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Abstract—Autonomous (temporal) invariants of nonlinear chemical reactions between two reagents are
determined. For dynamic models of such reactions, analytical solutions exist that allow exact invariants to be
found. Such invariants are ratios that connect non-equilibrium values of reagent concentrations, measured in
two experiments with different initial conditions (dual experiments). These ratios remain strictly constant
throughout the reaction. The relations obtained in this paper were applied to the study of the nonstationary
properties of one-, two-, and three-stage nonlinear reactions proceeding in a closed system with the kinetic
law of mass action. The invariant curves found for these reactions are compared with the curves of change in
the concentrations of reagents over the entire transition process. It is shown that the dependences of the
invariants on time remain strictly constant (have zero order), while the reagent concentrations undergo expo-
nential changes during the transition process. The results obtained expand the understanding of the charac-
teristics of nonlinear chemical reactions and can be used to solve inverse problems of unsteady chemical
kinetics and modeling chemical reactors of ideal mixing under isothermal conditions.
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INTRODUCTION
The determination of the exact autonomous (time-

independent) kinetic invariants of chemical reactions
is one an urgent problem in nonstationary chemical
kinetics. Currently, this problem has been solved only
for a few linear reactions. The dual method, intro-
duced by G.S. Yablonsky et al. [1–8], was used for this
problem. This method is based on the analysis of two
non-equilibrium experiments with inverse initial
boundary (thermodynamic) conditions; it is used as
the theoretical basis [3] for the experimental methods
of the non-equilibrium kinetics and chemical reactors
construction, such as the technology of temporal anal-
ysis of products (TAP) [9].

The new results achieved in this field of the study of
non-equilibrium chemical kinetics are presented in
studies [10–16], where the multimethod that general-
izes and expands the possibilities of the dual method
for the application to the nonlinear dynamic systems
and chemical reactions was introduced. This multi-
method allows estimating the approximate autono-
mous invariants (quasi-invariants) of the nonlinear
systems according to the results of two (or more) non-
equilibrium initial conditions (not necessarily the
boundary ones). Quasi-invariants are the combina-
tions of the non-linear concentrations of the reagents

(temperatures) that remain almost constant over the
whole course of the reaction.

The search for new non-equilibrium characteristics
of the nonlinear reactions attracts interest. Let us
complete such a study and find analytical solutions for
the exact autonomous invariants of the nonlinear
chemical reactions between two reagents.

THEORETICAL CHAPTER

Let us examine the general formula of a chemical
reaction between two reagents (A and B) that passes
according to stages that can be described as

(1)

where a±i ≥ 0, b±i ≥ 0 (a±ib±i ≠ 0) are the stoichiometric
coefficients of the reagents A and B, participating in
the ith step. The dynamics of this reaction in a closed
gradient-free isothermal reactor are described by the
ordinary differential Eqs. (ODE) in terms of the law of
mass action:

(2)

(3)

A B A B, 1, , ;i i i ia b a b i s− −+ = + = …

' , , , ,( )( ) ( )i i i i i iA a a r r f k k A B− − −= − − ≡
' , , , ,( )( ) ( )i i i i i iB b b r r g k k A B− − −= − − ≡
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where A and B are the concentrations of the reagents A
and B (molar fractions), respectively; ri = kiAaiBbi and
r−i = k−iAa − iBb − i are the rates of the reaction steps in
the forward and inverse directions (1/s); and ki, k−i are
rate constants for the corresponding steps (1/s). Let us
set initial conditions (IC) using the expressions

(4)

The coordinates of the equilibria A∞, B∞ for reac-
tion (1) are determined using the conditions

(5)

A single stable solution [17–25] exists in the closed
systems of the equilibrium Eq. (5); nonstationary con-
servation law (trivial exact autonomous invariant) is
fulfilled:

(6)

According to Eq. (6), Eq. (7) sets the correlation
between the stoichiometric coefficients:

(7)

Equations (6) and (7) mean that the Eqs. (2) and (3)
depend on each other; the system (2), (3) is equivalent
to the heterogeneous autonomous ODE:

(8)
where a = a(ki, k−i, A0, B0) is the vector of parameters.

In case of monomolecular steps, Eq. (8) is
expressed as

(9)
where a ≠ 0, b are the parameters. The general solu-
tion for this linear ODE is

(10)
where A∞ = −b/a according to (5). Let us use the gen-
eralized method for the calculation of nonlinear
quasi-invariants [16] to Eq. (10). Let us set the IC of
A01 ≠ A02, introduce convenient designations, and
determine the invariant

(11)

It is clear that K(t) does not depend on time,
although it does depend on the nonequilibrium con-
centrations of reagents, rate constants of the reaction
steps and IC; this means that Eq. (11) is an exact
autonomous invariant. Let us call the IC pairs A01 = 1,
B01 = 0 and A01 = 0, B01 = 1 thermodynamic, meaning
that they correspond to the inverse reactions. The
Eqs. (9)–(11) can simulate only one inverse reaction:
A = B.

In case of bimolecular steps the Eq. (8) is trans-
formed into:

(12)
where a, b, c ≠ 0 are the parameters. The general solu-
tion of this ODE can be expressed as:

(13)

where D = (4bc − a2)1/2. According to (5), the equilibria are
determined by the equation A∞ = [–a ± (a2 – 4bc)1/2]/2с.
These equilibria are real at a2 > 4bc, i.e. when D = i|D|
is the imaginary number (i is the imaginary unit,
i2 = −1; |D| is the modulus of a number) and
tan((Dt/2) + arctan((a + 2A0c)/D)) is the complex
number. The eigenvalue λ = ∂A'/∂A = 2сA + a is equal
to λ1, 2 = ±(a2 − 4bc)1/2 in two equilibria, i.e., only the
smaller (−) equilibrium is stable [26]. This equilibrium
is physical (0 < A∞ < 1) at

(14)
The equilibria are joint at a2 = 4bc; their stability
can not be determined under a linear approximation

(λ1, 2 = 0). The equilibria become complex (nonphysi-
cal) at a2 < 4bc.

Let us use again the generalized dual method [16].
Let us solve the Cauchy problem twice and put the
solution (13) and (14) for the IC of A01 ≠ A02:

(15)

(16)

Let us solve each of these equations with respect to
time:

Let us subtract the second equation of this system
from the first one, divide the obtained expression by its
right part, introduce the designations, and put down
the result as

(17)

where

( ) ( )0 00 , 0 .A A B B= =

0.f g= =

0 0( ) ( 1) .A t B t A B A B∞ ∞+ = + = + =

) ( .( )i i i ia a b b− −− = −

( )' , ,A f A= a

' ,A aA b= +

( ) 0( ex) ( )p ,A t A A A at∞ ∞= + − −

( ) [ ] [ ]1 02 2 01 02 01( ) 1.( ) ( )K t A A A A A A A A A∞ ∞ ∞≡ − − − − =

2' ,A cA aA b= + +
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tan 2
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Fig. 1. Solutions of two Cauchy problems and exact invari-
ant for reaction (1.1) at n = 2, k1 = 4, k−1 = 1, A01 = 1,
A02 = 0: (1) A1(t); (2) A2(t); (3) K(t).
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(18)

According to (17) and (18), K(t) depends on the non-
equilibrium concentration of reagents, rate constants
of reaction steps and IC but does not depend on time,
i.e., ratio (17) is an exact nonlinear autonomous
invariant. This invariant is expressed using the product
of two imaginary numbers: imaginary unit (i) and arc-
hyperbolic tangent (arth), so its value is always real.
The ratios (12)–(18) can simulate six single- and two-
stage bimolecular reactions, including the A = B, 2A = 2,
and A + B = 2B steps.

The system (2), (3) is transformed into the follow-
ing equation for the presence of termolecular reac-
tion steps 3A = 3B, A + 2B = 3B, 2A + B = 3A, and
A + 2B = B + 2A:

(19)

The general solution for (19) is absent. Exact invari-
ants of such reactions can be determined only for
the particular (see Eqs. (1.7) and (1.8) below). The
ratios (9)–(19) simulate 24 mechanisms of single-,
two- and three-step mono-, bi-, and termolecular
reactions. Numerous exact invariants corresponding
to the different dual experiments exist for each of
them. These invariants are the additional non-equilib-
rium characteristic of the mechanism of the studied
reaction that can be used for its reconstruction. Let us
examine the examples.

RESULTS AND DISCUSSION
Example 1. Let us determine the exact invariants of

the reaction:

(1.1)
The reaction of butylene isomerization t-C4H8 =

c-C4H8 is an example; it passes linearly if n = 1 [5] or
nonlinearly if n > 1. If n = 1, then this reaction is
described by the equation of the (9) type:

(1.2)

where a = −(k−1 + k1) < 0, b = k−1 > 0. If k1 = 4, k−1 = 1,
then a = −5, b = 1, A∞ = 1/5. Let us select, for exam-
ple, thermodynamic IC of A01 = 1, A02 = 0, then the
Eq. (11) can be put down as:

(1.3)
The ratio (1.3) corresponds to the horizontal line

on the plot of K(t) dependence; it is a linear autono-
mous invariant.

( )( ) ( )( )
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01
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02
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Dz a cA D i a cA
z a cA D i a cA D

z a cA D
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If n = 2, then reaction (1.1) is described by the
Eq. (12):

(1.4)

where c = k−1 − k1 ≠ 0 at k1 ≠ k−1, a = −2k−1 < 0, b =

 > 0. The conditions required for equilibrium (14)
being physical are fulfilled at, for example, k1 = 4,
k−1 = 1. Then a = −2, b = 1, c = −3, a2 − 4bc = 16,
A∞ = 1/3, D = (−16)1/2. Let us select thermodynamic
IC of A01 = 1, A02 = 0, and the exact invariant (17) and
(18) is expressed as:

(1.5)

where

The invariant (1.5) is given in Fig. 1.
Figure 1 shows that K(t) dependence is a horizontal

line, i. e. it does not depend on time, therefore, the
Eq. (1.5) is an exact autonomous invariant.

If n = 3 then reaction (1.1) is described by the equa-
tion:

(1.6)

The general solution of (1.6) can be obtained only for
the irreversible case of k−1 = 0:

(1.7)

2 2
1 1 1 ,(' )A k A k A−= − + −

2
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Fig. 2. Solutions of two Cauchy problems and exact invari-
ant for reaction (2.1) at k1 = 4, k−1 = 1, k2 = 1, k−2 = 0.5,
A01 = 0.2, A02 = 0.8: (1) A1(t); (2) A2(t); (3) K(t).
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According to [14–16], the sought invariant for this
solution is expressed as:

(1.8)

Here, k(t) also does not depend on time; it is an exact
autonomous nonlinear invariant (as it was for (1.3)
and (1.5)).

Example 2. In [4] the method of boundary dual
experiment (using “thermodynamic” IC) was used to
examine the two-step reaction:

(2.1)

Only approximate invariant was found for this reac-
tion under the detailed balance supposition. The
scheme (2.1) for butylene isomerization is going to be
put down as: t-C4H8 = c-C4H8 and 2с-C4H8 = 2t-C4H8.
Let us demonstrate that the given above ratios allow
estimating an exact autonomous invariant for this reac-
tion without using the detailed balance hypothesis.

Reaction (2.1) is described by the nonlinear
Eq. (12):

(2.2)

where c = 2(k2 − k−2) ≠ 0 at k2 ≠ k−2, a = −(k1 + k−1 +
4k2) < 0, b = k−1 + 2k2 > 0. The conditions required for
the equilibrium (14) being physical are fulfilled at, e. g.
k1 = 4, k−1 = 1, k2 = 1, k−2 = 0.5. Then a = −9, b = 3,
c = 1, a2 − 4bc = 69, A∞ ≈ 0.35, D = (−69)1/2. The
exact invariant (17) and (18) for reaction (2.1) is
expressed as:

(2.3)

where

( ) ( )2 2 2 2
1 2 01 021 1 1 1 1) .(K t A A A A≡ − − =

= =A B, 2B 2A.

2 2
1 1 2 2' 1 2 1 2( ) ,) (A k A k A k A k A− −= − + − + − −

1 2 01 02( ) ( ) ( 1,)K t z z z z≡ − − =
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Invariant (2.3) is shown in Fig. 2.
Example 3. Let us examine a three-step autocata-

lytic reaction
(3.1)

In case of butylene isomerization it is expressed as:
t-C4H8 = c-C4H8, 2с-C4H8 = 2t-C4H8, t-C4H8 +
c-C4H8 = 2c-C4H8. Reaction (3.1) is also described by
the nonlinear ODE of (12) type:

(3.2)

where

The conditions for the equilibrium (14) being physical
are fulfilled at, e.g. k1 = 4, k−1 = 1, k2 = 1, k−2 = 1/2,
k3 = 1, k−3 = 1. Then a = −12, b = 4, c = 3, a2 − 4bc = 96,
A∞ ≈ 0.37, D = (−96)1/2. The exact invariant (17) for
reaction (3.1) is expressed as:

(3.3)

where

The invariant (3.3) is shown in Fig. 3.
Example 4. Let us discuss, how invariants can be

used to solve the inverse problems of chemical kinetics.
Let us suppose that two experimental curves of the
dependences A1exp(t) and A2exp(t) were obtained by the
examination of reaction (1.1) using the dual method at
the IC of A01 = 1 and A02 = 0.5 (see Table 1). Let us
determine the invariants for these IC, calculate their
values at different values of n, and compare them to
the theoretical values of the invariants (1.3), (1.5), and
(1.8), i.e., to the unit. If n = 1, then the invariant (1.3)
is expressed as:

(4.1)

If n = 2, then the invariant (1.5) is expressed as:

(4.2)
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Fig. 3. Solutions of two Cauchy problems and exact invari-
ant for reaction (3.1) at k1 = 4, k−1 = 1, k2 = 1, k−2 = 1/2,
k3 = 1, k−3 = 1, A01 = 0.3, A02 = 0: (1) A1(t); (2) A2(t); (3) K(t).
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If n = 3, then the invariant (1.8) is expressed as:

(4.3)

The results of the calculations using the formulas (4.1)–
(4.3) are given in Table 1.

The analysis showed that the data given in Table 1
accord equally with two mechanisms of reaction (1.1):
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Table 1. Invariants of the reaction nA = nB

t A1exp A2exp K1 K2 K3

0 1.00 0.50 1.00 1.00 1.00
0.1 0.72 0.44 1.36 1.01 1.08
0.2 0.57 0.4 1.49 1.05 1.06
0.3 0.48 0.38 1.60 0.98 0.86
0.4 0.43 0.36 1.59 1.13 0.77
0.5 0.40 0.35 1.60 1.23 0.64
0.6 0.38 0.35 1.67 0.92 0.41
0.7 0.35 0.34 1.67 0.83 0.16
0.8 0.35 0.34 1.67 0.83 0.16
0.9 0.35 0.34 1.67 0.83 0.16
1.0 0.34 0.34 1.67 0.83 0.16

Kav 1.54 0.97 0.59
bimolecular and termolecular. However, the average
value of the invariants Kav is closer to the theoretical
value (unit) in case of a bimolecular mechanism,
therefore one can consider it the most probable.

CONCLUSIONS
In this study, the analytical formulas for the deter-

mination of the exact autonomous invariants of the
chemical reactions passing in the closed isothermal
systems between two reagents in terms of the law of
mass action were derived. The found ratios estimate
the correlation between the non-equilibrium values of
reagents concentrations measured in two experiments
with different initial conditions (not necessarily the
boundary ones) and remain strictly constant over the
whole reaction. These ratios were applied for the study
of the non-equilibrium properties of 24 types of mech-
anisms of mono-, bi-, and termolecular single, two-,
and three-step reactions. The invariant curves deter-
mined for these reactions were compared to the curve
of concentration change during the whole transition
process. The obtained results expand the concept of
non-equilibrium characteristics of the nonlinear
chemical reactions; they can be used for the solution
of the inverse problems of chemical kinetics and mod-
eling of chemical reactions of ideal mixing under
closed isothermal conditions.
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