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Abstract—In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic
principles of quantum computers. It is assumed that quantum correlations play a significant role in their per-
formance. They exist at both low and high temperatures. At the same time, the time correlation functions of
nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The sep-
aration of such signals into quantum and classical components has not previously been carried out and will
be performed in this study for the most important of the correlational functions observed in magnetic reso-
nance: the free induction decay (FID).
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1. INTRODUCTION
The shape of the absorption spectra of nuclear

magnetic resonance (NMR) or their Fourier images—
free induction decays (FIDs)—since the discovery of
NMR has been one of the main sources of information
about the structure of matter, mobility in it, electron-
nuclear interactions, electronic structure, phase tran-
sitions, etc. This has enabled the broadest applications
of NMR, ranging from research in the field of physics
and chemistry of condensed matter to research in biol-
ogy and medicine [1–4]. Subsequently, the develop-
ment and improvement of multipulse NMR methods
made it possible to improve the process of extracting
actual information about the investigated substance by
“editing” the spectra and significantly improve its
understanding [3]. In addition, the improvement and
development of pulse methods made it possible to sig-
nificantly deepen and expand research in the field of
nonequilibrium statistical mechanics and obtain
unique information in this area of fundamental phys-
ics. Suffice it to recall the phenomenon of “time rever-
sal” (Loschmidt’s echo) [5, 6].

It should be noted that nuclear spin systems studied
by NMR methods, which include various multiparti-
cle temporal correlational functions (TCFs), are a
suitable base for studying and developing the physics
of nonequilibrium processes in quantum multiparticle

systems, the dynamic (as opposed to thermodynamic)
behavior of multiparticle systems, the development of
correlations in them, and the degradation of the latter.
In other words, they are (according to N. Blombergen)
an excellent “laboratory” of statistical physics, in
which we can study in detail processes such as the
emergence and growth of interspin correlations, con-
trol spin dynamics, and the processes of the redistribu-
tion of quantum information over states (scrambling),
which is important, for example, for quantum metrol-
ogy [7, 8].

The intensive development of the experimental
technique of multipulse NMR has also given rise to very
wide possibilities for transforming spin-spin Hamiltoni-
ans. The developed procedures are called spin alchemy.
Their appearance, in turn, opened up new prospects
for research. Thus, the improvement of multiquantum
NMR spectroscopy made it possible to create multipar-
ticle quantum registers (up to ≈105 correlated spins),
study their behavior (relaxation and loss of coherence),
and test and develop methods for processing quantum
information, which means the emergence and devel-
opment of new quantum technologies [8].

These circumstances have additionally increased
the interest in studying various TCF nuclear spin sys-
tems, the most important of which is FID. Since the
discovery of NMR, hundreds of papers devoted to this
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problem have been published. However, we do not
consider here all the variety of developed approaches
and methods applied to this problem (see, for exam-
ple, [9, 10] and the literature cited there), but dwell on
the most important ones.

In 1973, an article appeared [11], in which the FID
of classical magnetic moments placed on a simple
cubic lattice was calculated. The specified structure
mimicked the structure of a CaF2 single crystal—a tra-
ditional and generally accepted test crystal for studying
the shape of the NMR (or FID) spectra. The authors
used a fragment of 216 classical magnetic moments
with periodic boundary conditions. The results
obtained surprisingly well reproduced a number of
characteristic features of the FIDs for all the main ori-
entations of the crystal with respect to the external
magnetic field. The reasons for the success of this sim-
ulation were explained by us in [12] (see also below in
the text).

The results of [11] began to arouse particular inter-
est in the past decade, in particular, in relation to
purely practical considerations. The possibility of replac-
ing quantum magnetic moments with classical ones rad-
ically reduces the requirements for the computer mem-
ory used in the calculations. Thus, an N-spin quantum
system requires (2S + 1)N complex numbers; and the
classic system, only 2N (two polar angles for each
spin). At the same time, the TCF calculations for
NMR turned out to be in demand in the study of the
propagation of correlations in paramagnetic spin sys-
tems in the implementation of the numerical register.
For example, in [13–15], the possibilities of matching
and hybridization of quantum mechanical and classi-
cal calculations were considered. In particular, the
method developed in these works made it possible to
achieve good results for the FID of small quasi-one-
dimensional lattices.

Since quantum correlations must play an import-
ant role for the speed of quantum computers (both at
low and high temperatures) [16, 17], researchers began
to show interest not only in direct calculation of cor-
relations but also in their separation into quantum and
classical components (see, for example, the review
[16]). This separation can also be performed for spin
TCFs, which determine signals in traditional NMR
techniques for the case of solids, which we have done
using the example of an FPS.

2. HAMILTONIAN AND BASIC EQUATIONS 
FOR CORRELATIONAL FUNCTIONS

The secular part of internuclear dipole-dipole
interactions, which is practically the only one respon-
sible for the dynamics of the spin system under NMR
conditions in nonmetallic diamagnetic solids, has the
form [2]
RUSSIAN JOURNAL O
(1)

where   is the vector con-
necting spins i and j; θij is the angle made by vector 
with a static external magnetic field; and Sαi is the
α-component (α = x, y, z) of the vector spin operator
at site i. Hereinafter, energy is expressed in frequency
units.

The equilibrium density matrix in a strong static
magnetic field H0 is described by the expression [2]

(2)

where k is the Boltzmann constant, T is temperature,
H is the Hamiltonian of the system, N is the total
number of spins in the sample, and L is the partition
function.

As is known [2], the FID arising after the applica-
tion of the π/2-pulse to the equilibrium nuclear spin
system is proportional to the TCF, which is deter-
mined in the reference frame rotating with the Larmor
frequency by the relation

(3)

Here L0 is the normalization factor providing the ini-
tial condition Г0(0) = 1 and {Mn} are moments, i.e.,
expansion coefficients in powers of time for FID. In
traditional experiments that use magnetic resonance,
the spin temperature usually significantly exceeds the
energy of the Zeeman and other interactions in the
spin system. In relation to this, we, as usual, restrict
ourselves to study the TCF in the high-temperature
approximation, and since the temperature is very
high compared to the internuclear dipole–dipole
interaction, only the moments of even order are non-
zero, and the FID, therefore, is an even function of
time; moreover, the FID and the equilibrium density
matrix in the accepted high-temperature approxima-
tion, respectively, are described by the formulas

(3a)

where  is the total of the x component of
the spin of the system. Dependence Sx(t) is given by
the Heisenberg equation:
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Using relations (3) and (4) leads to the well-known
expression for the moments:

(5)

Expressions that are completely analogous to rela-
tions (3)–(5) can be written for classical mechanical
moments [12]. In this case, the quantum moment 
is replaced by the classic moment l. Function

 fully corresponds to the TCF from
relation (3a), and … is the ensemble’s mean, which is
equivalent to averaging over the initial orientations of

each spin l. The quantity is defined as 
where lx(t) is the solution of the equation of motion for
classical moments, which in vector form can be writ-
ten in the form

(6)

The local field acting on the jth spin in a crystal is a
vector with three components:

Expression (6) can be rewritten in a form completely
equivalent to the quantum mechanical relation (4) if
we use the equations of classical mechanics in the
Hamilton form and take into account the rules for cal-
culating Poisson brackets for the components of the
angular momentum [18] ([lx, ly]p = lz, with the corre-
sponding cyclic permutation):

(6a)

Thus [12],

(7)

Expression (7) fully corresponds to formulas (3) and
(5) both in form and in content (compare the commu-
tator [Sx, Sy] = iSz and the Poisson bracket [lx, ly]p = lz).
The difference arises only when averaging. For exam-
ple, for the quantum mechanical case, it is necessary
to calculate the trace, and in the classical case, to inte-
grate over polar coordinates (angles ) of each of
the spins.
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When calculating the moments in relations (5) and
(7), first of all, it is necessary to calculate the commu-
tators (Poisson brackets). In order for the result to be
nonzero, it is necessary that in the process of calcula-
tions the commutated expressions coincide each time
with at least one lattice index. Moreover, if at each
stage of successive commutations exactly one index
coincides, the final expression is the maximum num-
ber of summations over lattice indices, and the opera-
tor part will contain, after pairing, only squares of the
operators (moments). As a result of averaging, the cor-
responding contributions from the operators and the
classical moments in this approximation completely
coincide, and the lattice sums turn out to be propor-
tional to the number of approximately equivalent
nearest neighbors surrounding the spin in the lattice
[12]. Thus, for a moment of the order of 2n with a large
number of equivalent neighbors (Z → ∞), the follow-
ing estimate holds: b2nZn [12]. If a larger number of
indices coincide, the number of nearest neighbors is
increased to a lesser degree. From what has been said
it follows [12] that a discrepancy between the moments
of quantum and classical systems arises only after aver-
aging in lower orders over the number of neighbors Z,
which explains the success of the work [11]. At the
same time, pairing corresponding to lower orders in
the number of neighbors leads to the appearance of
spin operators (classical moments) to a greater second
degree; as a result, there is a difference in the mean
values obtained for constructions composed of spins
and classical moments.

In [12], we were able to determine the quantum
corrections only to the first eight moments due to the
knowledge of their exact expressions [19]. Thus, in
general, the fraction of quantum correlations in the
FPS was not estimated in [12]. The corresponding
assessment is carried out in the next section.

3. DIVISION INTO QUANTUM 
AND CLASSICAL CORRELATIONS

One of the possible approaches to solve the formu-
lated problem is the reduction of the multispin density
matrix. They are usually limited to the lowest approxi-
mation: a two-spin density matrix with the subsequent
analysis of pair correlations [16]. In [20, 21], this
approach was applied to the one-dimensional XY-chain;
and in [22], to spins in a nanocavity with equal dipole
interactions between any two spins. In both cases,
spins with a spin quantum number  were taken.
In this paper, we consider lattices of spins with the spin
quantum number S of arbitrary value (quadrupole
effects are not considered). We will reduce the multis-
pin density matrix to a two-spin matrix. Then, follow-
ing [23], we calculate the fractions of quantum and
classical correlations: for , by using the Neu-
mann orthogonal measurement, while for , by
using generalized POVMs (positive-operator-valued-

= 1/2S

1/2S =
1/2S >
l. 15  No. 5  2021
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measurements) with a basis from the spin coherent
states (SCSs) [24]. In addition to systems with dipole-
dipole interaction, we will consider model lattices with
interactions only between spin components parallel to
a static magnetic field (a type of Ising interaction (see
Hamiltonian (1)). The latter allows us to get an exact
solution to the problem.

To observe the NMR signal, the system is exposed
to an RF magnetic field pulse, which causes the spins
to rotate through an angle of 90° around the y axis of
the rotating reference frame:

This initial density matrix will change over time,

(8)

ultimately generating FPS, determined by relation-
ship (3). Here  is the evolution
operator with Hamiltonian 

As noted above, we assume that the system is in
equilibrium in a strong static magnetic field, which
exceeds the spin-spin interaction (1) with the density
matrix (2). There are no correlations in this initial
state. During the evolution of state (8), dynamic cor-
relations are formed in the system. Further, in accor-
dance with the program outlined above, we should
reduce the multispin density matrix (8) to a two-spin
matrix with the subsequent analysis of pair correla-
tions and their division into quantum and classical
parts (components) [16, 20–24]. For the reduction,
we choose two spins at sites i and j and calculate the
trace in expression (8) with respect to all the other spin
variables. In the resulting density matrix  only the
dependence on the spin states of the two spins
remains, i and j (see, for example, formulas (21) and
(34) below). In the general formulas (9)–(16) of this
section, we assign numbers 1 and 2 to spins i and j,
respectively, thus passing to the reduced density
matrix:

(8a)

Mutual information can serve as a measure of the
correlation between spins [16, 25]

(9)

where  is the von Neumann
entropy; and  and  are the den-
sity matrices reduced to one spin. We will calculate the
von Neumann entropy in the lowest order in β [17, 23]:
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In the indicated high-temperature approximation,
for mutual information (9), we obtain

(10)

Mutual information (9) is a measure of the total
correlations, which are the sum of the classical and
quantum correlations. To calculate the classical cor-
relations of two random variables—the orientations of
two magnetic moments in our case—it is necessary to
find the probability distribution of their values. In
quantum mechanics [16, 25], such a distribution can
be obtained from the density matrix  of a quan-
tum system by measuring the corresponding observ-
ables. Measurement means establishing a connection
between a microscopic quantum observable and a
“pointer variable” measurable on a macroscopic
device. For  we will perform an orthogonal
Neumann measurement, whereas for , we will
apply generalized POVMs [16, 25], which allow us to
extract most of the classical correlations in this case.

In the orthogonal von Neumann measurement, the
state  is projected to some complete basis of
orthogonal wave functions  with a complete pro-
jector system:

(11)

For a system with , the complete set of
mutually orthogonal projectors of the first spin con-
sists of two general projectors:

(12)

where  are the direction cosines and  are the Pauli
matrices, 

After projection along the first spin, the reduced
density matrix  defined by relation (8a) is trans-
formed to the form
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where  is the identity matrix. Thus, we presented it
as an ensemble of pure states describing the measure-
ment results. Since in each state the observed quantity
now has a quite definite value, it behaves like a classi-
cal variable necessary for calculating classical correla-
tions.

In generalized POVMs, the functions  in
operators (11) can be nonorthogonal. Then these
operators, strictly speaking, are no longer projectors
[25]. It is believed that the closest states to the states of
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the classical moment are spin coherent states (Bloch
states) [24]:

(14)

where θ is the polar angle and ϕ is the azimuthal angles
on the unit sphere (Bloch sphere) C is the binomial
coefficient; and  is the basis from the operator 
eigenstates with a certain value m of the projection on the
z axis, which takes 2S + 1 values: –S, –S + 1, …, S – 1, S.

States (14) are obtained from the ground state 
using the rotation operator  and are a superpo-
sition of states with different projections m. In state (14),
the average values of the spin projections

are the same as in the classic moment. For a basis from
the SPS the completeness condition is satisfied:

however, the basis is not orthogonal.
We take the SPS system as a measuring basis in (11)

and perform a POVM on the first spin, which reduces
to multiplying  on the SPS and computing the
trace. As a result, we obtain the classical probability
density function of the distribution over the values of
the angles:

(15)

Now, to calculate the Shannon entropy, we have to
calculate the integral over the Bloch sphere:

The mutual information  calculated by
formulas (10), (13), and (15) for this matrix will serve
as a measure of the classical correlations. However, the
obtained value depends on the chosen basis (11). In
accordance with the formula from [16], it is proposed
to sort out all the bases and take the maximum value of
the correlation  as a universal measure. Such
a program can be executed only in some simple cases,
for example, for a two-level system. If we subtract the
classical part from all correlations (9), then we get
their quantum part:
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After minimizing this quantity over the measure-
ment bases, we obtain the entropy measure of the quan-
tum correlations: the quantum discord  [16]. The
measurement from relation (16) without optimization is
called a measurement dependent discord [16].

The general case of the total dipole–dipole interac-
tion with Hamiltonian (1) is discussed below. Let us
first consider the situation when the system interacts
only through the Ising part of Hamiltonian (1) (when
there is no transverse interaction). In this case, since
an exact solution of the problem is possible, the time
evolution of matrix (2) can be written explicitly:

(17)

The observed FPS signal (3) has the form

(18)

With a large number of neighbors Z, the resulting
expression for the FPS is closely approximated by the
Gaussian function:

(19)

In the implemented limit, the shape of the FPS
does not depend on S and therefore coincides with the
FPS form of the system of classical magnetic moments

 obtained upon passing to the limit

The difference between functions (19) and (18) can
be estimated by the difference between their fourth
moments:
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Does this mean that the quantum correlations dis-
appear if the FPS shapes match at ? To answer
this question, we reduce the density matrix (17) [20–
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(21)

To simplify the analysis, we assume that all spins
occupy equivalent positions in the lattice, then

In this case

(22)

Expression (22) differs from the analogous expres-
sion for an isolated pair of spins obtained in [23] by
replacing  by  and β by  Therefore, omit-
ting the intermediate calculations, we present the final
results at once. First, for the mutual information (10),
we obtain

(23)

where
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have
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Here  is the binomial coefficient (number of com-
binations).

Formula (25) was obtained using generalized
POVMs (15) with a basis from SPS (14).

Expressions (25) and (26) describe the time evolu-
tion of the sought parts of the correlations. For a qual-
itative analysis of their behavior with a large number of
neighbors Z, we note that in this case the function

 from formula (21) rapidly decays at times of the

order  In this time scale,

Therefore, in (23), (25), and (26), in the functions
 , and , we can leave the first terms of

the expansion in time:

(27)

(28)

We again note that formulas (27) and (28) are ade-
quate not only for small but also for large times, since
their growing terms arising from the above-mentioned
expansion of functions are cut off by the rapidly decay-
ing function Gij(t).

Thus, for the relative fraction of the quantum cor-
relation, we find

(29)

As follows from (29), as S increases, the proportion of
quantum correlations decreases. Note that for 
relation (29) gives a value of 2/3, while from (24) we
obtain 1/2. The discrepancy is due to the differences in
the measurement methods.

Let us now consider a system with a complete
Hamiltonian (1). The interaction between the trans-
verse spin components no longer allows us to write the
explicit time dependence of the density matrix in a
simple form (17). To find it, we use the method of
expansion in terms of the complete system of orthog-
onal operators  [26–28]. In this view

(30)

The original operator  Each subsequent
basis operator is obtained from the previous one by
calculating the commutator with the Hamiltonian in
accordance with the recurrent equation
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(31)

For amplitudes Ak(t) in [26, 27], a (actually
infinite) system of interlocking differential equations
was obtained:

(32)

To avoid confusion, let us pay attention to some
difference in the definition of amplitudes Ak(t) in [26]
and [27]. The difference lies in the factor (i)k. We have
chosen the version of [27] in which amplitudes Ak(t)
do not contain an imaginary part since the factor (i)k

is included in the definition of operators  Parame-
ters {νk}, the values of which determine the solution of
system (28), are expressed unambiguously in terms of
the moments of the NMR absorption line [26]. In par-
ticular,

(33)

where  are the second, fourth, and
sixth moments of the NMR absorption line.

Substituting (30) into (8), we carry out a reduction.
We choose two spins at sites i and j and calculate the
trace in (8) in all the other spin variables. As a result,
we get

(34)

For the first two orthogonal operators
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(36)

A contribution to (34) from the orthogonal opera-
tors of a higher order is possible in two cases: if,
between the chosen spins i and j, direct interaction
vanishes, which corresponds, for example, to the situ-
ation when the angle of vector  with the magnetic
field  equals the “magical” value of 54°44′. In this
case, the contribution of vector  through the inter-

mediate spin f with constant  is nonzero. At
 higher-order orthogonal operators are formed

from the products of spin operators not only of differ-
ent sites but also of the same site. For example,
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 will contribute in  and

 will contribute in .
We will neglect these contributions in (34), since they
do not contain new qualitative properties but are small
corrections to the contributions from the traces in
expressions (35) and (36). The insignificance of the cor-
rections is related to the difference in the time depen-
dence at the small times of the amplitudes of different
orders:  due to the rapid decay of the ampli-
tudes at times of the order of  every degree t

adds a small multiplier 
Thus, the performed reduction to a two-particle den-
sity matrix seems to be a correct approximation for
systems containing a large number of equivalent near-
est neighbors Z. This is also fully consistent with the
results of the FID calculations for crystals with large Z
numbers based on the model of “pairwise interac-
tions” [29, 30].

Keeping two contributions, (35) and (36), in (34),
we find

(37)

where  for Hamiltonian (1).
Finally, upon further reduction to one spin, we obtain

(38)

Substituting (37) into (3), we find  and, as
follows from relations (32), A1(t) is the FPS derivative.

The formula for the density matrix (37) is quite
similar to the expression obtained in [23] at small
times for an isolated pair of spins. Therefore, omitting
the intermediate calculations, we present the final
results at once. For the mutual information, we get

(39)

When transforming in (39), we used formulas (32)
and (34). The quantum discord  (at ) and
the quantum part of the correlations  (at ) are
related to  from (39) with the same relations (24)
and (29) as in the previous example:

Based on the results obtained, we conclude that the
time dependence of the mutual information (39) and
the quantum part of the correlations is determined
through the derivative of the FID. In this case, the
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rapid decay of the pairwise correlations and a decrease
in their maximum values with an increase in the num-
ber of neighbors Z does not mean a weakening of the
correlation, but only means the overflow of pairwise
correlations into more complex multispin correlations.
The complete mutual information can serve as a mea-
sure of a complete correlation [16, 31]:

(40)

At the initial moment of time  and T(ρ) = 0.
At large times  vanishes; thus, T(ρ) reaches the
limiting value determined by the initial conditions:
polarization of β at the given temperature and mag-
netic field.

3. CONCLUSIONS
As is well known, the semiclassical description of

quantum systems is valid [32] if the wave function has
a large number of nodes, i.e., within large quantum
numbers. In particular, for the angular momentum,
the semiclassical transition has the form [32]

In the case when the angular momentum has a spin
origin, the situation is somewhat complicated, since
spin is a purely quantum property. Nevertheless, since
particles have a spin-related magnetic moment, it is
usually assumed that the indicated passage to the limit
is, at a certain ratio, also valid for spins.

The mentioned passage to the limit has another
aspect. Fischer’s work [33] can be cited here. An indis-
pensable attribute for spin operators consists of the
commutation relations

According to Fischer’s formula [33], the length of
spin S should be taken out of the brackets in the commu-
tation relations and both parts should be divided by S2; at
S→ ∞, the commutation relations vanish, which is
valid only for the classical particles (see also [32]).
This underlines that spin is a purely quantum property.
However, as follows from the points made above, this
somewhat primitive interpretation of the semiclassical
transition should be improved at least for describing
the dynamics of multiparticle systems.

The conducted research has shown the following
points. Although, with a large number of neighbors Z,
the FPS of quantum spins and classical magnetic
moments largely coincide in shape, this does not mean
that the quantum properties are completely lost. In
each pair of spins of the system, the fraction of quan-
tum correlations varies from 1/2 to 1/(S + 1) for large
values S. The quantum properties completely disap-
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pear only with an additional passage to the limit:
 Limit  is insufficient. The closeness of

the FPS forms means that measurable classical cor-
relations and immeasurable (lost in measurement)
quantum correlations affect the FID in the same way.
Thus, the simultaneously unobservable spin compo-
nents  can, however, simultaneously
contribute to the dynamics of the spin system. As a
result, the scale of the time dependence is set by value

 but not  where S is the maximum value of
the observed projection onto any axis.

In conclusion, we note that in recent years import-
ant relationships have been established and confirmed
experimentally, allowing one to study quantum cor-
relations not only by measuring the TCF but also, for
example, by the data on magnetic susceptibility and
other physical parameters [34].
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