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Abstract—A method is developed to determine approximate dynamic kinetic invariants (quasi-invariants) of
complex chemical reactions with nonideal general-form kinetic laws. The quasi-invariants are expressions
relating nonequilibrium reactant concentrations and temperatures, measured in two or more experiments
under different initial conditions (multiexperiments) that remain almost constant throughout the reaction.
The number of quasi-invariants is determined by the number of independent reactants. The application of
the method was illustrated by the example of a two-step reaction in an open system with the Marcelin–
de Donder kinetics. The quasi-invariant curves obtained for this reaction were compared with the concentra-
tion curves for the entire reaction time. It was shown that the quasi-invariants vary over a narrower range than
their corresponding concentrations and temperature in various temperatures; i.e., the quasi-invariants
remain nearly constant over time. The method expands the range of tools for the solution of inverse problems
of unsteady-state kinetics of chemical reactions in nonideal systems.

Keywords: nonideal chemical systems, Marcelin–de Donder kinetics, method of multiexperiments, quasi-invariants
DOI: 10.1134/S1990793119020155

One of the main postulates of chemical kinetics is
the kinetic law, which underlies the theoretical analy-
sis of models of chemical reactions. The classical law
of mass action is the simplest kinetic law; it expresses
a power-law dependence of the rate of an elementary
reaction on concentrations Aj of reactants: rj ∼ 
where aij are stoichiometric coefficients. However, the
law of mass action is closely followed only by ideal iso-
thermal systems. A theory of more common kinetic
laws was developed by Marcelin, de Donder, van Rys-
selberghe, Prigogine, Feinberg, and others (see, e.g.,
[1–5]). In their works, the rate of an elementary reac-
tion was defined in terms of a new thermodynamic
state function, affinity. The development of the theory
of general kinetic laws was continued by Yablonskii,
Gorban’, Bykov, et al. [6–11], who systematized
kinetic and thermodynamic aspects of applying noni-
deal kinetics to studying chemical reactions. Nonideal
general-form kinetic laws were also used in the inves-
tigation of catalytic reactions on heterogeneous sur-
faces [12–15]. Affinity is used in a more complex
hypothesis for the rate of an elementary reaction; it
can be represented as ri ∼ [1 + fj(Aj)], where fj is the
degree of (kinetic) nonideality. This dependence is
valid for a wide range of nonideal systems, and at fj = 0,
coincides with the ideal law of mass action. If one
relates affinity to the chemical potentials of reactants,
mj = gj(Aj), then the reaction rate function for nonideal
systems can be written as a general-form kinetic law:

rj ∼ [1 + Fj(mj(Aj)], where Fj is the degree of (ther-
modynamic) nonideality. Note that, the thermody-
namic approach to defining a general-form kinetic law
imposes significant constraints on the form of poten-
tial functions, which should be taken into account in
modeling nonideal systems (see, e.g., [10, 11, 16–18]).
For example, it has been shown [16–18] that thermo-
dynamically unconstrained chemical nonideality can
lead to false critical phenomena (multiplicity of equi-
libria, self-oscillations) even in closed systems. At the
same time, in open systems, chemical nonideality can
cause critical effects even under thermodynamic con-
straints. New fields of nonequilibrium chemical kinet-
ics are methods of dual experiments [19, 20] and mul-
tiexperiments [21]. By these methods, from the results
of several nonequilibrium experiments performed
under different initial conditions, one can determine
exact thermodynamic time invariants of chemical
reactions for systems having exact solutions [19, 20] or
approximate kinetic invariants (quasi-invariants) for
systems whose exact solutions are unknown [21].
Quasi-invariants are combinations of nonequilibrium
concentrations of reactants that remain almost con-
stant throughout a reaction. This property allows one
to use them as an additional tool for solving inverse
problems of nonstationary chemical kinetics. Let us
generalize these results and find kinetic quasi-invari-
ants of reactions occurring in nonideal systems with
general-form kinetics.
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Consider a multistep chemical reaction involving
substances Aj:

(1)

where aij ≥ 0, bij ≥ 0 are stoichiometric coefficients; i =
1, …, s is the number of a step; and j = 1, …, n is the num-
ber of a reactant. The dynamics of reaction (1) in a well-
stirred nonisothermal reactor is described by a system of
ordinary differential equations of order (n + 1) [22]:

(2)

(3)

where ri(k±i, Aj, T) are the step rates determined by a cer-
tain nonideal kinetic law, 1/s; k±i = k±i0exp(−E±i/RT) are
step rate constants, 1/s; k±i0 and E±i are the pre-expo-
nential factors and activation energies of steps, respec-
tively; Aj are the concentrations (mole fractions) of
reactants; T is temperature, K; Aj0 and T0 are the initial
conditions; q0 and q are the initial and current f low
rates, respectively, 1/s; Tx is the reactor wall temperature,
K; α is the heat-transfer coefficient through the reactor
wall, 1/s; and Qi are the relative heats of steps, K.

Choose a nonideal kinetic law in the Marcelin–
de Donder form [10–18]:

(4)

where ϕi > 0 is the kinetic factors of steps, μj = μj0 +
lnAj0 + fj(Aj) = mj/RT are pseudochemical potentials
(Feinberg’s term [5]), the subscript 0 refers to ideal
kinetics, the degree of nonideality is given by the linear
function fj = , αj are real-valued parameters
(nonideality vector), and R is the universal gas constant.
For an ideal kinetics, from expression (4), the classical
law of mass action follows: 

System (2)–(4) cannot be solved analytically; i.e.,
its exact variants are unknown and cannot be found.
Let us find quasi-invariants. We expand the solutions

of system (2)–(4) into a series and substitute the values
of the derivatives into them:

(5)

(6)

where ri0 are the initial step rates. We calculate the val-
ues of expressions (5), (6) under two initial conditions,
Aj01, T01 and Aj02, T02, which differ from the equilib-
rium values. We obtain

(7)

(8)

where

Eliminate time from each of pairs (7), (8) and obtain
n + 1 main potential quasi-invariants:

(9)

(10)
where

Obviously, any linear combinations of these expres-
sions are also quasi-invariants. Quasi-invariants (9)
and (10) can be improved using the snail criterion [21],
which takes the following form:

(11)

(12)

where Aj∞ = Aj1∞ = Aj2∞ and T∞ = T1∞ = T2∞ are the
equilibrium concentrations and temperature, respec-
tively. which are found by solving the system of equa-
tions  = T ' = 0. Relations (11) and (12) determine
the best conditions for performing pairs of experi-
ments and observing quasi-invariants. For ideal sys-
tems, from expressions (9)–(12), the results of our
previous work [21] follow.
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Fig. 1. Kinetic curves: (a) (1) A1(t), (2) A2(t), and (3) IA(t) and (b) (1) T1(t), (2) T2(t), and (3) IT(t) for the nonideality vector a =
b = c = 1 under the initial conditions A01 = 0.7, B01 = 0.2, C01 = 0.1, A02 = 0.8, B02 = 0.1, C02 = 0.1, T01 = 300.4, and T02 = 300.3.
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Let us apply the obtained relations to two-step
reaction

(1.1)

For this reaction, system (2)–(4) takes the form

(1.2)

(1.3)

(1.4)

where k±1 = k±10exp(−E±1/RT), k±2 = k±20exp(−E±2/RT);
a = α1, b = α2, c = α3 are the nonideality vector. For
system (1.2)–(1.4), relations (9)–(12) give n + 1 = 4
main quasi-invariants:
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Conditions (11) and (12) are rewritten as follows:

(1.9)

(1.10)

(1.11)

(1.12)

We calculate experimental conditions, taking into
account that, from expressions (1.2)–(1.4), two equi-
librium conservation laws follow: q(A∞ + B∞ + C∞)/q0 =
A0 + B0 + C0 = const1 and qQ1A∞ − qQ2C∞ + (q + α)T∞ =
q0Q1A0 − q0Q2C0 + q0T0 + αTx = const2. Let the
parameters take the following values: nonlinearity
vector, a = b = c = 1; rate constants and activation
energies of steps, k10 = 1, k−10 = 0, k20 = 1, and k−20 = 0
and E1 = E2 = 2; f low rates, q0 = 1 and q = 1; tempera-
tures, T0 = 300 and Tx = 200; and other parameters,
R = 2, α = 1, Q1 = 1, Q2 = 1, A0 = 1, B0 = 0, and C0 = 0.
Then, const1 = 1 and const2 = 501, A∞ ≈ 0.40, B∞ ≈ 0.26,
C∞ ≈ 0.34, and T∞ ≈ 250.5. We choose the initial con-
ditions for a pair of experiments, e.g., A01 = 0.7, B01 = 0.2,
then C01 = const1 − A01 − B01 = 0.1, T01 = (const2 −
q0Q1A01 + q0Q2C01 − αTx)/q0 ≈ 300.4; and A02 = 0.8,
B02 = 0.1, then C02 = 0.1, T02 ≈ 300.3 and KA0 = 0.07,
KA∞ = 0.08, KB0 = 0.13, KB∞ = 0.08, KC0 = −0.12,
KC∞ = −0.41, KT0 ≈ −0.93, and KT∞ ≈ −0.86. Figure 1
presents quasi-invariants (1.5) and (1.6) for the given
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Fig. 2. Kinetic curves: (a) (1) A1(t), (2) A2(t), and (3) IA(t); and (b) (1) T1(t), (2) T2(t), (3) IT(t) for the nonideality vector a = 2,
b = 1, c = 0, A01 = 0.7, B01 = 0.2, C01 = 0.1, A02 = 0.8, B02 = 0.1, C02 = 0.1, T01 = 300.4, and T02 = 300.3. 
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nonideality vector that were calculated for this pair of
experiments.

Let us carry out a second pair of experiments for
the case where the nonideality vector is, e.g., a = 2,
b = 1, and c = 0. Then, under the same initial condi-
tions, we obtain A∞ ≈ 0.34, B∞ ≈ 0.28, C∞ ≈ 0.38, T∞ ≈
250.5, KA0 = 0.13, KA∞ = 0.1, KB0 = 0.13, KB∞ = 0.09,
KC0 = −0.12, KC∞ = −0.46, KT0 ≈ −3.29, and KT∞ ≈
−2.83. Figure 2 shows quasi-invariants (1.5) and (1.6)
for the new given nonideality vector that were calcu-
lated for the same pair of experiments. Figures 1 and 2
demonstrate that the curves IA(t) and IT(t) vary within
narrower ranges than the respective nonequilibrium
reactant concentrations A1(t), A2(t) and nonequilibrium
temperatures T1(t), T2(t) in two experiments; i.e., the for-
mer curves are almost time-constant at various nonideal-
ity vectors. Note that curves 1 and 2 in Figs. 1b and 2b are
virtually coincide because the initial temperatures T01
and T02 are almost equal.

Thus, we have developed a generalization of the
method of multiexperiments for chemical reactions in
nonideal systems, which is applicable to various
kinetic laws (law of mass action, Marcelin–de Donder
law, etc.) in a well-stirred reactor. The method allows
one to determine approximate kinetic time invariants
(quasi-invariants) of nonlinear multistep chemical
reactions in open and closed, isothermal and noniso-
thermal systems with kinetics of quite a general form;
i.e., the method remains valid for any type of nonide-
ality. Such quasi-invariants are combinations of non-
equilibrium reactant concentrations measured in two
or more experiments that remain almost constant
throughout the reaction. Quasi-invariants enable one
to predict and study unknown kinetic regularities in
reactions occurring under nonideal conditions
according to general-form kinetic laws. The developed
method expands the range of new tools for solving
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vo
inverse problems of chemical kinetics and can be used
to more adequately identify the mechanisms of chem-
ical reactions and also to increase the efficiency of
chemical reactors.
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