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Abstract—The ground and 10 lowest excited  adiabatic electronic states of the Na2 dimer are calculated
using the pseudopotential method. The use of the basis [7s6p5d4f] of atomic orbitals makes it possible to
extend the range of available internuclear distances up to 1.7–50 Å. It is found that the theoretical values of
the Te and De constants are in a good agreement with the experimental ones. Herein you will find the sample cal-
culations of the radial non-adiabatic coupling matrix elements enable to transform the basis of the adiabatic states
to quasidiabatic one. It is found also that the Le Roy modified radius scales down the left boundary of an asymp-
totic range for the electronic state with the (3s + 5p) dissociation limit and for the higher states.
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1. INTRODUCTION
We are witnessing the appearance of a new field of

science: the radio-chemical physics of the atmosphere
whose aim is the investigation of radio waves propaga-
tion at 60–110 km altitudes [1–3]. This field features a
number of scientific and technical applications,
including positioning problems in the global naviga-
tion satellite systems (GNSS) [4, 5]. The main role in
the radio-chemical physics of the atmosphere is assigned
to the processes of l-mixing, dissociative recombination,
and associative ionization and exchange, passing through
the formation of intermediate highly excited (Rydberg)
states of diatomic molecules, which determine the
parameters of a non-equilibrium atmospheric plasma
[6]. Before calculating the cross sections for the above
processes, we need to take into account the contribu-
tion from the long-range Rydberg states localized in
the region from 5Re to 15Re, where Re is the equilib-
rium internuclear distance of the ground electronic
state. Therefore, to test and correct theoretical
approaches, it makes sense to consider a well-studied
system, for example, the Na2 dimer [7].

Sodium dimer (Na2) is one of the few diatomic
molecules whose absorption and emission spectra
were repeatedly investigated experimentally and theo-
retically in the last century [7–10]. Theoretical studies
of the Na2 were started in the second half of 1960s with

the calculations of equilibrium internuclear distance
and dissociation energy of the ground electronic state
[11–13]. The growth of computing power made possi-
ble the calculations of excited electronic states cor-
related with I–III dissociation limits [14–17], X→A
and X→B transition moments, and lifetimes of excited
rovibrational states [18–21].

A brief review of experimental and theoretical stud-
ies published before 1982 is presented in article [8]. Of
the later studies, calculations of potential energy
curves (PEC) for the excited electronic states [22–30],
long-range potentials [31–36], as well as dipole transi-
tion moments and the lifetimes of excited rovibra-
tional states [10, 37, 38] should be mentioned.

The reason for the interest to the excited electronic
states of Na2 are significant differences in their optical
properties and non-uniformity of the vibrational and
rotational energy contributions for the excited rovibra-
tional states assigned to the same observed excited
electronic state [10, 37, 38]. This feature of the mole-
cule can be explained by the resonance (non-station-
arity) nature of the excited rovibrational states, arising
due to their delocalization in neighboring electronic
states. Whereby the non-uniformity of the rovibra-
tional states properties is associated with the complex
behavior of adiabatic potential curves (several minima,
potential barriers, avoided-crossings, etc.) uniting the
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fragments of the covalent and ionic (M+ + M–) diabatic
states [37, 38].

At the moment, 83 adiabatic electronic states of the
Na2 are calculated in the range ~5–40 a.u. (2.6–21.2 Å)

with high accuracy, including the (1–11)  states cor-
relating with dissociation limits below Na+(1S) + Na–(1S)
limit [28, 29, 37]. Despite the large size of the internu-
clear distances range, its left boundary does not allow
the repulsive branches of the adiabatic potential curves
to reach the energy values of the corresponding disso-
ciation energies. The right boundary includes only the
avoided-crossing of (5–6)  states. Unfortunately,
this range is not sufficient for calculating the proper-
ties of the rovibrational states with energies greater
than the avoided-crossing energy of the (5–6)  adi-
abatic potential curves.

This study creates the adiabatic potential energy
curves of (1–11)  states in a larger range of internu-
clear distances than those presented in previous work
[28]. The method of the calculations is presented in
the second part, and the third part contains the
detailed analysis of the results of the article. The con-
clusion suggests the way forward in the further devel-
opment of the theory as well as the main challenges.

2. THE CALCULATION METHOD

Non-empirical (ab initio) studies of the excited
adiabatic electronic states of Na2 were carried out pre-
viously using a multi-configuration self-consistent
field (MC SCF) [16, 20], restricted configuration
interaction (RCI) [15, 17, 22, 23], and full configura-
tion interaction (FCI) methods [24, 28, 37, 38]. All
computational techniques considered Na2 as a two-
electron system: atomic [Na+] cores were frozen in
full-electron atomic orbital bases (AO) [16, 20] or
replaced by effective core pseudopotentials (ECP) [15,
17, 22–24, 28, 37, 38].

The non-empirical pseudopotential created by
Durand and Barthelat was the most successful of the
proposed ECPs [39]. Its incorporation with the
(7s6p5d2f)/[6s5p4d2f] Gaussian-type basis set and the
core polarization potential (CPP) [40] made it possi-
ble to achieve better agreement with the experimental
results [28] in comparison with the calculations [23,
24]. For the correct reproduction of the 2F (4f) atomic
state, this basis set was expanded later by diffuse f-type
functions according to the (3f)/[2f] contraction
scheme [41, 42]. In this form, the AO basis set with the
same parametrization of the ECP/CPP potentials was
used in the excited states calculations of NaH [43],
LiNa [44, 45], NaCs [46], NaAr [41], and LiNa+ mol-
ecules [42, 47]. The two other AO bases sets con-
structed from the AO set [28] were used to calculate
the electric dipole moments of heteronuclear alkali
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metal dimers [48] and in modeling the interaction of
Na2 with argon clusters [30].

The calculations of the excited 1.3Σ+ states of NaH
molecule were performed using the non-empirical
ECP [49, 50] with the CPP potential [51, 52] and the
valence AO basis [7s6p3d1f] [53] for the Na atom. This
approach provides the reproduction of the sodium 3s–5s
excitation energies with a deviation from the subse-
quent experimental values about ~10 cm–1, but it loses
significant accuracy of the NaH ground state descrip-
tion in comparison with the above mentioned combi-
nation of ECP/CPP potentials [41, 42].

The results of the adiabatic electronic states calcu-
lations of Na2 and NaH molecules suggest that the
best agreement with experimental data is achieved by
pseudopotential and AO basis [42]. However, for a
Na2 molecule at internuclear distances less than 2.4 Å
(~4.5 a.u.), the minimal eigenvalue of the AO’s over-
lap matrix is less than 10–6, which indicates the
appearance of a computational linear dependence.
When the most diffuse p-type function with the expo-
nent αp = 0.0023 is excluded from the AO set, the min-
imal eigenvalue of the overlap matrix increases
approximately three times, but the accuracy of the
sodium 2P (3p–5p) states calculations decreases. This
problem can be solved by reoptimizing several diffuse
p-type functions, remembering that the relations of
their exponents are dangerously close (~2.49–2.52)
and the optimization should lead to a computational
linear dependence with a high probability. In this situ-
ation it is most reasonable to reoptimize the AO basis
set completely.

The calculations were performed with the Na
effective core pseudopotential [39], supplemented by
(7s6p5d4f)/[7s6p5d4f] AO basis set (Table 1). The
core-valence electron correlation was taken into
account using the core polarization potential with αs =
0.9947, ρs = 0.9605 a.u. [51, 52]. The sodium AO set
optimization was started from the total energy mini-
mization using the four s-type Gaussian functions,
and then the exponents of the remaining functions
were optimized in order to better reproduce the ener-
gies of the excited 3p–4f atomic states. Finally, the
maximum deviation from the experimental excitation
energies is about 11 cm–1 for the 2D (4d) state (Table 2).
As in previous works [24, 28, 37, 38], the two-electron
wave function of the Na2 molecule was constructed in
full configuration interaction approach (FCI). All cal-
culations were performed with the MOLPRO program
package [54].

To evaluate the parameters of the avoided-cross-
ings between the adiabatic states, the ionic diabatic
potential curve correlating with the Na+ + Na– disso-
ciation limit was constructed [29]. The sodium ioniza-
tion potential of 41449.45 cm–1 [55], electron affinity
of 4419.32 cm–1 [56] and polarizabilities α(Na+) =
0.998033 a.u. [57], α(Na–) = 1090.2 a.u. [58], which
F PHYSICAL CHEMISTRY B  Vol. 14  No. 2  2020
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Table 1. AO basis set for sodium

AO Exponent

s 2.662241, 0.853282, 0.273488, 0.087656, 0.028095, 0.009492, 0.002746

p 1.048871, 0.325736, 0.106338, 0.031416, 0.006500, 0.002500

d 0.314937, 0.065639, 0.022201, 0.009123, 0.003435

f 0.053883, 0.016108, 0.005857, 0.002130

Table 2. Excitation energies of the sodium atom (cm–1)

Eexc is the experimental excitation energy [55], ΔEexc – difference between the experimental and calculated excitation energy. 
a) ECP calculations (Method A);
b) present work.

Electronic state Eexc

ΔEexc

[28]a  [53]  [41]  [43, 47] calculationb

2S(3s) 0 0 0 0 0 0
2P(3p) 16968 +1 +11 +1 +1 +7
2S(4s) 25740 –19 +9 –2 –2 –9
2D(3d) 29173 +1 –536 0 0 +1
2P(4p) 30271 +3 +8 –1 –1 –1
2S(5s) 33201 –10 +8 –6 –5 –8
2D(4d) 34549 –7 – –13 –13 –11
2F(4f) 34587 –16 – – –25 –7
2P(5p) 35042 –13 – –14 – –40
1S0(2p6) 41450 +1 0 0 0 –1
are in a good agreement with theoretical and experi-
mental estimates [59, 60], were used to parametrize
this curve.

3. RESULTS AND DISCUSSION

The combination of the ECP and CPP potentials
with the [7s6p5d4f] sodium AO basis set allows to con-
struct adiabatic potential curves of (1–11)  states in
the range of internuclear distances of 1.7–50 Å (Fig. 1).
Lowering the left interval boundary by 0.9 Å with
respect to [28] made it possible for the repulsive
branches of the potential curves to reach the energies
exceeding the (3s + 5p) dissociation limit energy. The
value of 50 Å for the right border of internuclear dis-
tances interval was adequate to detect the avoided-
crossing of (10–11)  states (Fig. 1). It was shown
that the values of the electronic terms (Te) and disso-

ciation energies of (De) (1–6)  states are in better
agreement with the experimental ones than the results
of the previous calculations [28]. The calculated values
of the equilibrium internuclear distances (Re) were
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smaller than the experimental ones by ~0.01 Å. A sig-
nificant error in the calculated Re values is most likely
a consequence of the adiabatic approach, which does
not take into account non-adiabatic and relativistic
effects. Only the experimental Te = 34587.58,
34976.59 cm–1 values are known for the higher lying

(7–8)  states [61], which are in satisfactory agree-
ment with the calculated terms of these states. For

states (9–11) , the experimental Te and De values
are absent and the calculated ones diverge by 600–
2000 cm–1 (Table 3).

In addition to molecular constants, the parameters
of avoided-crossings of the adiabatic potential curves

were calculated similarly to [65]. For (1–6)  states
the crossing point positions (Rc) turned out on 0.01–
0.02 Å larger than the positions predicted for the Ryd-
berg–Klein–Rees (RKR) potentials. For the same
electronic states the crossing energy (Ec(Rc)) and the
width (ΔE(Rc)) values differ slightly from the experi-
mental ones by 30–60 cm–1 (Table 4).
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Fig. 1. Adiabatic electronic (4–11)  states of Na2 in the range 1.7–20.5 Å (a) and 13–50 Å (b). The dashed lines denote the

ground state of the Na2 ion (h) and the empirical diabatic ionic curve (d), and the solid lines indicate  state of Na2. The num-

bering of  state curves corresponds to the nomenclature notation. The reference point of the energy scale is the position of the
minimum energy of the ground electronic state (cm–1).
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The avoided-crossing regions in a system of (6–
11)  states are localized at small intervals of internu-
clear distances (~0.1–0.5 Å) and have small widths
(~0.05–9 cm–1). These features indicate that the cal-
culations of the properties of excited rovibrational
states require taking into account the non-adiabatic
couplings. This problem can be solved by the transfor-
mation to the basis of quasidiabatic states with the
subsequent solution for a system of coupled equations
[69]. Because of the spatial localization of the
avoided-crossings, it is necessary to examine the sta-
bility of the radial non-adiabatic coupling matrix ele-
ments (NACME) calculation (or overlap of adiabatic
wave functions if the variational theory of effective
Hamiltonian applied to construct quasidiabatic states
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[69]) to the choice of the differentiation step size. The
NACME calculations were performed with the two
finite-difference approximations for the first deriva-
tives of the electronic wave function at R(Na–Na) =
11.25 Å. In the first approximation the derivative was
replaced by an expression for the two-point right esti-
mation (Method A). In the second, it was replaced by
a two-point central difference (Method B). It was found
that the differentiation step of 0.0001–0.000025 a.u. suf-
ficient to calculate NACME values with an accuracy
of five significant digits (Table 5). These results allow
to conclude that the adiabatic (6–11)  states can be
included in a system of coupled equations for the
nuclei motion after the transformation to the quasidi-
abatic states basis set.
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Table 3. Molecular constants of the lowest electronic  states

Equilibrium internuclear distances Re are presented in Å, electronic terms Te and dissociation energies De – in cm–1;
(а) reference [28]; presented data were obtained for 1–8  states by means of ECP/CPP calculations (Method A) and for other states –
by model potential calculations (Method B); 
(b) (3s+3d) dissociation energy was taken from reference [65];
(c) the dissociation energy estimated for the internuclear distance 95 Å;
(d) PW – present work.

State Limit
Experiment Theory

Re Te De source Re Te De source

1 3s + 3s 3.080 0 6022  [62] 3.085 0 5892  [28]a

3.069 0 5987 PW

2 3s + 3p 4.450 19338 3658  [63] 4.445 19349 3509  [28]

4.446 19325 3623 PW

3 3s + 4s 3.563 25692 6071  [63] 3.556 25615 6035  [28]

3.569 25692 6070  [64, 65] 3.551 25662 6075 PW

4 3s + 3d 4.073  [65] 4.069 28240 6825  [28]

4.074 28327 6868b  [66] 4.061 28277 6883 PW

5 3s + 4p 3.638 31770 4525  [67] 3.625 31700 4464  [28]

3.626 31737 4522 PW

6 3s + 5s 3.735 32563 6660  [36, 68] 3.710 32460 6643  [28]

3.698 32506 6691 PW

7 3p + 3p 34587  [61] 3.625 34572 5253  [28]

3.614 34631 5271 PW

8 3p + 3p 34977  [61] 3.625 35025 4801  [28]

3.604 34876 5026 PW

9 3s + 4d 3.598 34724 5539  [28]

3.677 36176 4372 PW

10 3s + 4f 3.577 35900 4416  [28]

3.612 36590 3992 PW

11 3s + 5p 3.577 36063 4693  [28]

4.556 38398 2671c PW
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Table 4. Parameters of the avoided-crossings of the adiabatic  electronic states

Notations are: n—is the number of the lowest adiabatic state (n ), Rc—internuclear distance corresponding the minimal energy dif-
ference between avoided-crossed adiabatic electronic states (Å), ΔE(Rc)—the minimal energy difference between the avoided-crossed
adiabatic electronic states (cm–1), Ec(Rc)—energy of the avoided-crossing center (cm–1), RLR–m—the modified Le Roy radius (Å),
Rd—the left asymptotic boundary in according to the estimation on the energy of the ionic diabatic state (Å). The minimum energy of
the ground electronic state corresponds the zero energy (cm–1);
(a) obtained for the RKR-potentials, the references are the same as in Table 3;
(b) present calculations;
(c) obtained for the quantum defect from reference [71].

n
Experimenta Calculationb

RLR–m
c Rd

Rc ΔE(Rc) Ec(Rc) Rc ΔE(Rc) Ec(Rc)

1 5.289 14989.2 12441.2 5.282 15007.5 12412.6 9.2 –
2 7.557 5001.8 25459.1 7.529 5018.1 25400.7 13.6 7.1
3 11.259 1383.3 32038.4 11.240 1323.1 31977.1 16.5 10.9
4 15.457 414.8 35253.9 15.434 419.8 35208.5 19.4 15.1
5 17.633 425.5 36369.0 17.640 361.2 36305.1 25.5 17.5
6 – – – 30.429 9.223 39197.9 27.0 30.4
7 – – – 37.255 0.399 39901.9 18.0 37.6
8 – – – 37.256 0.223 39902.3 18.0 37.6
9 – – – 46.931 0.070 40547.7 34.2 46.9

10 – – – 47.581 0.046 40581.6 29.4 47.6
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Table 5. Non-adiabatic coupling matrix elements calculated for internuclear distance R(Na–Na) =11.25 Å

Method A is two-point right estimation, method B—central difference. Notation Anm corresponds to matrix element

, where ψn is the wavefunction of the adiabatic electronic state , R – internuclear distance (all values are in
atomic units).

δR
A B

A21 A32 A43 A21 A32 A43

0.004 –0.134020 –0.050170 –0.207886 –0.134054 –0.049966 –0.207273
0.002 –0.134124 –0.049733 –0.206240 –0.134127 –0.049736 –0.206247
0.001 –0.134126 –0.049735 –0.206244 –0.134127 –0.049736 –0.206247
0.0005 –0.134127 –0.049736 –0.206245 –0.134127 –0.049736 –0.206247
0.00025 –0.134127 –0.049736 –0.206246 –0.134127 –0.049736 –0.206247

nm n mA d dR= ψ ψ 1
gn +Σ
At large internuclear distances, an ab initio or RKR
potentials can be extended by long-range (asymptotic)
potentials, which form depends on the nature of the
dissociating system. As it was shown for (3–5)
states of Na2 the left boundary of the asymptotic
region can be estimated using the modified Le Roy
radius (RLR–m) [7, 70]. Comparing the RLR–m and Rc
values you can to see that the condition Rc > RLR–m is

fulfilled for the avoided-crossings of (6–7)  and
higher states, i.e., the RLR–m radius shifts the left
asymptotic boundary to the smaller internuclear dis-
tances (Table 4). A more reasonable estimation can be
obtained if the left asymptotic boundary considered as
a point on the ionic diabatic curve with the energy
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equal to the dissociation energy of the electronic state
(Table 4).

4. CONCLUSIONS
A new basis of valence atomic orbitals made it pos-

sible to refine the properties of the adiabatic electronic
(1–11)  states in a wide range of internuclear dis-
tances, including the vicinities of the avoided crossings.
It was found that for 6  (3s + 5p limit) and for higher
electronic states, the use of the modified Le Roy
radius with a view to estimate the left asymptotic
boundary leads to errors. It was shown that the matrix
elements of the radial non-adiabatic coupling can be
calculated with a high accuracy. In future, it gives a
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possibility to transform the adiabatic basis set to a qua-
sidiabatic one.

The findings can help to calculate the cross section
of the quenching process in the collision of Rydberg
sodium atoms. In future, the similar calculations may
be made for systems containing nitrogen and oxygen
atoms. The cross sections and rate constants of the
main processes that determine the parameters of a
nonequilibrium atmospheric plasma strongly depend
on the density of the neutral species [72–75].
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