CHEMICAL PHYSICS OF POLYMER MATERIALS

New Cocatalyst for Alkene Polymerization Reactions with Transition Metal Catalysts

L. A. Rishina^{a, *}, Y. V. Kissin^b, S. Ch. Gagieva^c, and S. S. Lalayan^a

^aSemenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, 117977 Russia

^bRutgers, The State University of New Jersey, Department of Chemistry and Chemical Biology, NJ, USA

^cMoscow State University, Moscow, 119991 Russia

*e-mail: rishina@polymer.chph.ras.ru

Received February 20, 2019; revised February 28, 2019; accepted March 20, 2019

Abstract—The effect of a cocatalyst in alkene homo- and copolymerizations with transition metal catalysts of different types was studied. The results of studies of polymerizations of ethylene, propylene, and higher linear 1-alkenes and copolymerizations of ethylene with linear 1-alkenes using catalysts of different types in combination with a binary cocatalyst $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ at [Al]:[Mg]>2.5 were summarized. The traditional Ziegler—Natta catalysts ($TiCl_4$, $Ti(Oi-C_3H_7)_4$, and $TiCl_3$) and titanium postmetallocene complexes with various organic ligands were studied. The binary cocatalyst significantly increased the activity of the traditional catalysts compared with that of $Al(C_2H_5)_2Cl$ and the activity of postmetallocene complexes compared with that of polymethylaluminoxane (MAO). The active centers of these catalytic systems differ in their kinetic parameters, stereospecificity, and copolymerization ability. The efficiency of the $Al(C_3H_5)_2Cl/Mg(C_4H_9)_2$ cocatalyst can be explained by the in situ formation of finely dispersed $MgCl_2$ and immobilization of the cationic active centers on its surface.

Keywords: alkene polymerization, transition metal catalysts, kinetics, molecular mass distribution, gel permeation chromatography, IR and NMR spectroscopy, differential scanning calorimetry, X-ray diffraction analysis

DOI: 10.1134/S1990793119050087

INTRODUCTION

The combinations of AlR₂Cl and MgR'₂ at a molar ratio of [Al]: [Mg] > 2.5 are effective cocatalysts for all types of metal complex catalysts in alkene polymerizations [1]. The present paper summarizes the results of recent studies of polymerizations of ethylene, propylene, and higher linear 1-alkenes and copolymerizations of ethylene with linear 1-alkenes in the presence of various metal complex catalysts in combination with the Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ binary cocatalyst. The traditional TiCl₄, Ti(O*i*-C₃H₇)₄, and TiCl₃ catalysts and titanium postmetallocene (PMC) complexes with various organic ligands were studied. For comparison, we used the conventional activators of metal complex catalysts Al(C₂H₅)₂Cl and polymethylaluminoxane (MAO).

EXPERIMENTAL

Materials

Ethylene and propylene of polymerization degree of purity (99.9 vol %, Moscow oil refinery) were used without further purification. $TiCl_4$, $Ti(Oi-C_3H_7)_4$, and $Al(C_2H_5)_2Cl$ (0.8 M heptane solution) and $Mg(C_4H_9)_2$

(0.5 M heptane solution, Acros) were also used without further purification. Toluene (analytical grade), 1-hexene, and 1-octene were boiled over Na and distilled in an argon flow. 1-Decene was kept over molecular sieves and blown with argon.

Table 1 shows the PMC complexes used in this work. The syntheses of the ligands and complexes were described in [2–4]. Complexes II, III, and V were introduced in the reaction medium in pure form; complexes I and IV were added in the form of suspensions in toluene without isolating the MgCl₂ by-product.

Polymerzations

All polymerizations were performed in a 200 mL steel reactor with a stirrer. Before the experiments, the reactor was evacuated for 1 h at the temperature of experiment. Propylene was polymerized in the mode of the reactor completely filled with the liquid monomer using the procedure described in [5]. In the case of polymerization of ethylene and copolymerization of ethylene with 1-alkenes, the reactor was filled with toluene (or n-heptane) or a mixture of a solvent with 1-alkene; the volume of the liquid phase was 100 mL. Then, $Al(C_2H_5)_2Cl$ and $Mg(C_4H_9)_2$ were added in

Table 1. Titanium postmetallocene complexes

Complex	Formula
Dioxolane complex, I	$[(4R,5R)-2,2-(CH_3)_2-\alpha,\alpha,\alpha',\alpha-tetra-(F_5-phenyl)-1,3-dioxolane-4,4-dimethanol]TiCl_2$
Naphthalate complex, II	1,1'-di-2-naphthalate-bis(iso-propoxy)Ti
Phenoxyimine complex, III	bis-[N-(3,5-t-Bu ₂ -salicylidene)-2,3,5,6-F ₄ -aniline]TiCl ₂
Saligenin complex, IV	$\{2-[\alpha,\alpha-(CF_3)_2-methanolato]-4,6-t-Bu_2-phenolato\}$ TiCl ₂
Quinoline complex, V	{2-[oxalate(diphenyl)methyl]-8-hydroxyquinolinate}TiCl ₂ ···(HO <i>i</i> -C ₃ H ₇)

sequence to the reaction medium. The resulting mixture was saturated with ethylene, and then an ampule with the catalyst was broken inside the reactor. The pressure in the reactor during the experiments was kept constant, compensating for ethylene consumption by feeding from a calibrated vessel. The resulting polymers and copolymers were treated with a mixture of ethanol with HCl (10% solution), then repeatedly washed with water and alcohol, and dried to constant weight.

The activity of the catalysts was evaluated from the polymer yield per mol of Ti (kg/mol Ti). The effective rate constant of polymerization was calculated as $k_{\rm eff} = R_{\rm pol}/(C_{\rm mon}C_{\rm Ti})$ (L/mol Ti min), where $R_{\rm pol}$ is the polymerization rate (M min), and $C_{\rm mon}$ and $C_{\rm Ti}$ are the concentrations of the monomer and Ti compound (M).

Analysis of Polymers

The molecular weight (MW) and MW distribution (MWD) of the polymers were measured by gel permeation chromatography (GPC) in 1,2,4-trichlorobenzene at 135°C on a Waters GPCV-2000 chromatograph with a PL-gel column. The MW was calculated from the universal calibration curve using polystyrene standards.

The procedure for separating the GPC curves into the curves of individual Flory components was described previously [6, 7]. The Flory component is a polymer product produced by one type of active site.

The ¹³C NMR spectra of the 5% polymer solutions in *o*-dichlorobenzene at 99°C were recorded on a Bruker AVANCE III 400 instrument (frequency 100.613 MHz). The signals in the spectra of the copolymers of ethylene with 1-alkenes and polypropylene (PP) were attributed based on published data [8–12]. The contents of 1-alkene in the copolymers and of steric pentads and heptads in PP were determined from the ¹³C NMR spectra of the samples.

The IR spectra of the polymers were recorded on a Perkin-Elmer Fourier spectrometer. The content of 1-alkenes in the copolymers $C_{\rm M}^{\rm copol}$ (mol %) was determined from the ratio of the absorbance of the 1380, 1368, and 722 cm⁻¹ bands (D_{1380}/D_{1368} and D_{1380}/D_{722}) using the calibration curves [13]. The absorbance ratios of the 998, 841, and 973 cm⁻¹ bands (D_{998}/D_{973}

and D_{841}/D_{973}), which characterize the presence of isotactic sequences of propylene units longer than 11-13, 13-15, and 3-5 monomer units in the polymer chain, respectively, were used as the stereoregularity parameters of PP [14, 15].

The polymer melting curves were recorded on a Netzsch DSC-209 F1 DSC analyzer (3–5 mg samples) at a heating rate of 10°C/min. For detailed analysis of the composition and structural inhomogeneities of the polymers, we used the data obtained during the second melting of the samples (heating rate 2°C/min) after slow crystallization. The crystallinity χ of polyethylene (PE), PP, and ethylene copolymers was calculated from the heat of fusion $\Delta H_{\rm f}$ as $(\Delta H_{\rm m}/\Delta H_{\rm f}^{\circ}) \times 100\%$, where $\Delta H_{\rm m}^{\circ}$ for PE and PP is 293 and 167 J/g, respectively.

The XRD patterns of the polymers were recorded on a DRON-2 diffractometer ($Cu(K_\alpha)$ radiation, Ni filter, scan rate 1°(2 θ)/min). The crystallinity of the samples was found from the ratio of the integrated intensity of the crystalline component and the total intensity.

RESULTS AND DISCUSSION

Catalytic Systems Based on $TiCl_4$, $Ti(Oi-C_3H_7)_4$, and $TiCl_3$

Homopolymerization of ethylene and copolymerization of ethylene with 1-hexene. Table 2 presents the main results of the polymerization of ethylene and copolymerization of ethylene with 1-hexene (E/H). Al(C_2H_5)₂Cl and Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ were used as cocatalysts. The use of Al(C_2H_5)₂Cl in combination with Mg(C_4H_9)₂ led to an abrupt activation of these catalysts in all instances. When the Ziegler catalyst TiCl₄-Al(C_2H_5)₂Cl (without Mg(C_4H_9)₂) was used, the yield of PE was 223 kg/mol Ti; in the case of Ti(Oi- C_3H_7)₄, only traces of the polymer were obtained under these conditions. However, the addition of Mg(C_4H_9)₂ at a molar ratio of [Al]: [Mg] ~ 3 led to a sharp increase in the yield of PE to ~1.4–1.5 t/mol Ti.

The kinetics of ethylene polymerization is markedly non-steady-state in both cases: at 50°C, the polymer product mostly forms already within the first 10 min of the reaction. Figure 1 shows the kinetic

 $C_{\rm H}^{
m copol}$ [Ti] $\times 10^5$, [Al]: [Ti], [Al]: [Mg], Yield. $C_{\rm M}^{\rm mon}$, M System mol/mol mol/mol kg/mol Ti mol mol %^b $TiCl_4$ -Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ 0 3.20 400 223 0 0 0.90 330 3.0 1380 0 0.15 0.95 330 3.2 2280 2.1 6.0 0.36 0.84 380 3.2 2130 1.52 0.85 350 3.0 2310 21 $Ti(Oi-C_3H_7)_4-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ 0 2.36 335 0 0 370 3.0 1480 0 0.62 0.60 0.84 320 3.2 840 1.3 0.90 320 0.84 3.2 2430 8.4 0.79 290 1.5 3.0 3010 15.8

Table 2. Copolymerization of ethylene with 1-hexene^a

curves of ethylene polymerization in the presence of $Ti(Oi-C_3H_7)_4$ – $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ and $TiCl_4$ – $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$.

The yield of copolymers was ~2 t/mol Ti h when the $TiCl_4$ – $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ system was used at $50^{\circ}C$ and from 0.8 to ~3 t/mol Ti h in the case of the $Ti(Oiso-C_3H_7)_4$ – $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2)$ system depending on the composition of the monomer mixture. The content of 1-hexene in the copolymers varied from ~1 to ~15–20 mol %. At high 1-hexene concentrations in the presence of these systems, a comonomer effect was observed, namely, an increase in catalyst activity in ethylene polymerizations with 1-alkene additions. This effect is well known for both heterogeneous Ziegler–Natta catalysts and metallocene and PMC catalysts [16–18].

The ability to efficiently copolymerize 1-alkenes with ethylene is an important characteristic of any Ti-based catalyst used for the synthesis of medium- and low-density PE. A comparison of the compositions of the monomer mixture and copolymer made it possible to approximately evaluate the copolymerization constants r_1 in the case of reactions with low 1-hexene contents:


$$r_{\rm l} = k_{\rm E-E}/k_{\rm E-H} \cong (C_{\rm E}/C_{\rm H})^{\rm copol}/(C_{\rm E}/C_{\rm H})^{\rm mon},$$
 (1)

where $k_{\text{E-E}}$ and $k_{\text{E-H}}$ are the rate constants of ethylnene and 1-hexene addition to the growing polymer chain with a terminal ethylene unit >Ti-CH₂-CH₂-polymer.

Ethylene has the highest reactivity in chain propagation reactions compared to all 1-alkenes, and r_1 is always higher than 1. For the reactions catalyzed by $TiCl_4$ and $Ti(Oi-C_3H_7)_4$, r_1 is 16-20 and ~ 60 , respectively.

The ¹³C NMR spectra of PE and E/H copolymers were analyzed; the signals were attributed according to

the data of [9]. It follows from the analysis of the 13 C NMR spectrum of PE that this is a linear polymer: its spectrum contains an intense signal of the $-\text{CH}_2-$ groups at 29.8 ppm and weak signals of the saturated linear terminal groups. The E/H copolymers with $C_{\text{H}}^{\text{copol}} = 1.3, 2.1, \text{ and } 6.0 \text{ mol } \% \text{ mainly consist of long sequences of ethylene monomer units } \sim \text{EEEEEEE} \sim \text{(the signal of } \delta, \delta - \text{CH}_2 \text{ at } 29.8 \text{ ppm)} \text{ and isolated } 1\text{-hexene units} \sim \text{EEEHEEE} \sim \text{(the signals of CH(EHE) at } 38.1 \text{ mppm} \text{ and } 3B_4 \text{ of } \text{CH}_2(\text{EHE}) \text{ at } 29.5 \text{ ppm)}.$

Fig. 1. Kinetic curves of ethylene polymerization for the (\blacktriangle) Ti(Oi-C₃H₇)₄-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ and (\bullet) TiCl₄-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ systems.

^a 50°C, toluene, reaction time 60 min; P_E and C_E are 4.1 atm and 0.41 M, respectively, for Ti(Oi-C₃H₇)₄ and 3.6 atm and 0.35 M for TiCl₄. ^b ¹³C NMR data.

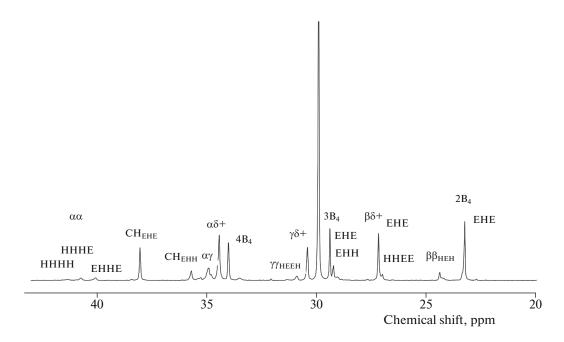


Fig. 2. 13 C NMR spectrum of the E/H copolymer with $C_{\rm H}^{\rm copol} \sim 21$ mol %. The TiCl₄-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system. The position of the CH₂ groups relative to CH is indicated by Greek letters; the position of the CH₂ groups in butyl (B) side groups relative to CH₃ is indicated by numbers.

Only the spectrum of the copolymer with $C_{\rm H}^{\rm copol}$ ~ 21 mol % (Fig. 2) contains weak signals of the ~EEHHE~ sequences (the signal of (CH(EHH) at 35.8 ppm, 3B₄ of CH₂(EHH) at 29.1 ppm, and of α, α -CH₂(EHHE) at 40.2 ppm). The intensity ratio of these signals allows us to roughly determine the product of the copolymerization constants $r_1 r_2$ [19]. For example, the [HHE]: [EHE] and [EHHE]: [EHE] signal ratios for the copolymer with $C_{\rm H}^{\rm copol} \sim 21$ mol %, obtained in the presence of the TiCl₄-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system in *n*-heptane, are 0.52 and 0.14, respectively; for the copolymer of the same composition obtained in toluene, these ratios are 0.45 and 0.15. Using the statistical equations for the contents of various triads and tetrads in the copolymers of ethylene with 1alkenes as functions of $C_{\rm M}^{\rm copol}$ and r_1r_2 [19], it was determined that r_1r_2 is in the range 0.8–1.0. This means that the distribution of monomer units in the chains of the E/H copolymers is mainly statistical.

An increase in the 1-hexene content in the E/P copolymers leads to a decrease in their molecular mass and effective melting temperature $T_{\rm m}$ and also to an abrupt decrease in the heat of melting $\Delta H_{\rm m}$ and crystallinity χ , as typically occurs for copolymerization of ethylene and 1-alkenes in general (Table 3) [18, 19]. According to the GPC data, both PE and E/H copolymers have a wide MWD, which reflects the presence of different types of active centers in the catalysts, which differ in kinetic parameters (Fig. 3a). All these

polymer products are mixtures of components with different MWs. The decomposition of the GPC curves into the Flory components allows us to evaluate the number of types of active centers and the relative amount of the polymer produced by each type of centers. Figure 3b and Table 4 give the examples of separation of the GPC curves of the PE and E/H copolymers into the Flory components obtained in the presence of the $Ti(Oi-C_3H_7)_4$ – $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ system. According to these data, the introduction of 1-hexene into the polymerization medium leads to two effects: a certain decrease in the M_w value of each Flory component and a relative increase in the fraction of active centers producing macromolecules with low MWs (components III and IV).

The presence of various types of active centers suggests that macromolecules can differ not only in the MW characteristics, but also in composition [19]. To verify this assumption, the DSC method was used. It was shown [20] that the position of the maximum on the DSC melting curve and the shape of the melting curve of ethylene-1-alkene copolymers depend on the composition of the copolymers and the degree of their compositional inhomogeneity. The compositionally homogeneous copolymers obtained on singlesite metallocene catalysts have relatively narrow melting curves, and their $T_{\rm m}$ values decrease rapidly with the increasing 1-alkene content in the copolymer. In contrast, the inhomogeneous copolymers synthesized in the presence of multicenter heterogeneous catalysts have wide melting curves (sometimes they consist of

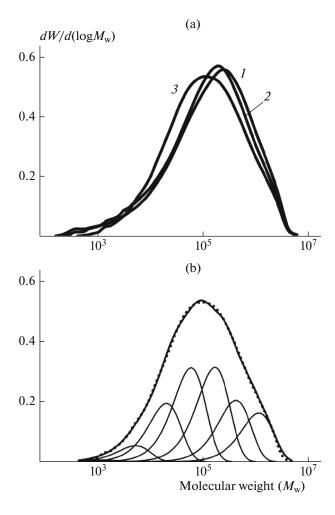
Table 3. Molecular weight and structural characteristics of PE and E/H copolymers

$C_{ m H}^{ m copol},$ mol $\%$	$M_{\rm w} \times 10^{-3}$	$M_{ m w}/M_{ m n}$	T _m , °C ^a	ΔH_{f} , J/g ^a	χ, % ^b			
		TiCl ₄ -Al(C ₂ H ₅)	$_{2}\text{Cl/Mg}(\text{C}_{4}\text{H}_{9})_{2}$					
0			134	142.6	60			
2.1	222.5	8.1	124	99.5	42			
6.0	161.2	7.6	124	57.7	24			
21	154.6	7.5	123	19.0	~8			
	•	$Ti(Oi-C_3H_7)_4$ -Al(C	$_{2}^{2}H_{5})_{2}Cl/Mg(C_{4}H_{9})_{2}$	2	•			
0	446	24	133	190	65			
1.3	400	19	127	125	43			
8.4	354	11	123	44	15			
15.8	142	20	_	16	~6			

^a The heating rate was 2°C/min, the second melting.

Table 4. Separation of the GPC curves of PE and E/H copolymers^a

Flory	$M_{\rm w} \times 10^{-3}$	Content, %	$M_{\rm w} \times 10^{-3}$	Content, %	$M_{\rm w} \times 10^{-3}$	Content, %
component	$C_{ m H}^{ m copo}$	$p_1 = 0$	$C_{\rm H}^{\rm copol} = 1$	1.3 mol %	$C_{\rm H}^{\rm copol} = 8$	8.4 mol %
I	1.8	2.1	1.8	2.0	1.6	0.4
II	7.6	4.3	7.2	5.6	6.7	4.3
III	28	10.8	27	10.4	26	15.6
IV	86	19.1	81	19.1	77	25.0
V	254	29.0	225	29.9	222	25.3
VI	660	20.4	600	20.0	550	16.4
VII	1700	14.3	1600	13.0	1600	13.0
Average values ^b	$M_{\rm w}^{\rm av} = 470000$ $M_{\rm w}/M_n = 24$			418000 $T_n = 22$		363 000 , = 14.5


^a Conditions of polymerization are given in Table 2.

several components), and their $T_{\rm m}$ are relatively weakly dependent on the copolymer composition. This approach allows us to separate any copolymer synthesized in the presence of a multicenter catalyst into two main components: the partially crystalline component with a low 1-alkene content (it can be obtained on one or several types of active centers) and the amorphous component. Figure 4 shows the melting curve of the E/H copolymer with $C_{\rm H}^{\rm copol} = 6.0 \, {\rm mol} \, \%$, obtained in the presence of the TiCl₄-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system, and this curve separated into five components. The parameters of these components are given in Table 5. The crystalline part of this copolymer ($C_{\rm H}^{\rm copol} \sim 3.1 \, {\rm mol} \, \%$) is $\sim 50\%$ of the total polymer product, the rest being a completely amorphous copolymer not detectable by DSC.

Polymerizations of propylene. Table 6 gives the main results of propylene polymerization in the presence of TiCl₄, Ti(Oi-C₃H₇)₄, and δ-TiCl₃ catalysts using Al(C₂H₅)₂Cl and the Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ combination as cocatalysts. As in the cases of ethylene homo- and copolymerization, the use of a binary cocatalyst leads to abrupt activation of these catalysts. The Ti(Oi-C₃H₇)₄-Al(C₂H₅)₂Cl system did not show any activity at all. When the classical Ziegler catalyst TiCl₄-Al(C₂H₅)₂Cl was used, the yield of PP was only ~8 kg/mol Ti. When the Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ combination was used, it increased to ~10 t/mol Ti in both cases. When the binary cocatalyst was used, the yield of PP in the presence of δ-TiCl₃ also increased ~25 times.

^b DSC data.

^b Calculated from $M_{\rm w}$ of the Flory components and their contents.

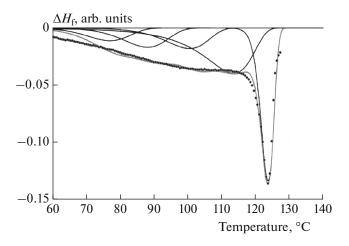


Fig. 3. (a) GPC curves of (1) PE and E/H copolymers with $C_{\rm H}^{\rm copol}=(2)$ 1.3 and (3) 8.4 mol %; (b) separation of the GPC curve of the copolymer with $C_{\rm H}^{\rm copol}=8.4$ mol % into the Flory components; dots: experimental data, lines: calculated data.

All the products are highly molecular, partially crystalline polymers with $T_{\rm m} = 151-153$ °C (Table 7). Fractionation in boiling heptane makes it possible to separate PP into two fractions: a soluble fraction (amorphous polymer) and insoluble fraction partially

Table 5. Parameters of the crystalline components in the E/H copolymer with $C_{\rm H}^{\rm copol} = 6 \text{ mol } \%$

Component	T _m , °C	Content, %	χ, %
DSC-I	123.1	19	50
DSC-II	108.7	32	38
DSC-III	98.2	15	30
DSC-IV	86.3	19	22
DSC-V	75.5	15	16

Fig. 4. Melting curve of the E/H copolymer with $C_{\rm H}^{\rm copol}$ = 6 mol % obtained for the TiCl₄–Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system (dots) and its separation into components.

consisting of a crystalline isotactic polymer. The presence of two fractions suggests that the active centers of the catalysts differ in stereospecificity.

The wide MMD of propylene polymers and their fractions reflects the inhomogeneity of the active centers in the kinetic parameters. Figure 5 shows an example of the GPC curve of the polymer synthesized in the presence of the Ti(Oi-C₃H₇)₄—Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system at 50°C and the curves of its soluble and insoluble fractions. The separation of the GPC curves of the PP fractions into the Flory components showed that each fraction is a mixture of six components with different MMs that correspond to active centers of six types. The average MMs of insoluble fractions are always higher than the MMs of soluble fractions.

Propylene polymers obtained in the presence of $TiCl_4$ and $Ti(Oi-C_3H_7)_4$ with $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ as a cocatalyst are almost completely amorphous and atactic materials; their fractions insoluble in heptane account for only 10-15%.

Figure 6 shows the ¹³C NMR spectra of the fractions of PP synthesized in the presence of the TiCl₄- $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ system at 50°C. The spectrum of the soluble fraction is typical for the spectra of atactic PP [8–10]. A comparison of the spectra of the two fractions in Figs. 6a and 6b shows that the insoluble fraction contains the same signals of stereoirregular sequences in the range 22.1–19.2 ppm and in the same proportions as the soluble fraction. This suggests that the insoluble fraction is a mixture of two sterically different polymers: amorphous atactic and crystalline isotactic polymers. This atactic component has the same structure as the soluble fraction, but higher MM, which explains its low solubility. The spectrum of the crystalline component was isolated by subtracting the spectrum of the soluble fraction from the spectrum of the insoluble one. After this procedure (Fig. 6c), only

Table 6. Propylene polymerization^a

Catalyst	Cocatalyst	[Ti] \times 10 ⁵ , mol	[Al] : [Ti], mol/mol	[Al] : [Mg], mol/mol	Yield, kg/mol Ti
TiCl ₄ ^b	$Al(C_2H_5)_2Cl$	1.20	340	_	~8
TiCl ₄	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.54	440	2.5	10740
$Ti(Oi-C_3H_7)_4$	$Al(C_2H_5)_2Cl$	1.25	326	_	_
$Ti(Oi-C_3H_7)_4$	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.62	353	3.48	9680
δ -TiCl $_3$	$Al(C_2H_5)_2Cl$	5.11	49	_	49
δ -TiCl ₃	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	4.72	60	2.96	1207

^a 50°C, liquid monomer, reaction time 60 min.

Table 7. Properties of PP and its fractions

Sample	Content, %	$M_{ m w}$	$M_{ m w}/M_n$	[<i>mmmm</i>], % ^a	A ₉₉₈ /A ₉₇₃ ^b	$A_{841}/A_{973}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	T _m , °C	ΔH_{f} , J/g	χ, % ^c		
$TiCl_4-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$											
Total polymer		54700	4.8		0.40	0.33	154	12	6		
Insoluble fraction	11	93400	3.6	66	0.80	0.609	153	53.5	32		
	,	Ti	$(Oi-C_3H_7)_2$	$-Al(C_2H_5)$	2Cl/Mg(C	$_{4}H_{9})_{2}$	•				
Total polymer		98400	8.1	34	0.37	0.20					
Insoluble fraction	14	217400	7.5	41	0.80	0.59	158	81.5	49		
Soluble fraction	86	80400	7.8	21	0.30	0.14					

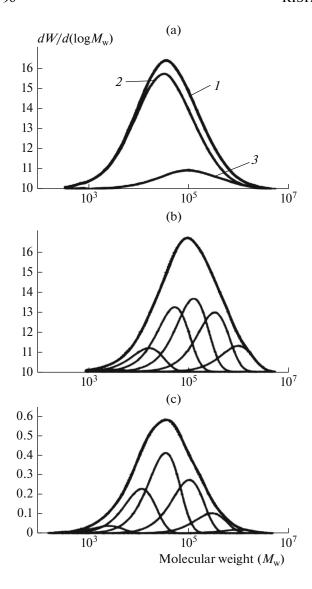
^{a 13}C NMR;

three signals of stereoirregular sequences remained in the spectrum: *mmmr*, *mmrr*, and *mrrm* in a ratio of ~2:2:1 at 21.03, 20.52, and 19.28 ppm. Pentads of this type and in this ratio are characteristic of the chains of predominantly isotactic PP with isolated stereoerrors, i.e., for sequences of the "*mmmmrrmmm*" type. These stereoerrors are typical for PP obtained on heterogeneous Ziegler—Natta catalysts and on *rac*-bis(indenyl)zirconium bridged complexes. We can conclude from these data that the mechanism of stereocontrol of chain growth on the given catalytic systems is enantiomorphic, when each random steric error is corrected in the next act of polymer chain propagation, for example, "DDDDLDDDD."

The content of the crystalline component created by the isospecific sites does not exceed 5-7%. The bulk of the polymer product is atactic PP (over 85% in the soluble fraction and $\sim 50\%$ in the insoluble fraction).

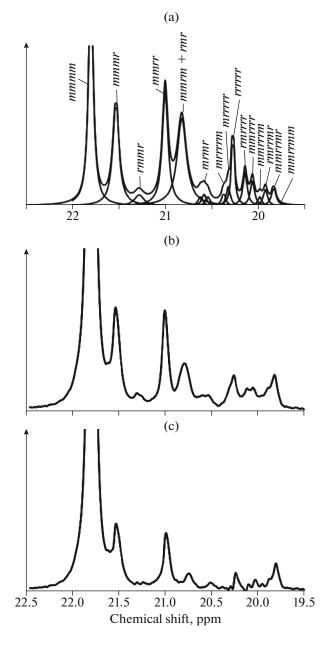
Atactic PP is an important commercial product used for the production of construction adhesives, sealing and caulking compounds, road coatings, and adhesive films. The possibility of selective synthesis of atactic PP using systems based on commonly available

titanium compounds ($TiCl_4$ or $Ti(Oi-C_3H_7)_4$) and $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ binary cocatalyst is of interest from practical viewpoint. The advantages of this system are high activity, low cost, and ease of synthesis. All the components of this system are cheap commercial products soluble in aromatic and aliphatic hydrocarbons.


Catalytic Systems Based on Ti Postmetallocene Complexes

Homo- and copolymerizations of ethylene with 1-alkenes. Table 8 shows the main results of copolymerization of ethylene with 1-alkenes on Ti PMC complexes using the Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ and MAO cocatalysts. The systems with the Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ binary cocatalyst were more active and had higher copolymerization ability than the systems with MAO. Thus, the yield of E/H copolymers was 1.7–4.3 t/mol of Ti for the system IV–Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ containing from 3.5 to ~22 mol % 1-hexene; while the use of MAO in the presence of complex IV gave copolymers with $C_H^{copol} = 0.3$ and ~8–9 mol % in yields of 670–850 kg/mol of Ti.

^b 40°C.


b IR;

c DSC data.

Fig. 5. GPC curves of PP: (a) (1) total polymer, (2) soluble fraction, and (3) insoluble fraction; (b) and (c) separation of the GPC curves of the insoluble and soluble fractions into the Flory components.

The catalytic systems based on the PMC complexes of Ti are kinetically unstable. Their instability is especially pronounced when the Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ binary cocatalyst is used. The effective flow rate constant of ethylene $k_{\rm eff}$ in the presence of system IV–Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ decreased approximately tenfold, from ~38000 to ~3900 L/(mol Ti min) within the first 10 min of the reaction (Fig. 7).

Fig. 6. 13 C NMR spectra (region of the signals of the CH₃ group) of the fractions of PP obtained in the presence of the TiCl₄–Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ system at 40°C: (a) the fraction soluble in boiling heptane; (b) insoluble fraction; and (c) isotactic component.

For copolymers of ethylene and 1-alkenes synthesized in the presence of complexes IV with the binary cocatalyst, the copolymerization constants r_1 were evaluated by Eq. (1):

Monomer pair ethylene/1-hexene r_1 16–32

ethylene/1-octene 41–46

ethylene/1-decene 46-53

Table 8. Copolymerization of ethylene with 1-alkenes on the PMC complexes of Ti with MAO and $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$
cocatalysts ^a

System	$C_{ m M}^{ m mon}, \ { m M}$	C ^{mon} , mol %	[Ti] \times 10 ⁵ , mol	[Al] : [Ti], mol/mol	[Al] : [Mg], mol/mol	Yield, kg/mol Ti	$C_{ m M}^{ m copol}, \ m mol~\%^{ m b}$
			1-Hexene	l			
$IV-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	_	_	0.66	340	3.0	1720	0
	0.24	39	0.66	340	3.0	1666	4.0
	1.6	81	1.02	320	3.4	2843	12.0
	4.4	92	0.75	360	3.2	4266	21.0
IV-MAO	_	_	1.79	410	_	735	0
	0.24	39	2.02	440	_	850	0.3
	1.6	81	2.27	460	_	696	9.0
			1-Octene				
IV-Al(C2H5)2Cl/Mg(C4H9)2	0.26	41	0.62	360	3.2	1774	1.7
	1.7	82	0.77	350	3.2	3545	10.0
$V-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	_	_	1.17	390	3.0	1090	0
	0.32	44.5	1.55	360	3.2	1875	2.6
	0.64	61.5	1.49	380	3.2	1865	5.1
	1.28	76.1	1.47	380	3.2	2040	10.4
			1-Decene	•			
$IV-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.26	41	0.75	360	3.2	1400	1.3
	1.7	82	0.77	350	3.2	3992	9.0
IV-MAO	0.26	41	0.75	360	_	902	0.4
	1.7	82	0.82	330	_	1223	0.7

^a 50°C, toluene, 60 min; P_E and C_E are 3.8 atm and 0.37 M, respectively, for the system IV–Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ and 4 atm and 0.44 M for the system V–Al(C_2H_5)₂Cl/Mg(C_4H_9)₂;

The r_1 value gradually increases with the length of the linear alkyl group in 1-alkene; i.e., the reactivity of 1-alkenes decreases in the series 1-hexene > 1-octene > 1-decene. A similar effect is also known for copolymerization of ethylene with 1-alkenes in the presence of heterogeneous Ziegler—Natta catalysts [21].

All the polymers obtained with PMC complexes of Ti have a wide MMD: the PE and copolymer samples consist of five or six Flory components with different MMs [22]. The content of the most high-molecular components ($M_{\rm w} \sim (2.0-2.2) \times 10^6$) in PE obtained using MAO is significantly higher (~22%) than in the sample synthesized with Al(C₂H₅)₂Cl/Mg(C₄H₉)₂ (~9%). As a result, for the first polymer (~950000), $M_{\rm w}$ is significantly higher than for the second (~530000). The introduction of 1-alkenes in the PE chain always leads to a decrease in its molecular weight (Table 9). The content of various Flory components in copolymers of similar compositions is independent of the type of 1-alkene.

An analysis of the 13 C NMR spectra shows that the active centers of the catalytic systems based on the PMC complexes of Ti and binary cocatalyst have a pronounced tendency toward the creation of alternative copolymers: $r_1r_2 < 1$. The 1-alkene molecules in the copolymers are mainly represented by isolated units in the ~EEEMEEE~ sequences. Unlike the statistical copolymers of the same composition, the copolymers have no MMM triads, and the number of MM diads in them is very small.

Propylene polymerizations. According to Table 10, the replacement of MAO (the standard activator for PMC complexes) by the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ binary cocatalyst led to a significant increase in the activity of these catalysts. In the case of complexes I and IV, the reactor was completely filled with the polymer already in ~10 min after the start of the reaction. The activity of complex III also increased approximately fourfold. Only traces of oligomers were obtained on complex II in the presence of MAO, while

^b ¹³C NMR data.

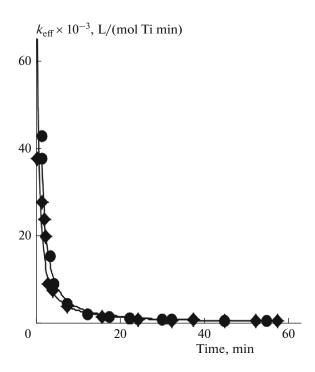


Fig. 7. Kinetic curves of ethylene flow rate for the IV— $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ system in (•) homopolymerization and (•) copolymerization with 1-decene $(C_D^{mon} \sim 1.7 \text{ M})$.

the use of the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ combination led to the formation of a solid high-molecular product.

As in the case of simple titanium catalysts ($TiCl_4$ and $Ti(Oi-C_3H_7)_4$), PP synthesized in the presence of PMC complexes of Ti was a complex mixture of a completely amorphous atactic polymer and a partially crystalline isotactic polymer. However, the content of the fraction insoluble in boiling heptane and the crys-

tallinity in the samples obtained in the presence of PMC complexes were much higher.

According to the data of Table 11, the MW of PP synthesized using the MAO cocatalyst is significantly higher than in the case of the $Al(C_2H_5)_2Cl/MgBu_2$ combination. Thus, M_w of the polymers obtained for the I–MAO and I–Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ systems are 319 000 and 150 000, respectively.

The results of the separation of the GPC curves of the soluble and insoluble PP fractions show that the MWs of the Flory components of each fraction synthesized in the presence of MAO are higher than the MWs of the components of the Flory fractions obtained using the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ combination (Table 12). The content of high molecular components in each fraction is also higher in the case of the use of MAO. As a result, the average MWs of each fraction and the MW of the total polymer are significantly different:

I-MAO:
$$M_{\rm w}$$
 (insol.) = 676500, $M_{\rm w}$ (sol.) = 298200, $M_{\rm w}^{\rm av}$ = 319000;
I-Al(C₂H₅)₂Cl/Mg(C₄H₉)₂: $M_{\rm w}$ (insol.) = 272100, $M_{\rm w}$ (sol.) = 92500, $M_{\rm w}^{\rm av}$ = 150000.

This tendency is characteristic of propylene polymers obtained for all PMC complexes of Ti. In the presence of the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ combination, the stereoregularity of the polymers also changes significantly. Thus, when complex I is used, both the IR parameters of PP stereoregularity and the content of the heptane-insoluble fraction in it increase. The stereoregulating effect of $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ is especially significant when complex III is used. In combination with MAO, an amorphous polymer completely soluble in boiling heptane is obtained on this catalyst. When the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ com-

Table 9. Molecular weight and structural characteristics of copolymers of ethylene and 1-alkenes obtained for complex IV with MAO and $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ cocatalysts

1-Alkene	$C_{ m M}^{ m copol}, \ { m mol}~\%$	$M_{\rm w} \times 10^{-3}$	$M_{ m w}/M_n$	T_{m} , °C	$\Delta H_{ m f},{ m J/g}$	χ, % (XRD/DSC)
		•	MAO co	catalyst	1	
_	0	951	6.2	136.0	172.7	56/59
1-Hexene	9.0	311	8.5	118.6	53.45	21/18
1-Octene	0.2	670	9.2	130.1	142.8	51/49
1-Decene	0.7	660	6.2	128.3	135.2	45/46
		$Al(C_2H_5)$) ₂ Cl/Mg(C ₄ H ₉) ₂ cocata	alyst	!
_	0	531	7.6	131.7	197.0	61/67
1-Hexene	13.0	64	8.4	118.0	36.9	21/13
1-Hexene	~21	74	9.6	118.5	7.4	Amorphous
1-Octene	10.0	70	9.7	118.8	30.1	10/10
1-Decene	8.0	85	10.4	118.6	39.9	25/14

Complex	Cocatalyst	$Ti \times 10^5$, mol	[Al] : [Ti], mol/mol	[Al] : [Mg], mol/mol	Yield, kg/mol Ti
I	MAO	3.5	130	_	1160
I	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	4.3	56	2.5	2000 ^a
II	MAO	22.9	59	_	_
II	$Al(C_2H_5)_2Cl$	22.9	42	_	_
II	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	13.0	26	2.8	254
III	MAO	1.3	1170	_	620
III	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.8	880	3.2	2370
IV	MAO	1.84	219	_	309
IV	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	2.07	154	3.7	3500^{a}
V	$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	1.49	185	3.6	2285

 $\textbf{Table 10.} \ \ Polymerization of propylene on the PMC complexes of Ti with MAO and Al(C_2H_5)_2Cl/Mg(C_4H_9)_2 \ cocatalysts$

bination is used, the partially crystalline isotactic PP with $T_{\rm m}=151^{\circ}{\rm C}$ containing 34% insoluble fraction is obtained. Thus, the properties of the polymer can be substantially varied by using the cocatalyst.

Polymerizations of higher linear 1-alkenes. Table 13 lists the main results of polymerization of three linear 1-alkenes. The experiments were performed in the monomer medium at 2° C. Under these conditions, complex IV was activated not only by $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ and MAO, but also by $Al(C_2H_5)_2Cl$ alone. However, the IV– $Al(C_2H_5)_2Cl$ system had the lowest activity in all instances. The binary cocatalyst was most effective in the polymerizations of 1-octene and 1-hexene, the efficiency of the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ combination and MAO was approximately the same. Like PP obtained on the PMC complexes of Ti, all the polymers of higher 1-alkenes have a medium level of isotacticity and a wide MWD.

Discussion. Chemical Aspects of Alkene Polymerization

Any titanium compound of the TiX_4 type actively reacts with organoaluminum compounds AlR_3 and AlR_2Cl , forming many products that are soluble solid materials [23]. An analysis of the reaction products of $TiCl_4$ and $Al(C_2H_5)_2Cl$ showed that the chemical composition of the precipitate gradually changes from the initial $[TiCl_3C_2H_5]$ to $[TiAl_2Cl_5]$ [24–30]. The valence state of Ti (a mixture of Ti^{IV} , Ti^{III} , and Ti^{II}) and the efficiency of the $TiCl_4$ – $Al(C_2H_5)_2Cl$ catalyst also change depending on the duration of the contact. The reactions between $Ti(OR)_4$ and organoaluminum compounds also give many various products with a very complex chemical composition [31–33].

The interaction in the TiX_4 – AlR_3 and TiX_4 – AlR_2 Cl systems can generally be described by the following reactions:

1. Alkylation of TiX₄:

$$TiX_4 + AlR_3 \text{ (or } AlR_2Cl)$$

$$\rightarrow X_3Ti-R + AlR_2X \text{ (or } AlRXCl).$$
(2)

Reactions (2) are very fast and irreversible [31–34]. At high [Al]: [Ti] ratios, the alkylations of titanium compounds generally continue:

$$X_3\text{Ti-}\mathbf{R} + \text{Al}\mathbf{R}_3 \text{ (or Al}\mathbf{R}_2\text{Cl)}$$

 $\rightarrow X_2\text{Ti}\mathbf{R}_2 + \text{Al}\mathbf{R}_2\text{X (or Al}\mathbf{R}\text{XCl)}.$ (3)

2. In some cases, X_3Ti-R are involved in condensations. If $R = C_2H_5$, the condensation leads to the formation of binuclrear Ti complexes:

$$2X_3Ti-C_2H_5 \rightarrow X_3Ti-CH_2-CH_2-TiX_3 + C_2H_6.$$
 (4)

3. Reduction of organotitanium compounds $X_3Ti^{IV}-R$ and $X_2Ti^{IV}R_2$ with aluminoorganic compounds to $Ti^{III}X_3$ and $X_2Ti^{III}-R$. All the Ti complexes formed in reactions (2)–(4) and reductions generate numerous complexes with one or two AlR_2X or AlRXCl molecules. Some of the soluble binuclear and trinuclear Ti^{III} complexes such as $[TiX_3] \cdot 2AlR_2X$, $[TiX_3]AlR_2X$, and $[X_2Ti-R]AlRXCl$ were characterized in detail [30–33].

The Ti complexes with bidentate and multidentate ligands can be represented by the general formula $LTiCl_2$ or L_2Ti . When these complexes are mixed with the $Al\mathbf{R}_2Cl/Mg\mathbf{R}_2'$ combinations at a ratio of [Al]: [Mg] > 2.5, they are quickly alkylated to LTi(Cl)-R or $LTiR_2$ by the reactions similar to (3).

The efficiency of the AlR_2Cl and MgR'_2 combinations as cocatalysts can be explained by two factors. The first factor is that AlR_2Cl and MgR'_2 quickly react, forming the finely dispersed $MgCl_2$, whose surface has Lewis acidity [1, 2]:

^a Reaction time 10 min.

Table 11. Molecular weight and structural characteristics of PP obtained for PMC complexes of Ti and its fractions

Content, %	$M_{ m w}$	$M_{\rm w}/M_n$	[<i>mmmm</i>], %	A ₉₉₈ /A ₉₇₃ b	A ₈₄₁ /A ₉₇₃ ^b	$T_{\rm m}$, °C °	$\Delta H_{ m f}$, J/g $^{ m c}$	χ, % ^{c, d}
			I–MAO					
	319 000	19.8		0.44	0.32	152	23.9	14/11
24	676000	5.4	58			154	58.2	35/26
76	298000	13						
1	' I-	-Al(C ₂ F	1 ₅) ₂ Cl/Mg($(C_4H_9)_2$	ı	I	I	I
	150000	110		0.48	0.43	152	36.2	21/13
32	272000	104	586			156	66.5	40/33
68	92500	86						
1	' II	-Al(C ₂ H	H ₅) ₂ Cl/Mg	$(C_4H_9)_2$	Į.	<u>I</u>	Į.	Į
	235000	11.0		0.51	0.42	151	32.1	20/15
46	272000	10.4	52.5			153	54.5	32/25
54	108000	13.3						
ı	1	I	II–MAO	Į.	I	l	Į.	I
	174800	3.2	~8	_	_	_	_	_
ļ	' III	$-Al(C_2)$	H ₅) ₂ Cl/Mg	$(C_4H_9)_2$	ı	I	I	1
	83300	3.6	34.4	0.49	0.41	151	17.2	10
34	120000	6.4	49.3			153	40.6	24/20
ı	1	' J	V-MAO	I	ı	I	I	1
25	407300	10.3	36.8	0.45	0.45			10
75	221300			0.14	0.17			~1
·	IV	-Al(C ₂ l	H_5 ₂ Cl/Mg	$(C_4H_9)_2$	•	•	•	•
19	356700	6.8	74.7	0.81	0.62			41/32
81				0.29	0.24			~4
·	V	-Al(C ₂ F	H_5 ₂ Cl/Mg($(C_4H_9)_2$	•	•	•	•
	20400	2.7		0.46	0.37	153	18.8	11
20	420000	7.5	74	0.89	0.63	159	89.7	53
	24 76 32 68 46 54 34 25 75	319 000 24 676 000 76 298 000 I- 150 000 32 272 000 68 92 500 II 235 000 54 108 000 174 800 II 83 300 34 12 0 000 25 40 7 300 75 22 1 300 IV 19 35 6 7 00 81 V 20 4 00	319000 19.8 676000 5.4 76 298000 13 I—Al(C ₂ H 150000 110 32 272000 104 68 92500 86 II—Al(C ₂ H 235000 11.0 46 272000 10.4 54 108000 13.3 III—Al(C ₂ H 83300 3.6 34 120000 6.4 III—Al(C ₂ H 25 407300 10.3 75 221300 IV—Al(C ₂ H 19 356700 6.8 81 V—Al(C ₂ H 20400 2.7 20400 2.7	Content, % M_w M_w/M_n M_w/M	Content, % M_w M_w/M_n M_w/M	Content, % M_w M_w/M_n M_w/M	Content, % M_w M_w/M_n M_w/M	Content, % M_w M_w/M_n M_{\odot}/M_n M_{\odot}/M

a 13C NMR; b IR; c DSC; d XRD.

$$MgR'_2 + 2AlR_2Cl \rightarrow [MgCl_2] + 2AlR_2R'.$$
 (5)

All the cocatalysts used were prepared at a ratio of [Al]: [Mg] > 2.5. Thus, the titanium compound TiX₄ or the complex LTiX2, which were added to the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ mixture at the last stage of catalyst preparation, can react both with an excess of AlR₂Cl and with AlR₂R' formed in reaction (5). When the products X₃Ti^{IV}-R, X₂Ti^{III}-R, and LTi(Cl)-R or their complexes with organoaluminum compounds are adsorbed on the acid surface of MgCl2, they can be

ionized, forming cation centers containing the Ti⁺-C bond:

$$X_{3}\text{Ti-}\mathbf{R} + [\text{MgCl}_{2}]$$

$$\rightarrow [X_{2}\text{Ti}^{+}-\mathbf{R}]_{ads}/[\text{MgCl}_{2}\cdots X]^{-},$$
(6)

$$X_{2}\text{Ti-}\mathbf{R} + [\text{MgCl}_{2}]$$

$$\rightarrow [X\text{Ti}^{+}-\mathbf{R}]_{\text{ads}}/[\text{MgCl}_{2}\cdots X]^{-},$$
(7)

LTi(Cl)-
$$\mathbf{R}$$
 + [MgCl₂]
 \rightarrow [LTi⁺- \mathbf{R}]_{ads}/[MgCl₂···Cl]⁻. (8)

System		I—N	MAO	$I-Al(C_2H_5)_2$	$I-Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ $M_w^{av} = 150000; M_w/M_n = 11$		
		$M_{\rm w}^{\rm av} = 319000$	$M_{\rm w}/M_n = 19.8$	$M_{\rm w}^{\rm av} = 15000$			
sample	Flory component	$M_{ m w}$	content, %	$M_{ m w}$	content, %		
Insoluble fraction	I			9300	4.1		
	II	40800	5.9	32800	17.8		
	III	106300	18.7	92400	30.8		
	IV	347100	41.0	289600	30.8		
	V	1208000	34.0	905000	16.5		
Soluble fraction	I	2200	1.0	1800	2.4		
	II	9100	5.4	7600	11.1		
	III	30300	19.0	25500	32.0		
	IV	85100	29.5	69400	34.0		
	V	260 900	28.0	208400	17.5		
	VI	1135000	17.1	850 600	2.8		

Table 12. GPC analysis of the PP samples obtained for complex I

Table 13. Polymerizations of higher linear 1-alkenes in the presence of complex IV with various cocatalysts

Cocatalyst	[1-alkene], mol	[Ti] × 10 ³ , mol	[Al] : [Ti], mol/mol	[Al] : [Mg], mol/mol	Conversion, %	[η], dL/g	$M_{\eta} \times 10^{-3}$	[mmmm], ¹³ C NMR
1-Decene								
MAO	0.210	0.022	76		20.4	1.63	690	0.53
$Al(C_2H_5)_2Cl$	0.213	0.022	106		6.9	2.95	1500	0.60
$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.213	0.022	117	3.2	69.3	3.30	1730	
1-Octene								
MAO	0.210	0.022	76		92.3	2.02	920	0.50
$Al(C_2H_5)_2Cl$	0.214	0.022	90		7.5	2.64	1300	0.52
$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.210	0.022	106	2.4	70.6	1.50	620	
1-Hexene								
MAO	0.219	0.022	70		84.6	3.10	1596	
$Al(C_2H_5)_2Cl$	0.226	0.022	90		23.7	4.25	2404	0.62
$Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$	0.220	0.009	175	3.1	76.9	1.04	386	

These cation centers are generally regarded in the literature as catalytically active sites in polymerizations in the presence of Ziegler—Natta catalysts [24]. The second possible reason for the high efficiency of AlR_2Cl/MgR_2' combinations used as cocatalysts is the formation of contact ion pairs $[MgR']^+[R_2R_2'Al]^-$ and $[MgR']^+[RR'AlCl\cdots AlRR_2']^-$. These ion pairs can transform the alkylated products $X_3Ti^{IV}-R$, $X_2Ti^{III}-R$, or LT(Cl)-R into cation active centers of another type, for example:

$$X_{3}\text{Ti-}\mathbf{R} + \left[\text{Mg}\mathbf{R}'\right]^{+} \left[\mathbf{R}_{2}\mathbf{R}'_{2}\text{Al}\right]^{-}$$

$$\rightarrow \left[X_{2}\text{Ti}^{+}-\mathbf{R}\right] \left[\mathbf{R}_{2}\mathbf{R}'_{2}\text{Al}\right]^{-} + \text{Mg}\mathbf{R}'\text{X},$$
(9)

$$X_{3}\text{Ti-}\mathbf{R} + \left[\text{MgR'}\right]^{+} \left[\mathbf{R}\mathbf{R'} \text{AlCl}^{--} \text{AlR'}\mathbf{R}_{2}\right]^{-}$$

$$\rightarrow \left[X_{2}\text{Ti}^{+} - \mathbf{R}\right] \left[\mathbf{R}\mathbf{R'} \text{AlCl}^{--} \text{AlR'}\mathbf{R}_{2}\right]^{-} + \text{MgR'}X,$$
(10)

LTi(Cl)-R +
$$[MgR']^+[R_2R_2'Al]^-$$

 $\rightarrow [LTi^+-R][R_2R_2'Al]^- + MgR'X.$ (11)

All the catalytic systems consisting of TiCl₄, Ti(OR)₄, or PMC complexes of Ti and AlR₂Cl/MgR'₂ binary cocatalysts contain active centers of various types, which differ in the kinetic parameters, stereospecificity, and copolymerizing ability. It can be assumed that these active sites form in reactions (2)–(11) from various compounds: X_x Ti-R, X_y TiR₂, and LTi(Cl)-R containing both Ti^{IV} and Ti^{III}.

CONCLUSIONS

- 1. The Al(C_2H_5)₂Cl/Mg(C_4H_9)₂ combination at a molar ratio of [Al] : [Mg] > 2.5 is an effective cocatalyst for titanium compounds such as TiCl₄ and Ti(O*i*-C₃H₇)₄ and for PMC complexes of Ti in polymerizations of ethylene, propylene, and higher 1-alkenes and in copolymerizations of ethylene with 1-alkenes.
- 2. The efficiency of the $Al(C_2H_5)_2Cl/Mg(C_4H_9)_2$ combination as a cocatalyst in 1-alkene polymerizations is explained by the in situ formation of finely dispersed $MgCl_2$ and immobilization of cation active centers on its surface.
- 3. The products of polymerizations are highly molecular linear PE; mostly amorphous atactic PP; highly molecular polymers of higher 1-alkenes (1-hexene, 1-octene, and 1-decene); and copolymers of ethylene with higher 1-alkenes.
- 4. The active centers of these catalytic systems differ in the kinetic parameters, stereospecificity, and copolymerizing ability.
- 5. The chain growth reaction on the isospecific centers proceeds according to the enantiomorphic mechanism typical of propylene polymerizations in the presence of heterogeneous Ziegler—Natta and metallocene catalysts.

FUNDING

This study was performed under state assignment and supported by the Russian Scientific Foundation (project no. 18-13-00375).

REFERENCES

- Y. V. Kissin, R. I. Mink, A. J. Brandolini, and T. E. Nowlin, J. Polym. Sci., Part A 47, 3271 (2009).
- L. A. Rishina, N. M. Galashina, S. C. Gagieva, et al., Eur. Polym. J. 49, 147 (2013).
- 3. L. Rishina, S. S. Lalayan, S. C. Gagieva, et al., Polymer **54**, 6526 (2013).
- L. A. Rishina, Y. V. Kissin, S. S. Lalayan, et al., J. Polym. Sci., Part A 55, 1844 (2017).
- L. A. Rishina, N. M. Galashina, S. Ch. Gagieva, V. A. Tuskaev, B. M. Bulychev, and Yu. N. Belokon', Polymer Sci., Ser. A 50, 110 (2008).
- 6. Y. V. Kissin, J. Polym. Sci., Part A 33, 227 (1995).

- Y. V. Kissin, Alkene Polymerization Reactions with Transition Metal Catalysts (Elsevier, Amsterdam, 2008), Chap. 2.
- 8. T. Hayashi, Y. Inoue, R. Chujo, and T. Asakura, Polymer **29**, 138 (1988).
- E. T. Hsieh and J. C. Randall, Macromolecules 15, 1402 (1982).
- 10. F. S. Schilling and A. E. Tonelli, Macromolecules 13, 270 (1990).
- 11. V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules **30**, 6251 (1997).
- 12. V. Busico, R. Cipullo, G. Monaco, et al., Macromolecules **32**, 4173 (1999).
- T. E. Nowlin, Y. V. Kissin, and K. P. Wagner, J. Polym. Sci., Part A 26, 755 (1988).
- Y. V. Kissin, V. I. Tsvetkova, and N. M. Chirkov, Eur. Polym. J. 8, 529 (1972).
- 15. Y. V. Kissin and L. A. Rishina, Eur. Polym. J. **12**, 757 (1976).
- T. E. Nowlin, R. I. Mink, and A. J. Brandolini, J. Polym. Sci., Part A 37, 4255 (1999).
- M. P. McDaniel, E. D. Schwerdtfeger, and M. D. Jensen, J. Catal. 314, 109 (2014).
- 18. Y. V. Kissin, J. Polym. Sci., Part B 49, 195 (2011).
- B. A. Krentsel, Y. V. Kissin, V. I. Kleiner, and L. L. Stotskaya, *Polymers and Copolymers of Higher α-Olefins* (Hanser, New York, 1997), Chap. 8.
- Y. V. Kissin and D. L. Beach, J. Polym. Sci., Part A 22, 333 (1984).
- N. M. Chirkov, P. E. Matkovskii, and F. S. D'yachkovskii, *Polymerization Induced by Complex Metalloor*ganic Catalysts (Khimiya, Moscow, 1976) [in Russian].
- 22. L. A. Rishina, S. S. Lalayan, S. Ch. Gagieva, et al., J. Res. Updates Polym. Sci. 3, 216 (2014).
- 23. L. Rodriguez, Tetrahedron Lett. 17, 7 (1959).
- F. X. Werber, C. J. Benning, W. R. Wszolek, et al., J. Polym. Sci., Part A 6, 743 (1968).
- 25. K. Ziegler, H. Martin, and I. Stedefeder, Tetrahedron Lett. 20, 15 (1959).
- C. G. Overberger, F. Ang, and H. Mark, J. Polym. Sci. 35, 381 (1959).
- L. A. Rishina, E. N. Zhuravleva, Yu. V. Kissin, et al., Vysokomol. Soedin., Ser. A 16, 1459 (1974).
- 28. J. Varadi, I. Czajlik, A. Baan, et al., J. Polym. Sci., Part C 16, 2069 (1967).
- I. Czajlik, J. Varadi, and A. Baan, J. Polym. Sci., Part B 4, 661 (1966).
- 30. G. Natta, L. Porri, A. Carbonaro, et al., Macromol. Chem. 77, 126 (1964).
- D. H. Dawes and C. A. Winkler, J. Polym. Sci., Part A 2, 3029 (1964).
- 32. T. C. Dzhabiev, F. S. D'yachkovskii, and A. E. Shilov, Vysokomol. Soedin., Ser. A 13, 2474 (1971).
- 33. I. Ono and T. Keii, J. Polym. Sci., Part A **4**, 2441 (1966).

Translated by L. Smolina