph.ras.ru
Received May 31, 2021; revised June 10, 2021; accepted June 21, 2021

Abstract—We propose a hard sphere model of bimolecular recombination RM+ + X– → MX + R, where M+

is an alkali ion, X– is a halide ion, and R is a neutral rare gas or mercury atom. Calculations are carried out
for M+ = Cs+, X– = Br–, R = Ar, Kr, Xe, Hg, for collision energies in the range from 1 to 10 eV, and for dis-
tributions of the RM+ complex internal energy corresponding to temperatures of 500, 1000, and 2000 K. The
excitation functions and opacity functions of bimolecular recombination in the hard sphere approximation
are found, and the classification of the collisions according to the sequences of pairwise encounters of the
particles is considered. In more than half of all the cases, recombination occurs due to a single impact of the
Br– ion with the R atom. For the recombination XeCs+ + Br–, the hard sphere model enables one to repro-
duce the most important characteristics of the collision energy dependence of the recombination probability
obtained within the framework of quasiclassical trajectory calculations.
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1. INTRODUCTION
Reactions of ionic dissociation of molecules and

reverse reactions of recombination of ions constitute
an important component of many complex chemical
processes occurring in various non-equilibrium natu-
ral or technological media. In particular, the concen-
tration of ions in plasma is primarily determined by the
competition between the reactions in question [1, 2].
The simplest examples of these reactions are collision
induced dissociation (CID) of diatomic molecules to
singly charged ions and recombination of singly
charged atomic ions. The study of CID processes has
an important place in chemical physics. For instance,
there is a rich body of literature devoted to investiga-
tions of the dynamics of ionic dissociation of alkali
halide molecules (first of all, of cesium halides) in col-
lisions with rare gas and mercury atoms (as well as with
a sulfur hexafluoride molecule) in crossed molecular
beams, see the surveys [3–7] and the detailed bibliog-
raphy [8]. These CID reactions proceed according to
the schemes

(1)

(2)
where M+ is an alkali ion, X– is a halide ion, and R is
a neutral rare gas or mercury atom. The CID channel

R + MX → RX– + M+ was observed in crossed molec-
ular beam experiments for the system Xe + CsI only
[9, 10]. Note that the cesium halides practically do not
dissociate to neutral atoms [11]. The main tool of the-
oretical exploration of the reactions (1) and (2) is qua-
siclassical trajectory simulation on an adequate poten-
tial energy surface, see the surveys [4–7].

There are no experimental studies of the dynamics
of the recombination reactions

(3)

(4)
reverse to the CID reactions (1) and (2). Moreover,
most certainly, experimental investigations of the
dynamics of direct three-body recombination (3) are
currently not possible at all. This is primarily due to
the fact that it is extremely difficult to experimentally
implement the intersection of three sufficiently
intense beams or of two beams and a dense gas target.
On the other hand, various dynamical characteristics
of the reactions (3) with M+ = Cs+ have been examined
in detail within the framework of the quasiclassical tra-
jectory method [2, 7, 12–23]. The paper [22] presents the
results of quasiclassical trajectory simulation of one of
the reactions (4), namely, of the XeCs+ + Br– reaction.
Note that the bimolecular reaction (4) is the final stage

R MX R M X ,+ −+ → + +

R MX RM X ,+ −+ → +

M X R MX R,+ −+ + → +

RM X MX R,+ −+ → +
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of one of the indirect recombination mechanisms
known as the bound complex mechanism [2, 13, 24, 25].

Simulation of elementary atomic and molecular
processes within the framework of the quasiclassical
trajectory method is, as a rule, more illustrative than
semiclassical or quantum mechanical calculations
(and such simulation is fully justified if all the particles
involved in the process are heavy enough). However,
the use of hard sphere approximations sometimes
enables one to achieve even greater visuality in the
studies of atomic and molecular collisions. Within the
framework of hard sphere models (impulsive models),
the description of the motion of the particles in the
zone of strong repulsive interaction is radically simpli-
fied. Namely, these particles are treated as balls which
exchange energies and momenta at their contacts with
each other according to the elastic impact law [4, 26–30]
(inelastic encounters of balls are also sometimes con-
sidered). In addition, simulation of the particle
motion outside the zone of strong repulsive interaction
is also greatly simplified. The “ideology” of the hard
sphere approximation, as well as the advantages and
disadvantages of hard sphere models in comparison with
full trajectory calculations, are discussed in detail in the
works [26–28, 31] and partly in the works [4, 32]. As far
as the authors know, the first attempt to study chemi-
cal reactions in the hard sphere approximation was
made in the paper [33]. The report [28] contains an
annotated list of 209 works (up to 1991, inclusive), in
which one or another version of the hard sphere
approximation is employed to examine various phe-
nomena in chemical or atomic physics. Hard sphere
models of the CID reactions (1) have been considered
in many works [4, 9, 10, 26, 28, 34–38]. Hard sphere
models have been used in the theory of atomic and
molecular collisions in the gas phase until recently
[29–32, 39–43].

In the works [31, 32], we proposed a hard sphere
model of direct three-body recombination (3) and
presented calculation results for the reactions

(5)

with R = Ar, Kr, Xe, Hg for the ion approach energies
and the third body energies in the range 1–10 eV typi-
cal for low temperature plasma [1]. This model
includes instantaneous elastic encounters among the
particles M+, X–, R, while the particle motion in the
time intervals between the encounters (as well as
before and after the series of the encounters) is
described as the motion of the neutral atom R under
no forces and the motion of the ions M+, X– under
Coulomb attraction. The interaction potentials M+–R
and X––R are not dealt with in any way in the model
of [31, 32] (to be more precise, they have the form
of infinite potential walls). A much simpler version
of the hard sphere model of direct three-body
recombination (3) is considered in [40]. The aim of
the present paper is to describe a hard sphere model of

Cs Br R CsBr R+ −+ + → +
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bimolecular recombination (4) and calculation results
for the same particles M+, X–, R as in the works [31,
32], i.e., for the reactions

(6)

with R = Ar, Kr, Xe, Hg, and for the same range 1–
10 eV of collision energies. It is interesting that a hard
sphere model of recombination is already contained in
one of the first papers [44] devoted to applications of
the hard sphere approximation in chemical physics. In
the work [44], the so-called method of images is intro-
duced to study the motions of three particles along a
fixed straight line in piecewise constant potentials.

Within hard sphere simulation of bimolecular
recombination (4), as well as of the reverse CID reac-
tion (2) with the molecular ion formation, it is, of
course, impossible to completely ignore the interac-
tion potential between the particles R and M+.

In the case of CID (2), a model should include one
or another criterion for the formation of the molecular
ion (complex) RM+. Various versions of a hard sphere
model of the reactions (2) were used in the works [4,
26, 45, 46] (see also [10, 36]). In these works, the cri-
teria for the molecular ion formation (in the case of
dissociation of the MX salt molecule) boil down,
roughly speaking, to checking (possibly, several times)
the inequality , where W is the energy of the rel-
ative motion of the particles R and M+, while  is the
potential well depth of the M+–R interaction poten-
tial, i.e., the dissociation energy of the complex. The
fulfillment of the inequality  (or of some ana-
logue of this inequality) immediately after the system
leaves the zone of strong repulsive interaction (i.e.,
immediately after the termination of the series of elas-
tic impacts among the particles R, M+, X–) is a crite-
rion for the complex formation. The fulfillment of this
inequality after the ions move away from each other in
the Coulomb potential field for a great distance is a
criterion for the complex “survival”. Hard sphere
models of the reactions (2) that only involve a criterion
for the complex formation were considered in the
works [4, 26, 46]. Hard sphere models involving both
criteria were dealt with in the works [26, 45, 46].

The hard sphere model of bimolecular recombina-
tion (4) proposed in the present paper is based on the
following idealized description of the approach of the
RM+ complex and the X– ion. Denote by r the inter-
nuclear distance in the complex. A realistic potential

 of the M+–R interaction with  is char-
acterized by the equilibrium distance , the depth  of
the potential well, and the distance  at which
the attraction force between the particles R and M+ is
maximal and equal to 

RCs Br CsBr R+ −+ → +

W < ε
ε

W < ε
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A HARD SPHERE MODEL FOR BIMOLECULAR RECOMBINATION 937
At  the graph of the function  has an inflec-
tion point. It is supposed in our model that the RM+

complex and the X– ion are approaching as follows:
the center of mass of the complex and the X– ion move
as two material points of the corresponding masses
connected by Coulomb attraction, while the R atom
and the M+ ion move around the center of mass of the
complex as two material points connected by the po-
tential  in the absence of the X– ion. Such an ap-
proach of the RM+ complex and the X– ion takes place
until the distance d between the center of mass of the
complex and the X– ion becomes equal to the quantity

 defined by the equation

(7)

(here and henceforth, the atomic units are used unless
when stated otherwise). The relation (7) means that
the Coulomb attraction force between the RM+ com-
plex and the X– ion is equal to the maximal attraction
force between the R atom and the M+ ion in the com-
plex. After that, the R atom starts moving inertially,
while the M+ and X– ions start moving as two balls
connected by Coulomb attraction. After the equality

 is achieved, the potential  is no longer tak-
en into account while considering the motion of the par-
ticles. As to the X––R interaction potential, we did not
take it into account at any stage of the particle motion.

The prototype of this model is the method of
patched conics in space dynamics [47–49]. Within the
framework of this method, passive motion (motion
without any engine thrust) of a spacecraft C in the
gravitational field of two celestial bodies A and B of
masses  (for instance, of a planet and a star) is
treated as Keplerian with respect to the body A inside
the so-called sphere of influence of this body and as
Keplerian with respect to the body B outside the
sphere of influence of the body A. At the boundary of
the sphere of influence, Keplerian trajectories are
“patched” together according to sufficiently simple
rules. The sphere of influence of the body A with
respect to the body B is defined as the domain of loca-
tions of the spacecraft C where the inequality

holds, here  is the gravitational acceleration with
which a body Q is attracted to a body P. In contrast to
the sphere of influence, the sphere of attraction of the
body A with respect to the body B (which is defined as
the domain where the inequality  is valid)
is not essential for space f light mechanics [47].

The literal analogue of the method of patched con-
ics for the particles R = A, X– = B, and M+ = C (in the
setup where one takes into account the potential 
of the interaction M+–R = C–A and the Coulomb

*r r= ( )U r

( )U r

*d
− =2
* *d f

*d d= ( )U r

A Bm m<

− −<BC BA AC AB

AC BC

g g g g
g g

PQg
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( )U r
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potential of the interaction M+–X– = C–B) looks as
follows. Since we neglect the interaction X––R = B–A,
the “sphere of influence” of the R atom on the M+ ion
with respect to the X– ion coincides with the “sphere
of attraction” and is given by the inequality

(8)

where, as above, r is the M+–R internuclear distance,
while s is the M+–X– internuclear distance. Inside this
“sphere of influence”, the M+ ion and the R atom
move around their common center of mass as two
material points connected by the potential . Out-
side the “sphere of influence” (8), the M+ and X– ions
move around their common center of mass as two
material points connected by Coulomb attraction.

The differences between our model and this exact
analogue of the method of patched conics are as fol-
lows. In the inequality (8), we replace the distance s
between the ions with the distance d between the X–

ion and the center of mass of the M+–R system and
replace the right-hand side with its maximal (for

) value  Thus, the equation of the “sphere of
influence” of the R atom on the M+ ion with respect
to the X– ion in our model has the form 
Moreover, whenever the M+ ion is located inside this
“sphere of influence”, we suppose that the center of mass
of the M+–R system and the X– ion move as a pair of
material points connected by Coulomb attraction.

2. DESCRIPTION OF THE MODEL
As in the hard sphere model of direct three-body

recombination (5) [31, 32], each of the particles Cs+,
Br–, Ar, Kr, Xe, Hg was represented by a homoge-
neous ball of the mass corresponding to the actual
atomic weight of the element in question. As the radii
of the balls, we used the ionic radii of the ions Cs+ and
Br– (1.67 and 1.96 Å, respectively [50]) and the atomic
radii of the neutral atoms Ar, Kr, Xe, Hg (1.92 [51],
1.98 [52], 2.18 [52], and 1.55 Å [53], respectively). We
employed the same Cs+–R interaction potentials as in
the works [2, 7, 12–23] devoted to trajectory simula-
tion of recombination (3) and (4) with M+ = Cs+.

The Cs+–R interaction potentials with R = Ar, Kr,
Xe were given by the model [4, 34, 35]

(9)
where r is the internuclear distance, A and  are
parameters of the repulsive wall in the Born–Mayer
form (A is the calibration factor and  is the “softness”
of the Cs+–R pair), C is the dispersion constant of the
van der Waals interaction in the London approxima-
tion, and  is the polarizability of the R atom. The
values of  are given in the works [9, 54–58]. The
values of the parameters A, , and C were obtained on

2 '( ) ,s U r− <

( )U r
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ρ

ρ
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Table 1. Parameters of the Cs+–R interaction potentials (in the atomic units)

1. That the potential well depth  for the Cs+–Xe system is smaller than that for the Cs+–Kr system might come as a surprise, but this
inequality agrees with the data of [60, 62] (see also [58]). 2. In the paper [21], we used other values of the parameters A, , and C for the
Cs+–Ar interaction potential. 3. In the works [2, 13, 19, 38, 46], we set  a.u. [55].

R A C

Ar 450.19 0.51773 89 – – 11.1 6.52 0.002702 7.354 33.3

Kr 796 0.5281 247.1 – – 16.8 6.642 0.004448 7.478 25.8

Xe 318.5 0.6494 490 – – 27.2 7.568 0.003987 8.578 29.72

Hg – – – 7.75 0.0011 34.4 6.836 0.007588 7.651 20.1

ρ 0r 0D Rα mr ε r∗ d∗

ε
ρ

Hg 34α =
the basis of various sources [9, 56, 58–62] (as well as
[10] in the case R = Xe). Some parameters are explic-
itly given in these works, while the other ones were
computed to ensure the reproduction of the spectro-
scopic data, i.e., the location and depth of the poten-
tial well.

Following the works [26, 38, 46], we represented
the Cs+–Hg interaction potential as the sum of the
interaction potential of the isoelectronic system Xe–
Hg (in the Lennard-Jones form) and the summand

 where  a.u. [54] is the polariz-
ability of the mercury atom:

(10)

Here  and  are respectively the equilibrium dis-
tance and the potential well depth of the ground state
of the Xe–Hg system. We used the values of these
quantities determined experimentally in the paper [63]
(the same values are given in the handbook [55]).

The values of all the parameters of the potentials (9)
and (10) are compiled in Table 1 along with the equi-
librium distance , the depth  of the potential well, and
the distances  and  (see the equation (7)).
Note that a detailed annotated bibliography of the
works (up to 2016) on the interaction potentials in all
the two-particle systems M+–X–, M+–R, X––R, and
R–Hg (M+ being an alkali ion, X– a halide ion, and R
a rare gas atom) is presented in the report [64].

We assumed that before the RM+ complex and the
X– ion get close to each other at the critical distance ,
the vibrational and rotational levels of the complex
have Boltzmann distributions corresponding to a cer-
tain temperature T. The selection procedure for the
initial conditions of a collision of the reactants RM+

and X– in our model at a fixed temperature T and a
fixed collision energy  was as follows.

In accordance with the brief characterization of the
model given in the introduction, we supposed that at
the initial time instant , the distance between the

4
Hg 2 ,r−α Hg 34.4α =

12 6 4
0 0 0 Hg( ) [( ) 2( ) ] 2 .U r D r r r r r= − − α

0r 0D

mr ε

*r
1 2

* *d f −=

*d

colE

0t =
RUSSIAN JOURNAL O
center of mass of the RM+ complex and the X– ion is
equal to , while the energy of the relative motion of
the complex and the ion is equal to  To
be more precise, we assumed that at  the center of
mass of the complex coincides with the origin of the fixed
coordinate frame  and has zero velocity whereas the
nucleus of the X– ion has the coordinates

 and the velocity .
Here  is the reduced mass of the RM+ complex and
the X– ion, while the distance  is chosen ran-

domly according to the rule  (  being a ran-
dom variable uniformly distributed between 0 and 1).
The angular momentum conservation law implies that
the impact parameter b of such a collision relates to
the distance  by the equality  so that

(11)

At impact parameters greater than , recombina-
tion in our model is impossible. Note that in the over-
whelming majority of cases, while simulating elementary
processes, the values of the impact parameters above
which the reaction in question does not occur are deter-
mined by test calculations and cannot, strictly speaking,
be indicated a priori. Such a situation also takes place for
the hard sphere model of direct three-body recombina-
tion (3) proposed in the works [31, 32]. In the hard
sphere model of bimolecular recombination (4) de-
scribed in the present paper, the limit value  of the
impact parameter is computed a priori, although via a
quantity without an explicit physical meaning, name-
ly, via the derivative  of the interaction potential in
the RM+ complex at the inflection point (see the
equation (7)).

As the collision energy  grows from zero to
infinity, the coefficient  in (11) monotoni-
cally decreases from infinity to one and the value of

 monotonically decreases from infinity to 
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After  was selected, the coordinates and velocities
of the M+ ion and the R atom in the RM+ complex at

 were chosen randomly on the basis of the Boltz-
mann distributions (at the temperature T) of the vibra-
tional energy  and the rotational

energy . Here 

,  is the reduced mass of the M+ ion
and the R atom, while v and j are the vibrational and
rotational quantum numbers. Otherwise speaking, we
supposed that  and  are the energies of the har-
monic oscillator and the linear rigid rotor, respec-
tively, with the parameters corresponding to the inter-
action potential  in the complex near the mini-
mum point  where .
Of course, such a selection procedure for the energies

 and  is not very precise, especially for poten-
tials with such “shallow” potential wells as the M+–R
interaction potentials, but the error associated with
this circumstance is definitely smaller than the errors
of the hard sphere approximation itself. If for the cur-
rent values of v and j, the sum of the energies

 exceeded the depth  of the potential well in
the complex, then such values of v and j were rejected
and the vibrational and rotational quantum numbers
of the complex were chosen again. The entire selection
procedure for the state of the complex at  was car-
ried out using the computer code presented in the
report [65] on pages 59–61 (with minor changes due to
the need to check the inequality  and
due to another form of the potential).

If for the current collection of the values of the dis-
tance  and of the coordinates and velocities of the
M+ ion and the R atom at , the distance between
the nuclei of some two particles out of M+, X–, R
turned out to be less than the sum of the radii of those
particles, then such a collection was rejected and the
initial conditions of the collision were chosen again.

Thus, in our selection procedure for the initial con-
ditions of a collision, the potential  of the M+–R
interaction is used in two ways, namely, to determine
the distance  and within the random choice of the
coordinates and velocities of the M+ ion and the R
atom.

Knowing the coordinates of the X– ion at 
pointed out above and the coordinates of the M+ ion,
one can calculate the initial internuclear distance 
between the ions. The sum H of the initial energy of
the relative motion of the RM+ complex and the X–

ion (this energy being equal to ) and the ini-
tial energy of the Coulomb interaction of the ions (this
energy being equal to ) in our model is not neces-
sarily equal to  and varies as one proceeds from
one set of initial conditions to another. However, on

b∗

0t =

= ω +vib ( 1 2)E v

rot ( 1)E Bj j= + ω = μ 1 2
lex[ "( ) ] ,mU r

2 1
lex(2 )mB r −= μ lexμ

vibE rotE

( )U r

mr r= 2 2
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vib rotE E+ ε

0t =

vib rotE E+ < ε
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1
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the average, H differs little from . Indeed, the loca-
tion of the M+ ion at  is determined by its distance

 to the origin (the center of mass of the complex) and
by its location on the sphere centered at the origin and
of radius , the probability density of the occurrence
of the nucleus of the M+ ion at any point of the sphere

being constant and equal to  (if one neglects
the condition that the balls representing the particles
M+, X–, R should not “overlap”). On the other hand,
the distance from the X– ion to the origin at  is
always equal to  and the electrostatic field outside a
uniformly charged sphere coincides with the field of
the point charge equal to the total charge of the sphere
and located at the center of the sphere [66] (the elec-
trostatic field inside such a sphere vanishes). Conse-
quently, the value  averaged over all the possible
locations of the M+ ion with  is equal to 

After selecting the initial conditions of a collision
RM+ + X–, further simulation of the particle motion,
as was already noted in the introduction, was carried
out in exactly the same way as in the hard sphere
model of direct three-body recombination (3) [31, 32].
It was assumed that at a contact of any two balls repre-
senting the particles, their velocities instantly change
according to the elastic impact law [4, 26–30]. In the
time intervals between the encounters of the balls, the
R atom and the center of mass of the ionic pair move
under no forces, whereas the relative motion of the
ions was determined by solving numerically the New-
tonian equations of motion corresponding to a mate-
rial point in the Coulomb potential field on a plane
orthogonal to the conserved angular momentum vec-
tor  of the M+–X– system (the mass of the
point being equal to the reduced mass  of the ions;
 denotes the vector connecting the nuclei of the ions).

The equations of motion were integrated by the
sixth order Adams–Bashforth method, while the first
five integration steps (after selecting the initial conditions
or after the latest encounter of two particles) were carried
out by the fourth order Runge–Kutta method. The inte-
gration step length was set to be equal to 10 a.u. This
turned out to be sufficient for conservation of the total
internal energy  and of the angular
momentum L of the ionic pair M+–X– between two con-
secutive encounters with an accuracy up to  signifi-
cant digits. The instant of the impact was determined
by a series of trial one-step backward integrations of
the equations of motion by the fourth order Runge–
Kutta method. The paper [32] explains in detail why we
preferred numerical integration of the equations of
motion to analytically solving the Kepler problem on the
motion of a material point in the Coulomb potential.

The integration of the equations of motion was
stopped and we proceeded to selecting the initial con-

colE
0t =

*l

*l

( ) 124 *l
−

π

0t =
,*d

1,*s
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,* *l d< 1.*d −−

ion[ , ]= μL s s�
ionμ

s
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2
tot ion 2 1E ss
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ditions of the next collision RM+ + X– as soon as the
minimum of the two internuclear distances M+–R
and X––R became larger than 250 a.u. If at this time
instant the total internal energy  of the ionic pair
turned out to be negative, recombination of the M+

and X– ions was regarded as having occurred (irre-
spective of the current internuclear distance s between
the ions). The a priori minimum possible energy 
corresponds to motionless tangent balls representing
the M+ and X– ions. In the case of the Cs+ and Br–

ions, it is equal to  eV.
Note that while using the hard sphere model, one

has to distinguish clearly between a collision of the par-
ticles (such a collision is understood as the whole pro-
cess of interaction of the M+ and X– ions and the R
atom from the initial time instant  to the termina-
tion of integrating the equations of motion) and pair-
wise elastic encounters of the particles (there can be
many such encounters within a single collision event).
An encounter of the ions with each other does not
affect the total internal energy  of the ionic pair;
the energy  can only change at an encounter of one
of the ions with the R atom.

3. RESULTS OF THE CALCULATIONS
For each of the four atoms R = Ar, Kr, Xe, Hg, for

each of the three values of the temperature ,
1000, and 2000 K, and for each value of the collision
energy  from 1 to 10 eV with a step of 1 eV, we gen-
erated  collisions RCs+ + Br–. For each of
the 120 triples , the recombination probabil-
ity is equal to  where  is the number of
collisions ending in recombination of the Cs+ and Br–

ions (such collisions will be said to be recombinative).
It follows from the rule (11) of choosing the impact
parameters b of the collisions that the recombination
cross section  can be computed by the formula

(12)

The standard error (also known as the mean error or
the statistical error) of the probability P can be esti-
mated as  [67, 68].

The calculations show that the dynamics of recom-
bination (6) in our model is weakly dependent on the
temperature T (i.e., on the initial internal energy of the
complex). We did not find any trend towards an
increase or decrease in the recombination probability
P as the temperature T grows. For each of the 40 pairs

, denote by  the arithmetic mean of the
three values of P obtained at , 1000, and 2000 K,
and by , the difference between the maximum and
the minimum of these three values. The ratio 
does not exceed 0.0238, 0.0196, 0.0374, and 0.0861 for

totE

totE

3 96684.−
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R = Ar, Kr, Xe, and Hg, respectively. Moreover, the
ratio  in our calculations does
not exceed 4.3 (and in many cases it is several times
smaller); in other words, the difference in the values of
the probability P at different temperatures T is within
the statistical error. The only exceptions are the cases
R = Hg,  eV ( ) and R = Hg,  eV
( ). This is possibly due to the fact that the dis-
tance  for the interaction potential Cs+–Hg is
noticeably less than that for the interaction potentials
Cs+–Ar, Cs+–Kr, and Cs+–Xe (see Table 1).

As one expects, for each of the four atoms R (and
for each of the three values of the temperature T), the
recombination probability P and the cross section 
monotonically decrease as the collision energy 
grows. Figure 1 shows the dependences of the recom-
bination probability P on  at  K, while
Fig. 2 displays the dependences of the recombination
cross section  on  (i.e., the excitation functions)
at  K. Due to the presence of the factor

 in the formula (12), as the energy  grows,
the cross section  decreases somewhat faster than the
probability P. This is especially noticeable for small
values of . At  K, the ratio

is equal to 9.4, 6.06, 7.46, and 12.5 for R = Ar, Kr, Xe,
and Hg, respectively, whereas the ratio

is equal to 15.8, 11.3, 13.1, and 25.9 for R = Ar, Kr, Xe,
and Hg, respectively. Nevertheless, as  grows, the
hard sphere excitation function of the recombination
reaction (6) with R = Xe in Fig. 2 recedes more slowly
than the excitation function of the same reaction ob-
tained in trajectory calculations [22] for the ground
initial state ( ) of the XeCs+ complex. This
trajectory excitation function is also presented in Fig. 2 in
the relative units chosen in such a way that the hard
sphere cross section (at  K) and the trajectory
cross section coincide for  eV. For the trajecto-
ry excitation function, 

It is of interest to compare the probabilities P of
bimolecular recombination (6) and the probabilities

 of three-body recombination (5) in the hard sphere
approximation. Figure 3 shows the dependences of 
on the third body energy  at the fixed ion approach
energy  eV for the hard sphere model of recom-
bination (5) from [32] in the case where the maximal
values of the impact parameters  and  are equal to
80 and 40 a.u., respectively. For each of the four atoms
R (especially for R = Ar), the dependence of  on 
is characterized by a slower decrease in the recombi-
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Fig. 1. The dependences of the probability P of recombina-
tion (6) on the collision energy  at  K. Lines 1,
2, 3, and 4 correspond to R = Ar, Kr, Xe, and Hg, respec-
tively.
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nation probability as the energy grows than the depen-
dence of P on . The ratio

at  eV is equal to 2.11, 3.96, 5.34, and 6.04 for
R = Ar, Kr, Xe, and Hg, respectively. These values are
noticeably smaller than the values of the ratio  at
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Fig. 2. The excitation functions of recombination (6) at 
respectively. Line 5 represents (in arbitrary units) the excitation f
calculations [22]. 
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Collis

100T =
 K pointed out above. In the framework of
quasiclassical trajectory simulation, we observed this
phenomenon for the reactions (5) and (6) with R = Xe
(see Fig. 1 in [22] where  eV). At  eV,
the ratio  takes on even smaller values (and it
is even less than one in some cases).

The opacity functions of the reactions (6) in our
model, i.e., the dependences of the recombination
probability on the impact parameter b for fixed values
of T and , are displayed in Fig. 4 at  K for
the minimal (1 eV) and maximal (10 eV) collision
energies . These opacity functions were obtained
as follows. The interval  where the param-
eter b ranges was divided into subintervals of length
1 a.u. (the last subinterval was of a smaller length), and
the value of the opacity function at the center of a
given subinterval  is equal to the ratio of the number
of recombinative collisions with b lying in  to the
number of all the collisions with b lying in . The
small oscillations in the lines of Fig. 4 are due to statistical
uncertainties, and the differences between the opacity
function at  or 2000 K and the opacity function
at  K do not exceed these uncertainties.

As is seen in Fig. 4, on the whole, the opacity func-
tions for R = Kr, Xe, and Hg monotonically decrease
as the parameter b grows (if one neglects the short ini-
tial piece of an increase at  eV). The behavior
of the opacity functions for these atoms R at the inter-
mediate values  eV of the collision energy
is the same. On the other hand, for the lightest atom
R = Ar (to which, in addition, there corresponds the
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Fig. 3. The dependences of the probability  of three-
body recombination (5) on the third body energy  at the
fixed ion approach energy  eV for  a.u.
and  a.u. in the hard sphere approximation
[32]. Lines 1, 2, 3, and 4 correspond to R = Ar, Kr, Xe, and
Hg, respectively.
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largest distance , see Table 1), the opacity function
at  eV (as well as at  eV) is characterized
by a sufficiently long initial piece where the recombi-
nation probability is constant, while at  eV (as
well as at  eV), it is characterized by a suf-
ficiently long initial piece where the recombination
probability increases. The opacity functions of the

*d
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Fig. 4. The opacity functions of recombination (6) at 
respectively, for  eV. Lines 5, 6, 7, and 8 correspond to R
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reaction (6) with R = Xe obtained in the framework of
trajectory simulation have a completely different
shape. For example, the trajectory opacity function of
this reaction at  eV shown in Fig. 5 of the paper
[22] possesses a sharp (although “split”) maximum at

 a.u.
What is an interesting peculiarity of the model in

question of bimolecular recombination (4) is that the
total internal energy  of the ionic pair M+–X– can be
negative already at the initial time instant . In the
hard sphere model of three-body recombination (3) [31,
32] for ion approach energies  of order 1 eV =
0.03675 a.u. and higher, this is impossible because in
[31, 32], the initial internuclear distance between the
ions is equal to  a.u., so that the initial total
internal energy  of the ionic pair is always
positive. Of course, the inequality  in
the model proposed in the present paper does not
imply that the corresponding collision is necessarily
recombinative, since the subsequent encounters of the
ions with the R atom can change the sign of . In our
calculations related to the recombination reactions (6),
we observed collisions with  for R = Kr,
Xe, Hg only and at  eV only. Table 2 contains
the numbers of collisions with  for vari-
ous atoms R and for various values of the temperature
T and the collision energy .

As is seen in Table 2, for R = Kr and Xe, we only
observed isolated collisions with  (and,
moreover, at  eV only). On the other hand, for
R = Hg, the number of collisions with 
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Fig. 5. The number of different types of collisions RCs+ +
Br– among the  collisions generated for the given
atom R and the given collision energy  at  K.
Lines 1, 2, 3, and 4 present the number of types of recom-
binative collisions for R = Ar, Kr, Xe, and Hg, respectively.
Lines 5, 6, 7, and 8 present the number of types of non-
recombinative collisions for R = Ar, Kr, Xe, and Hg,
respectively.
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Table 2. The number  of collisions RCs+ + Br– with
 (out of the total number  of all

the collisions), the number  of collisions with
 and without encounters of the ions with the

R atom, and the number  of collisions with
 and without encounters of the particles at all

(semicolons separate the data for , 2, and 3 eV)

R T, K

Kr

500 0; 0; 0 0; 0; 0 0; 0; 0

1000 2; 0; 0 1; 0; 0 1; 0; 0

2000 1; 0; 0 1; 0; 0 0; 0; 0

Xe

500 1; 0; 0 1; 0; 0 1; 0; 0

1000 10; 0; 0 9; 0; 0 3; 0; 0

2000 11; 0; 0 7; 0; 0 3; 0; 0

Hg

500 13056; 6; 0 8646; 6; 0 6270; 0; 0

1000 19383; 22; 3 13233; 21; 3 9162; 7; 0

2000 22436; 29; 4 15577; 26; 4 10712; 9; 2

0N
tot( 0) 0E t = < 500000N =

1N
tot( 0) 0E t = <

2N
tot( 0) 0E t = <

col 1E =

0N 1N 2N
at  eV turned out to be substantial even for
 K. To explain this exceptional feature of mer-

cury, estimate the minimal initial internuclear dis-
tance between the Cs+ ion and the R atom for which
the inequality  is possible (recall that

, , and  are respectively the reduced mass of
the ions, the reduced mass of the Cs+ ion and the R
atom, and the reduced mass of the RCs+ complex and
the Br– ion). We will suppose that the energy of the
relative motion of the Cs+ ion and the R atom in the
RCs+ complex at  is equal to  where 
is the Boltzmann constant. In the coordinate frame we
employ, the velocity of the Br– ion at  is equal to

, while the velocity of the Cs+ ion is

equal to  where  is the mass ratio
. Of course, even at  eV and

 K, the energy  is considerably less than
the energy  and the velocity  is much smaller
than the velocity . The energy of the relative motion
of the ions at  cannot be less than

, so that for the occurrence of
the inequality , the initial internuclear
distance  between the ions should be smaller than

 (and, moreover,  should be no less
than the sum  of the radii of the ions, this sum being
equal to 6.85971 a.u.).

The initial distance between the center of mass of
the RCs+ complex and the Br– ion is equal to  Con-
sequently, for the inequality  to occur,
the initial internuclear distance between the Cs+ ion
and the R atom should be greater than the quantity 
defined by the equation , i.e., greater
than the quantity . Easy calcula-
tions show that the values of  and  depend little
on the temperature T and, moreover, the distance 
depends little on the R atom as well. For instance, at

 eV and  K, the distance  is equal
to 18.84, 18.48, 21.64, and 18.57 a.u. for R = Ar, Kr,
Xe, and Hg, respectively. However, the distance  for
R = Hg is noticeably smaller than that for the three
other atoms R (see Table 1), while the ratio , on the
contrary, is larger. Because of this, the distance  at

 eV turns out to be small for R = Hg (for exam-
ple, at  K, it is equal to 2.54 a.u.) and rather
significant for R = Ar, Kr, Xe; at  K, it is equal
to 62.56, 18.92, 16.27 a.u., respectively (the initial inter-
nuclear distance between the Cs+ ion and the Ar atom
exceeding 62.56 a.u. is, of course, unrealizable). On the
other hand, already at  eV, the distance  for
R = Hg becomes considerably greater. For instance, at

 K, one obtains  a.u. and
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 a.u. We observed a large number of colli-
sions with  for R = Hg and  eV
only (see Table 2) precisely because this is the only pair

 characterized by small distances .

crit 12.54r =
tot( 0) 0E t = < col 1E =

col(R, )E critr
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4. TYPES OF COLLISIONS

For each collision event RM+ + X–, the hard
sphere model enables one to determine unambigu-
ously the sequence of pairwise encounters of the balls
representing the particles M+, X–, and R. Treating the
M+ ion as the first particle, the X– ion as the second
one, and the R atom as the third one, we will encode
any such encounter by one of the six numbers 12, –12,
13, –13, 23, and –23 according to the following rule
[31, 32]. An encounter of the particle no. i and the par-
ticle no. j (where ) is denoted by one of the num-
bers , the sign of the number coinciding with
the sign of the total internal energy  of the ionic
pair after the encounter. As was already noted at the
end of Section 2, encounters of the codes ±12 do not
alter the value of .

Within the framework of a recombinative collision,
after all the encounters of the R atom with the ions, a
bound ionic pair M+–X– remains. The parameters of
the ellipse traced in this setup by the vector  connect-
ing the nuclei of the ions can be easily computed in
terms of the energy  and the angular momen-
tum L of the ionic pair [48, 49]. Denote by  the peri-
center radius of the ellipse (the minimal distance from
a point of the ellipse to its focus) and by , the sum of
the radii of the balls representing the ions. Depending
on which of the two inequalities  or 
holds, in an isolated bound ionic pair M+–X–, either
there are no encounters of the ions with each other at
all or the ions undergo infinitely many encounters of
the code –12. In our calculations pertaining to the
recombination reactions (6), until the integration of the
equations of motion was stopped according to the algo-
rithm of Section 2, only a finite number (usually no more
than ten) of such encounters of the code –12 had time to
occur. We observed the maximal number of such final
encounters of the code –12 for one of the collisions
KrCs+ + Br– at  K and  eV. In this
recombinative collision, after two encounters of the
codes 12 and –23, before the integration of the equa-
tions of motion was terminated, 892 encounters of the
ions with each other occurred. Within the framework
of a non-recombinative collision, after all the encoun-
ters of the R atom with the ions, one more encounter
of the ions with each other of the code 12 is possible.

As in the hard sphere model of three-body recom-
bination (5) [31, 32], to each collision RCs+ + Br–, we
will assign the sequence of the numbers encoding the
pairwise encounters of the particles not taking into
account the final encounters of the ions with each
other (these encounters occur after all the encounters
of the R atom with the ions). The resulting sequence of
numbers, enclosed in parentheses, will be called the
type of the collision. For example, a collision of the
type (12, –23) is recombinative and includes an
encounter of the ions with each other with , an

j i>
(10 )i j± +

totE

totE

s

tot 0E <
sπ

0s

0s sπ > 0s sπ <

1000T = col 1E =

tot 0E >
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encounter of the Br– ion with the R atom changing the
sign of the energy , and possibly some more
encounters of the ions with each other of the code –12
(as in the collision KrCs+ + Br– mentioned above with
894 encounters of the particles). The recombinative
collisions that do not include any encounter of the R
atom with the ions constitute a separate type which
will be conditionally denoted by . For such colli-
sions ; they either do not
include encounters of the particles at all or include
several encounters of the code –12 (  denotes the
instant of termination of the integration of the equa-
tions of motion). The numbers  in the penultimate
column of Table 2 are the numbers of collisions of the
type  in our calculations for various triples

. In the hard sphere model of three-body
recombination (5) [31, 32], we did not observe colli-
sions of the type  (see an explanation at the end of
Section 3). The non-recombinative collisions that do
not include any encounter of the R atom with the ions
will be regarded as belonging to the type . For such
collisions ; they either
do not include encounters of the particles at all or
include a single encounter of the code 12.

The “longest” type we met with was the sequence
of 58 numbers equal to 13. We observed a single colli-
sion of this type. It was one of the non-recombinative
collisions KrCs+ + Br– at  K and  eV.
It included 58 encounters of the Cs+ ion with the Kr
atom without a final encounter of the Cs+ and Br– ions.

Within the framework of hard sphere simulation of
direct three-body recombination (5), we observed
34 types of recombinative collisions (all these types
are listed in [31, 32]) and 61 types of non-recombina-
tive collisions (these types are listed in [31]). In the
hard sphere model of bimolecular recombination (6)
described in the present paper, we met with consider-
ably more different types of collisions.

The total number of collision events RCs+ + Br– in
our calculations was equal to 4 × 3 × 10 × 500000 =
6 × 107; here we take into account four distinct atoms
R, three values of the temperature T, and ten values of
the energy . Of these 6 × 107 collisions, 
collisions (3.10505%) of 64 different types turned out
to be recombinative. The number of types of non-
recombinative collisions in our calculations was equal
to 172, i.e., 2.6875 times more than the number of
types of recombinative collisions. However, such a
“variety” of types of bimolecular collisions occurs
largely due to a very small number of collisions (both
recombinative and non-recombinative) including long
series of encounters of the code 13, i.e., encounters of
the Cs+ ion with the R atom leaving the total internal
energy  of the ionic pair positive. In the course of
such collisions, the particles Cs+ and R which consti-

totE
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tot tot end( 0) ( ) 0E t E t t= = = <

endt

1N
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col(R, , )T E
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Table 3. The twenty most frequently occurring types of
recombinative collisions

The number of collisions in per cent is given with respect to the
total number of recombinative collisions ( ).

Number of collisions In per cent Type

1083402 58.1527 (–23)
220481 11.8345 (13, –23)
178398 9.5757 (12, –13)
151216 8.1167 (–23, –13)
60194 3.2310 (13, –23, –13)
42661 2.2899 (23, –13)
37535 2.0147
35487 1.9048 (12, –23)
16214 0.8703 (13, 12, –13)
11002 0.5905 (13, 23, –13)
8898 0.4776 (–13)
6122 0.3286 (–12, –13)
2947 0.1582 (13, 12, –23)
2348 0.1260 (–23, –13, –23)
1559 0.0837 (13, –23, –13, –23)
1246 0.0669 (13, 13, –23, –13)
754 0.0405 (13, 13, –23)
487 0.0261 (–13, –23)
353 0.0189 (23, –13, –23)
243 0.0130 (–12, –23)

( )−Ω

1863030
tuted the RCs+ complex at the beginning, for some
more time undergo many encounters with each other
under the influence of the Br– ion attracting the Cs+

ion. Apparently, the R atom in this case turns out to be
“sandwiched” between the ions. Emphasize that such
collisions are very rare. We observed only 4725 colli-
sions (66 recombinative ones and 4659 non-recombi-
native ones) whose types start with five or more num-
bers 13; however, these collisions are categorized into
16 recombinative and 53 non-recombinative types. In
addition, for 9 other non-recombinative collisions, the
type ends with five or more numbers 13, these colli-
sions being categorized into 7 different types.

The twenty most frequently occurring types of
recombinative collisions are listed in Table 3 (in the
descending order of the numbers of collisions belong-
ing to the types in question). These 20 types cover
99.9204% of all the recombinative collisions. An over-
whelming majority (69.9872%) of recombinative col-
lisions belong to the types (–23) and (13, –23). In the
course of these collisions, the total internal energy 
of the ionic pair becomes negative due to an encounter
of the R atom with the Br– ion, and this encounter
may be preceded by an encounter of the R atom with
the Cs+ ion leaving the energy  positive. In the hard
sphere model of direct three-body recombination (5)
[31, 32], the two most frequently occurring types of
recombinative collisions were (–23) and (–13), while
the type (13, –23) was only in third place. In the hard
sphere model of bimolecular recombination (6), as is
seen in Table 3, we observed recombinative collisions
of the type (–13) as well, but this type is in 11th place
in terms of the occurrence frequency. Since at ,
the particles Cs+ and R constitute the RCs+ complex,
their relative velocity is small (and remains not very
large for some more time), so that with a high proba-
bility a single encounter between the R atom and the
Cs+ ion only slightly changes the velocity of the Cs+

ion and leaves the sign of the energy  unaltered.
The twenty most frequently occurring types of

non-recombinative collisions are listed in Table 4 (also
in the descending order of the numbers of collisions
belonging to the types in question). These 20 types
cover 99.9709% of all the non-recombinative colli-
sions. The three most frequent types of non-recombi-
native collisions are the same types , (13), (23) as in
the case of the hard sphere model of direct three-body
recombination (5) [31, 32] (however, the proportions
of occurrence of these types in the hard sphere model
of three-body recombination were completely differ-
ent). Together, these three types make up 94.8824% of
all the non-recombinative collisions.

If one proceeds from the entire set of 6 × 107 colli-
sions generated in our calculations to the  col-
lisions generated for individual triples ,
then for some triples, the two most frequently occur-
ring types of recombinative collisions and the three

totE

totE

0t =

totE

( )Ω

500000
col(R, , )T E
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most frequently occurring types of non-recombinative
collisions will be different.

For all the triples , the most frequent
type of recombinative collisions is (–23). However, for
R = Ar and  eV at all the three values of the
temperature T, as well as for R = Ar,  K, and

 eV, the type second in terms of the frequency
turns out to be (23, –13), while the type (13, –23)
moves to third place. For R = Hg, the type (13, –23)
never ranks second and is relegated to third, fourth, or
fifth place depending on T and . The second place
type for R = Hg is almost always (12, –13). The excep-
tions are two triples  with  and
2000 K. For these triples, the type of recombinative
collisions that is second in terms of the frequency turns
out to be . Let us note the probable cause of this
peculiarity of mercury. As is explained at the end of
Section 3, for R = Hg, smaller initial internuclear dis-
tances  between the ions are possible than for R =
Ar, Kr, and Xe. Apparently, because of this, the fol-
lowing scenario has a better chance of occurring for
mercury. The first encounter of the particles is an
encounter of the ions with each other of the code 12
that preserves the energy  but strongly changes the

col(R, , )T E

col 10E =
1000T =

col 9E =

colE

(Hg, , 1 eV)T 1000T =

( )−Ω

s∗

totE
l. 15  No. 6  2021



946 AZRIEL’ et al.

Table 4. The twenty most frequently occurring types of
non-recombinative collisions

The number of collisions in per cent is given with respect to the
total number of non-recombinative collisions ( ).

Number of collisions In per cent Type

39249419 67.5120
14471835 24.8927 (13)
1440518 2.4778 (23)
1040504 1.7897 (12, 13)

606526 1.0433 (23, 13)
288572 0.4964 (13, 13)
249744 0.4296 (13, 23)
203080 0.3493 (12, 23)
172042 0.2959 (13, 23, 13)
146189 0.2515 (–23, 13)
125150 0.2153 (13, 12, 13)
41349 0.0711 (13, –23, 13)
25024 0.0430 (13, 12, 23)
24355 0.0419 (13, 13, 13)
12004 0.0206 (23, 13, 23)

6746 0.0116 (13, 23, 13, 23)
6020 0.0104 (13, 13, 13, 13)
4081 0.0070 (–23, 13, 23)
3576 0.0062 (–23, –13, 23)
3324 0.0057 (–12, 13)

( )Ω

58136970
velocities of both the ions. Thus, the velocities of the
particles R and Cs+ begin to differ markedly. Then an
encounter of these particles with each other happens.
Again, this encounter greatly changes their velocities
(in particular, that of the Cs+ ion), and the energy 
becomes negative, i.e., the encounter of R and Cs+

turns out to be of the code –13.

The most frequent type of non-recombinative col-
lisions for all the triples  is , while the
type second in terms of the frequency is (13). At the
same time, for 24 triples  with low collision
energies  eV, the type (23) turns out to be not
the third in terms of the frequency, but the fourth,
fifth, or even sixth. In third place for these triples,
there are the types (12, 13) or (13, 13). For the other 24
triples  with  eV, the type (23) is in
third place.

The number  of different types of recombinative
collisions and the number  of different types of non-
recombinative collisions among the  collisions
generated for each triple  depend little on
the temperature T and, on the whole, decrease as the
collision energy  grows. Figure 5 shows the depen-

totE

col(R, , )T E ( )Ω

col(R, , )T E
col 4E ≤

col(R, , )T E col 4E ≤

1n
2n

500000
col(R, , )T E

colE
RUSSIAN JOURNAL O
dences of these numbers on  at  K. The
ratio  lies in the range from 1.416 to 3.75 for all the
triples . In particular, for each triple, the
number of types of non-recombinative collisions
exceeds the number of types of recombinative colli-
sions. In general, as is seen in Fig. 5, the greatest num-
ber of types of both recombinative and non-recombi-
native collisions is observed for R = Kr, followed by
Ar, Xe, and Hg.

5. CONCLUSIONS

The calculations we carried out have shown that
the proposed hard sphere model of the bimolecular
recombination reactions (6) enables one to reproduce
the most important feature of the dynamics of these
reactions, namely, that the probability and the cross
section of recombination decrease as the collision
energy grows and that this decrease is faster than the
decrease in the probability of three-body recombina-
tion (5) as the third body energy grows at a fixed value
of the ion approach energy. On the other hand, the
hard sphere opacity functions of the reactions (6) with
R = Xe are very different from the opacity functions
obtained in trajectory calculations [22].

Other meaningful dynamical aspects of the recom-
bination reactions (3) and (4) are the distributions of
the MX product by the vibrational and rotational ener-
gies, as well as the minimum possible total internal
energy of the product, which characterizes (in the case
of three-body recombination) the efficiency of the third
body R as an acceptor of the excess energy of the ionic
pair [7, 14, 17, 19, 20, 40]. However, in the framework of
the hard sphere models of the reactions (3) and (4) pro-
posed in the works [31, 32] and in the present paper,
what is regarded as the reaction product is not a salt
molecule MX but a pair of ions M+ and X– bound by
the Coulomb potential. For such a pair, the total inter-
nal energy  is negative but the semiaxes of the
ellipse traced by the vector  connecting the nuclei of
the ions can be arbitrarily large. Therefore, it does not
make much sense to consider the distribution of the
energy , to decompose  into the vibrational and
rotational components, and to calculate the minimum
possible value of  in hard sphere simulation of the
reactions (3) and (4).

At the same time, one of the goals of using hard
sphere models in the theory of atomic and molecular
collisions is to separate the effects of the particle
masses from those of the structure of the potential
energy surfaces (PES) [4, 26–28, 31, 40]. The results
of the present paper suggest that the energy depen-
dences of the probabilities of three-body and bimolec-
ular recombination are affected by the PES relief to a
much lesser extent than the peculiarities of the opacity
functions. For a more comprehensive study of this
issue, one has to carry out trajectory simulation of the

colE 1000T =
2 1n n

col(R, , )T E

totE
s

totE totE

totE
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reactions (6) with R = Ar, Kr, Hg as well as calcula-
tions in the framework of a hard sphere model with
varying details of the Cs+–R interaction potentials
(and also calculations with a formal change in the
masses and radii of the particles, cf. [19–21]).

The construction of hard sphere models of direct
three-body recombination of ions (3) in the works [31,
32] and of bimolecular recombination of ions (4) in
the present paper allows one to suppose that hard
sphere concepts can be used while describing such
complicated recombination processes as ion-ion
recombination reactions in the atmosphere [69, 70],
the death of oxygen atoms in the atmosphere due to
recombination with the participation of O2 and N2
molecules as the third bodies [71], or recombination of
radicals in the polymer cage and in the bulk of poly-
mers [72].
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