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1. INTRODUCTION

Biradicals with two spaced�apart paramagnetic
centers are convenient objects for modeling intramo�
lecular dynamics [1, 2], the spatial structure of mole�
cules [1, 3], and the specific features of the delocaliza�
tion of an unpaired electron in a chain of bonds [4–8].
In recent years, these issues have attracted increasing
interest in connection with the creation of organic
magnetic materials and the development of spin elec�
tronics (see, e.g., [9–13]).

The most important characteristic of biradicals in
terms of their use as an object for fundamental
research and as a technological material is the energy
splitting

ΔEST = ES – ET (1)

between their lower singlet and triplet electronic
states. In the theory of electron paramagnetic reso�
nance, ΔEST can be conveniently defined as the differ�
ence between two eigenvalues of the spin Hamilto�
nian:

(2)

Here,  and  are the electron spin operators of para�
magnetic centers Pca and Pcb, and  is
the so�called exchange integral. Such a description of

( )1ˆ ˆ ˆ1 .
2

sp ab a bH J= − + s s

ˆ ,as ˆbs
( )1 2ab STJ E= Δ

singlet–triplet splitting in two�electron systems goes
back to accounting electronic correlations in pertur�
bation theory. In calculating the matrix elements of
the Hamiltonian between two�electron wave func�
tions antisymmetric with respect to permutation of
electrons, it is convenient to use the Dirac vector
model to represent the permutation operator of elec�
tron spin coordinates (see, e.g., [14]). Accordingly,
hereinafter, along with ΔEST, the treatment will involve
exchange interaction and the exchange integral.

The first attempts of quantum chemical calcula�
tions of for biradicals were undertaken more than
50 years ago [15, 16] within the framework of the sim�
plest Hückel approximation. In this method, ΔEST was
calculated in a straightforward manner, as difference
between the total electronic energies for the singlet
and triplet states. The same straightforward approach
continues to be used in modern ab initio methods,
such as density functional theory (DFT) and ab initio
MCSCF and MCQDPT methods. These methods
enable to calculate, with reasonable accuracy, the
structural and thermodynamic properties of biradicals
and some magnetic resonance parameters (see, e.g.,
[17–20]).

However, quantum�chemical calculations of a
small energy splitting ΔEST (~1 cm–1 or less), which
determines the exchange integral, face serious diffi�
culties. The matter is that, in quantum chemistry,
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ΔEST is calculated as the difference between large
(104–105 eV) total negative electron energies ES and
ET for the singlet and triplet states. The situation is
aggravated by the fact that it is necessary to calculate
the difference between the total energies of electronic
states of different symmetry. In this situation, the cal�
culated value of ΔEST is strongly dependent on the
used quantum�chemical method and basis set (see,
e.g., [19]).

This problem was identified a long time ago [21].
The author of [21] tried to calculate ΔEST in the frame�
work of perturbation theory, in which the problem of
difference between large total electronic energies does
not arise. In our previous work [22], it was proposed to
split the procedure of calculating the ΔEST into two
stages. At the first stage, standard quantum�chemical
methods (preferably of a high enough level) are used to
calculate the spatial and electronic structure of the
biradical. In the case considered here, of small ΔEST,
these structures for the singlet and triplet states are
almost identical. In the second stage, the results of
these calculations are used to calculate ΔEST for the
biradical by the asymptotic method developed in the
theory of atomic collisions [23]. Similarly to [21], in
the asymptotic method, ΔEST is calculated directly,
not as the difference between very large quantities in
the above�mentioned direct methods of quantum
chemistry. However, in [22], the treatment was per�
formed using a rather strong assumption. It consists in
the fact that the effective potential energy of the two
unpaired electrons in the region of their configuration
space, which determines the value of ΔEST, can be
approximated by the Coulomb interaction with the
positively charged cores of the biradical’s groups con�
taining an unpaired electron (paramagnetic centers)
and the mutual Coulomb repulsion. This is evidently
valid for short biradicals. However, if the biradical is
long enough and the paramagnetic centers are signifi�
cantly distant from each other, the exchange interac�
tion should be calculated with a more accurate
account of the effect of the core on the behavior of the
wave functions of the unpaired electrons in the region
of their configuration space between these centers.
The importance of this point is demonstrated by the
available experimental data on the rate of decrease of
the absolute value of ΔEST with increasing distance
between the paramagnetic centers (see, e.g., [5]). It is
much lower than that obtained in the framework of the
simplest model considered in [22].

In the present paper, we generalize the approach to
calculating ΔEST developed in [22]. The proposed
generalized combined procedure for calculating the
weak exchange interaction in biradicals consists of
three stages. At the first stage, the equilibrium config�
uration of the biradical and its electronic wave func�
tions in this configuration are calculated. At the sec�
ond stage, the results of the quantum�chemical calcu�
lation are used to construct a local pseudopotential
describing the interaction of the unpaired electron

localized on the paramagnetic centers with the core.
The literature describes in detail a wide variety of the
approaches proposed for constructing pseudopoten�
tials (see, e.g., [24–27] and references therein). In
addition, at this stage, the constructed pseudopoten�
tial is used to calculate the binding energies and the
corresponding one�electron orbitals localized on the
paramagnetic centers. In the third stage, the above
quantum�chemical information is used to calculate,
by the asymptotic method, the exchange interaction
between the paramagnetic centers.

The paper is organized as follows. Section 2 dis�
cusses the qualitative form of the potential acting on
the electrons localized the on paramagnetic centers
and their orbitals. Section 3 is devoted to constructing
two�electron wave functions in the asymptotic region
between the paramagnetic centers with account of the
Coulomb repulsion between the electrons. Section 4
describes the derivation of a general formula for the
exchange integral for the biradical expressed through
the parameters characterizing the molecular orbitals
of the unpaired electrons. Unless otherwise indicated,
atomic units (a.u.), e = me = ћ, are used throughout
the paper.

2. PSEUDOPOTENTIAL 
AND THE LOCALIZED ORBITALS 

OF PARAMAGNETIC CENTERS

Consider a biradical comprised of two paramag�
netic centers Pca and Pcb separated by a number of
functional groups Gri (Fig. 1). Analysis of the elec�
tronic structure of the biradical considered in [22]
showed that outer electrons e1 and e2 are localized on
Pca and Pcb and that their binding energies εa and εb

are smaller than the binding energies of the electrons
on functional groups Grj (j = 1, 2, …, N) of the frame�
work. It is natural to assume that this situation is typi�
cal, so this assumption will be used below. The inter�
action of each of outer electrons e1 and e2 with the
framework of the biradical, including the interjacent
functional groups Gri and positively charged cores Ca

and Сb of paramagnetic centers Pca and Pcb, can be
described by a pseudopotential. As noted in Section 1,
it is assumed that this pseudopotential can be approx�
imated by a local potential  (i = 1, 2). The vectors
ri are defined in Fig. 1. The qualitative form of the
potential  along the zi axis that passes through the
paramagnetic centers is displayed in Fig. 2. Near pos�
itively charged cores Ca and Сb, Coulomb attraction
takes place, which, as the distance to the core
decreases, changes to exchange repulsion. As regards
the interaction with functional groups Gri, it is
assumed (Fig. 2) that they have a certain affinity for
the electrons of the paramagnetic centers, which man�
ifests itself as an effective attraction. However, in prin�
ciple, interaction of another type is possible. To estab�

( )ef iV r

( )ef iV r
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lish the explicit form of the potential of interaction
with Gri, it is necessary to perform specific quantum�
chemical calculations. For further analysis, it conve�
nient to present  as

(3)

where (Fig. 1)

(4)

 and  are the effective potentials of
interaction of electron ei with the cores Сa and Сb of
the paramagnetic centers (at large ri, these potentials
are Coulomb potentials), whereas  is the
potential of interaction of electron ei with the func�
tional groups Grj in the framework of the biradical.
The potentials  , and  are
defined such that

(5)

Here,

(6)

 is the unit vector in the direction of the z axis,  is

Laplacian in the coordinates of electron ei, and 
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and  are the binding energy and the corre�
sponding wave function of outer electron ei localized
at paramagnetic center Pck (k = a, b). The available
information on the structure of biradicals and binding

energies  suggests that the distance R between Pca

and Pcb is large in the sense that

(7)

As discussed in [22], if inequality (7) holds, ΔEST is
determined by a relatively narrow cylindrical region Ω
of spatial coordinates of electrons e1 and e2, positioned
midway between Pca and Pcb near the z axis (Fig. 3).
This is due to the exponential decay of the orbitals ψ(k)

with increasing  The orbitals behave in this way
because the electrons move far in the classically for�
bidden region. In this situation, it is natural to assume

that, in the region Ω, the potentials  have a
local spherical symmetry near the z axis, so that

(8)

For further treatment, it is convenient to represent

the orbitals  in the region Ω as the sum of a
finite number of terms in the expansion in spherical
harmonics:

(9)
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Fig. 1. Coordinate systems of weakly bound electrons ea and eb. All designations are given in the text.
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where   and  are the spherical coordinates of
electron ei in the coordinate system xyz with origin at Pck.
The lowest singlet and triplet electronic states of birad�
icals are usually orbitally nondegenerate. Therefore, in
what follows, we assumed that the localized one�elec�

tron states described by the functions  and

 are also nondegenerate. Therefore, the func�

tions  and  will be considered real.

Accordingly, since  =  the func�
tion in (9) must be real and satisfy the relationships

(10)

In this case, in a distant subbarrier region near the
z axis, where electron motion is quasiclassical, the

function  in (9) can be approximated by the
semiclassical expression

(11)

where
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and  is the root of the equation

(13)

The corresponding asymptotic expressions 

for  in the region Ω read as

(14)

The asymptotic constants  can be determined in
the same way as it was done in [22]: by joining the

functions  and  at  ~  and
small θi using the least�squares method. A more rigor�
ous approach to determining the asymptotic con�
stants, based on quantum�chemical calculations, was
developed in [28, 29].

3. TWO�ELECTRON WAVE FUNCTIONS 
AT LARGE R IN THE Ω REGION

As discussed above, the singlet–triplet splitting at R
satisfying inequality (7) is determined by the area Ω of
the spatial coordinates of the two electrons, e1 and e2,
midway between Pca and Pcb near the z axis (Fig. 3).
Making use of this fact, the authors of [30, 31] formu�
lated an asymptotic method for calculating the
exchange interaction.

The general scheme for calculating the exchange
integral by the asymptotic method is as follows. The
singlet and triplet states of the system with energies ES

and ET are described by the spatial eigenfunctions
 and  of the full two�electron Hamil�

tonian , accordingly symmetric and asymmetric
with respect to permutation of the spatial coordinates
of the two electrons. Since the singlet and triplet states
in biradicals are spatially nondegenerate, the functions

 and  can be assumed to be real with�
out loss of generality. Within the framework of the
above model of two outer electrons, this Hamiltonian
is given by
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Fig. 2. Qualitative form of the pseudopotential acting on
the electron. All designations are given in the text.
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Fig. 3. Illustration of how the wave function with allow�
ance for electron correlation is constructed. All designa�
tions are given in the text.
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(15)

In the states  and , the spatial dis�
tribution of electrons e1 and e2 are delocalized: each
electron is equally likely to be found near cores of Ca

and Cb. For further analysis, it is convenient to com�
bine the functions  and  to construct
the wave functions

(16)

where  is the operator of permutation of the coordi�
nates of electrons e1 and e2. Electrons e1 and e2 in the
state  are located near cores Ca and Cb,
whereas in the state , near cores Cb and Ca,
respectively (Fig. 4). In this case,

(17)

which can be considered normalized at large R.
At R values satisfying (7), when ΔEST is exponen�

tially small up to terms of order 1/R2, the function
 satisfies the equation

(18)

The appearance of the term –1/R on the right side of (18)
is due to Coulomb attraction of electrons е1 and е2 to
the “alien” cores, Cb and Ca.

The next step is to determine the explicit form of
the function  To this end, it must appear as

(19)

where, in accordance with (17) if inequality (7) holds,
the correction function , which takes into
account electron correlation, satisfies the boundary
conditions

(20)

It is assumed that if inequality (7) holds,  var�

ies slowly as compared with , the product
of the wave functions localized on the paramagnetic
centers. In [30–33], this assumption was confirmed
for the exchange interaction between one�electron
atoms. Substituting (19) into (18), using (5), and
neglecting the second derivatives of  we
obtain the first�order partial differential equation
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which must be solved with boundary conditions (20).
Equation (21) can be simplified still further if the

following points are taken into account:
(1) the motion of electrons near the z axis in the

region Ω is quasi�classical, enabling to use the asymp�

totic expressions  and  (Eq. (14)) as the
wave functions localized at the paramagnetic centers;

(2) the derivatives of the functions  and

 are determined mainly by the exponential
function;

(3) in a narrow cylindrical region Ω, at large R, the

product  decreases very quickly with
increasing distance between the electrons and the
internuclear axis.

To simplify Eq. (21), it is convenient to introduce the
cylindrical coordinates ρ1, z1, ϕ1 and ρ2, z2, ϕ2. In these
coordinates, in the vicinity of the axis, the above points
make it possible to consider the terms with derivatives with
respect to ρ1, ϕ1, ρ2, and ϕ2 negligibly small compared with
the terms with derivatives with respect to z1 and z2. As a
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method for calculating the exchange integral. All designa�
tions are given in the text.
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result, in the vicinity of the z axis,  depends on ρ1,
ϕ1, ρ2, ϕ2 as on the parameters and satisfies the equation

(22)

with the boundary conditions (see (20))

(23)

Here,

(24)

Equation (22) can be solved numerically using quan�
tum�chemical information.

4. ASYMPTOTIC EXPRESSION FOR ΔEST

To derive an asymptotic expression for ΔEST if ine�
quality (7) holds, we introduce regions Ωab (at z1 < z2)
and Ωba (at z1 > z2) in the configuration space of elec�
trons e1 and e2, separated by the hypersurface z1  = z2
(Fig. 4). Recall that, in accordance with (16),

(25а)

(25b)

We now multiply Eqs. (25a) and (25b) by  –
 and  +  respectively,

subtract from the first resulting equation the second

resulting equation, and integrate the difference over
Ωab to obtain

(26)

In the region Ωab, the function  is non�small,
whereas  is exponentially small. Conversely,
in the region Ωba, the function  is non�small,
whereas  is exponentially small. Therefore, at
large R, the integral on the right�hand side of (26)
equals unity with exponential accuracy. Rearranging
the right�hand side by means of the Gauss theorem
and taking into account the symmetry properties of

 and  with respect to permutations
of the coordinates of the electrons (see (16)) and the
fact that these functions tend exponentially to zero at
r1 → ∞ and r2 → ∞, we arrive at the following expres�
sion in the form of an integral over the hypersurface
z1= z2 (Fig. 4) for the exchange integral 

(27)

Substituting the asymptotic forms of the functions
 and  into (27) yields
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where  and  are given by (14), whereas
the correction function , describ�
ing electron correlation, is obtained by solving Eq. (22).
Thus, we obtain the following expression for 
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(30)

(31)

Here,  are the associated Legendre poly�
nomials.

CONCLUSIONS

In conclusion, we would like to make a few com�
ments regarding formulas (29) and (30).
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about the z axis. Therefore, the quantities

 have the following proper�

ties:

(32)

(2) If  can be neglected (Eq. (3)),

 is identical to the standard

two�electron diatomic exchange integrals, explicit
expressions for which were derived in [32–34]. One
can expect that, if  is taken into account, the

signs of  which are mainly

determined by the competition between their Cou�
lomb repulsion and attraction to the cores of paramag�
netic centers Сa and Сb, will be the same as the signs
of the corresponding standard diatomic exchange
integrals.

(3) Exchange integral (29) depends on the relative
orientation of paramagnetic centers Pca and Pcb

through sets of asymptotic coefficients  and 
in expansions (14) of the asymptotic expressions for

the orbital  of the outer electrons localized on
these centers.
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