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1 1. INTRODUCTION

Three�body recombination reactions A + B + R →
AB + R (here R is the acceptor of excess kinetic energy
of the A + B pair) as well as reverse reactions of colli�
sion induced dissociation (CID) play a major role in
many complicated chemical processes in plasma and
in other media of natural or artificial origin. For
instance, the survey [1] considers 196 elementary gas
phase reactions used in modeling combustion pro�
cesses, and about a half of them are recombination or
CID reactions [2, 3]. Quantum mechanical simula�
tion of the recombination process Ne + Ne + H →
Ne2 + H under various temperatures and pressures
carried out in the works [2–6] has shown that for this
reaction, direct recombination where all the three
reagent atoms collide simultaneously or almost simul�
taneously prevails over the mechanisms based upon
successive two�body encounters. As one expects, pre�
dominance of the direct mechanism of the reaction is
especially noticeable under high pressures [4, 5]. After
the papers [2–6], an interest in the processes of direct
three�body recombination and, in particular, in the
problems of examining their dynamics increased con�
siderably. Experimental investigation of the dynamics
of direct three�body recombination reactions in
crossed molecular beams is beyond the possibilities of
the contemporary experimental techniques. There�

1 The article was translated by the authors.

fore, the only way of studying the dynamics of such
reactions is simulation by various quantum mechani�
cal or quasiclassical methods.

One of the most important classes of three�body
recombination reactions is recombination of ions. The
competition of the processes of recombination of ions
and ionic dissociation of molecules is one of the fac�
tors determining the concentration of ions in plasma.
In the works [7–20], we performed a detailed investi�
gation of the dynamics of direct three�body recombi�
nation of heavy ions

Cs+ + Br– + R → CsBr + R (1)

(R = Hg, Xe, Kr) via quasiclassical trajectory simula�
tion (quantum effects in the processes (1) are negligi�
bly small). The choice of the systems (1) was caused
mainly by the fact that the diabatic potential energy
surfaces (PESs) of the reverse CID reactions

CsBr + R → Cs+ + Br– + R, CsR+ + Br– (2)

(R = Hg, Xe, Kr) have been reliably determined and
allow one to reproduce quantitatively in trajectory cal�
culations all the experimental data obtained in crossed
molecular beams (the works [7–20] contain the rele�
vant references). According to the microscopic revers�
ibility principle, the processes (1) and (2) reverse with
respect to each other are governed by the same PES
(different for different atoms R). In particular, in the
works [7–20], for various values of the ion approach
energy Ei and the third body energy ER (mainly in the
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range from 1 to 10 eV), we calculated the recombina�
tion probabilities for the collisions Cs+ + Br– + R, dis�
covered several dynamical mechanisms of recombina�
tion along with a description of the mass and orienta�
tion effects, and found the minimum possible internal
energy Emin of the nascent CsBr molecule. Finally, in
the space of the initial conditions (kinematic parame�
ters) of the collisions, we determined the region yield�
ing recombination. It was assumed in most of the
works that the ion approach is central (i.e. that the
impact parameter bi of the ions is equal to zero), but
collisions with non�central ion approach (bi > 0) were
considered as well [13, 18, 19]. In the paper [18], two�
stage direct three�body recombination (1) with R = Xe
was explored where the stage of energy removal from
the recombining pair is delayed with respect to the
instant when the interionic distance attains its mini�
mal value.

The recombination processes (1) for different
atoms R differ in the third body mass as well as in the
topography of the PES involved. To separate the mass
effects from the effects related to the structure of the
potential energy surface, in the thesis [19] and the
paper [20], we considered six imaginary “cross” reac�
tions for which the PES governing the motion of the
particles and the third body mass correspond to differ�
ent atoms R = Hg, Xe, Kr. As was revealed in those
works, the effectivities of the mercury and xenon
atoms as stabilizers of the nascent CsBr molecule are
quite close, depend slightly on the PES used, and
exceed significantly the effectivity of the krypton
atom, despite an almost exact equality of the mass
ratios mHg/mXe = 1.528 and mXe/mKr = 1.567.

The easiest way to exclude completely the effect of
the PES relief on various reaction characteristics is to
consider the hard sphere model of the process, where a
vertical wall (in combination with Coulomb attraction
or repulsion if there are ions among the interacting
particles) is used as the potential. Otherwise speaking,
in the framework of the hard sphere model, the parti�
cles involved in the process are treated as balls
exchanging energies and momenta at their encounters
with each other according to the elastic impact law. In
the theory of atomic and molecular collisions, various
versions of the hard sphere model are used rather
widely, see e.g. the works [21–28] and references
therein. In the recent paper [29], the hard sphere
model is applied for studying the three�body recombi�
nation  He +  He +  He → He2 +  He.

In the present work, we propose a hard sphere
model of direct three�body recombination of ions

Cs+ + Br– + R → CsBr + R (3)

(R = Hg, Xe, Kr, Ar) and describe the calculation
results. Full trajectory simulation of recombination of
the Cs+ and Br– ions with an argon atom as the third
body was not carried out because of the absence of an
adequate  PES tested carefully, but within the frame�
work of the hard sphere model, an  Ar atom can be

considered along with Hg, Xe, and Kr atoms. It is
worthwhile to emphasize that our model excludes a
simultaneous encounter of all the three particles and
even a simultaneous encounter of the neutral atom
with both the ions (an occurrence of these events
requires a special choice of initial conditions). On the
contrary, it is supposed that only pairwise encounters
of the balls representing the particles Cs+, Br–, and R
happen in the system.

Quasiclassical trajectory calculations enable one to
obtain an almost accurate dynamical portrait of the
elementary process (provided that the  PES employed
is sufficiently adequate and quantum effects are suffi�
ciently small which does hold in the case of the reac�
tions (1)). Hard sphere model describes the interac�
tion of the particles only approximately, but it is of
considerable theoretical interest since it allows one to
examine the role of the particle masses and other kine�
matic parameters of the collision irrespective of the
PES structure [23, 27]. Moreover, as we will see, many
results of the trajectory and hard sphere calculations
for the reactions (1) turn out to be qualitatively the
same.

2. DESCRIPTION OF THE MODEL

Each of the particles Cs+, Br–,  Hg,  Xe,  Kr, and  Ar
was represented by a ball of the mass corresponding to
the actual atomic weight of the element in question. As
the radii of the balls, we used the ionic radii of Cs+ and
Br– ions (1.67 and 1.96 Å, respectively [30]) and the
atomic radii of neutral atoms  Hg,  Xe,  Kr, and  Ar
(1.55 [31], 2.18 [32], 1.98 [32], and 1.92 Å [33],
respectively). It was assumed that at a contact of any
two balls, their velocities change according to the elas�
tic impact law [21–28], while in the time intervals
between the encounters, the neutral atom  R moves
inertially (under no forces) and the Cs+ and Br– ions
move under Coulomb attraction. As was already
pointed out in the introduction, the probability of a
simultaneous encounter of one of the particles with
the two others vanishes.

The general setup of non�central approach of the
ions was considered, with the impact parameter bi of
the ions ranging from zero to a certain maximal value
bimax and with the impact parameter bR of the atom  R
(with respect to the center of mass of the ionic pair)
ranging from zero to a certain maximal value bRmax.
For each of the four atoms  R, at fixed values of the ion
approach energy Ei (the initial kinetic energy of the
relative motion of the ions), the third body energy ER
(the initial kinetic energy of the relative motion of the
atom  R and the ionic pair), and the maximal impact
parameters bi max and bR max, the initial conditions of the
collision were selected, on the whole, in the same way
as in the paper [13] devoted to trajectory simulation of
the process of one�stage direct three�body recombina�
tion (1) with  R =  Xe for non�central approach of the
ions.
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Since the selection procedure for the initial condi�
tions is very important, we will describe it in detail (cf.
Fig. 1 in [13]). We assumed that at the initial time
instant t = 0, the center of mass of the ionic pair coin�
cides with the origin of the fixed coordinate frame Oxyz
and has zero velocity whereas the distance between the
nuclei of the ions is equal to di = 250 Bohr > bi max, as we
had done in the trajectory simulation of the processes (1)
[7–20]. The initial vector vi of the relative velocity of
the ions (to be more precise, of the velocity of the Cs+

ion with respect to the Br– ion) was selected according
to the formula

where μi is the reduced mass of the ions,

  

Θ is the polar angle of the vector vi with respect to the
Ox axis ( ), and Φ is the corresponding azi�
muthal angle ( ). The initial vector ri con�
necting the ion nuclei and directed from Br– to Cs+

was selected according to the formula

where

i i i
1 2(2 ) ( , , ),x y zE e e e= µv

cos ,xe = Θ sin cos ,ye = Θ Φ sin sin ,ze = Θ Φ

0 ≤ Θ ≤ π

0 2≤ Φ < π

i i i i

i

2 2 1 2( ) ( , , ) ( cos )( , , )

( sin )( , , ),
x y z x y z

x y z

d b e e e b f f f

b g g g

= − − + γ

+ γ

r

sin ,xf = − Θ cos cos ,yf = Θ Φ cos sin ,zf = Θ Φ

0,xg = sin ,yg = Φ cos ,zg = − Φ

and γ is the orientation angle characterizing the posi�
tion of the plane spanned by the vectors vi and ri

( ). It is easy to see that the vectors 
, and  are of unit length and pair�

wise orthogonal.
Now consider two material points with the reduced

mass equal to μi that move along a straight line under
Coulomb attraction with the potential  (in the
atomic units) where r is the distance between the
points. Suppose that at the initial time instant, the
equality r = di holds and the points are moving towards
each other with relative kinetic energy Ei and with the
total energy  =  It is not hard to verify
that such points will meet each other in the time equal to

(4)

(in the atomic units) where the notation 

and  is used. In the paper [7], we pre�
sented a more complicated version of the formula (4)
with a wrong sign: the equation (13) in [7] actually
gives the value  We assumed that the initial
vector vR of the velocity of the atom R is equal to

where μR is the reduced mass of the ionic pair and the
atom R, while the initial position of the nucleus of this
atom is given by the radius vector

Thus, in the hypothetical situation where the radii of
the particles and the impact parameter bi are equal to

0 2≤ γ < π ( , , ),x y ze e e
( , , )x y zf f f ( , , )x y zg g g

1 r−
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Fig. 1. The dependence of the total recombination probability P on the energies Ei and ER in case 2 for R = Hg.



772

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vol. 8  No. 6  2014

ERMOLOVA et al.

zero, the atom R flying along a straight line parallel to
the Ox axis would reach the Oyz plane at the same
instant t = τ as the ions would collide at the origin (the
condition defining a one�stage process in the sense of
the paper [18]).

Besides the energies Ei and ER (and the particle
masses), the kinematic parameters in this procedure
are the impact parameters bi, bR and the angles Θ, Φ, γ.
These parameters were selected according to the stan�
dard formulas

(5)

where ξ1, ξ2, ξ3, ξ4, ξ5 are independent random vari�
ables uniformly distributed between 0 and 1. If for a
current collection of the values of the parameters bi,
bR, Θ, Φ, γ, the initial distance between the nuclei of
some two reagents turned out to be smaller than the
sum of their radii, then such a collection was rejected
and the parameters bi, bR, Θ, Φ, γ were selected again.

Note that, as in other problems, direct three�body
recombination can be studied using other collections
of kinematic parameters. In the works [13, 18, 19],
while selecting the initial conditions of trajectories for
non�central approach of the ions, the kinematic
parameters bi and γ were given by means of two auxil�
iary angles ΘA and ΦA.

In the time intervals between the encounters of the
balls representing the particles Cs+, Br–, and R, the
atom R and the center of mass of the ionic pair move
under no forces (as was pointed out above), whereas
the relative motion of the ions was determined by solv�
ing numerically the Newtonian equations correspond�
ing to a material point of mass μi on a plane (orthogo�
nal to the constant angular momentum vector

) in the field with potential  Here r is
the vector connecting the nuclei of the ions while r is
the length of the radius vector of the material point.

Of course, the motion of a mass point in a Coulomb
potential (the Kepler problem) can be described ana�
lytically [34–36]. We preferred numerical integration
of the equations of motion by the following two rea�
sons. First, the analytic solution of the Kepler problem
is not an expression of the point coordinates in terms
of the time t. Instead, it is an expression of the time in
terms of a special parameter u (the eccentric anomaly)
that determines the point location on the orbit [34–36]
(note a misprint in the well known monograph [35]: on
page 70 in the formulas expressing t in terms of u, instead

of , one should read ). To find
u as a function of the time t, one has to solve addition�
ally the suitable transcendental Kepler equation [35,
36]. Second, numerical solutions of the equations of
motion enable one to avoid considering numerous
cases concerning the motion of the point along conic
sections of different types—an ellipse, hyperbola,
parabola, and straight line (the probability of moving

i i R R
1 2 1 2
1 2

3 4 5

, ,

cos 2 1, 2 , 2 ,
max maxb b b b= ξ = ξ

Θ = ξ − Φ = πξ γ = πξ

i[ , ]= µM r r� 1 .r−

1 2 3 2n p−

= ±γ

1 2 3 2n a−

= ±γ

along a parabola or straight line is infinitesimal,
though). Notice that in an overwhelming majority of
the works devoted to various methods of finding the
eccentric anomaly as a function of the time, only ellip�
tic orbits are considered (see e.g. the recent paper [37]
and references therein).

The Newtonian equations of motion were inte�
grated by the sixth order Adams–Bashforth method,
while the first five integration steps (after selecting the
initial conditions or after the latest encounter of two
particles) were carried out by the fourth order Runge–
Kutta method. The integration step length was set to
be equal to 10 au. This has turned out to be enough for
very accurate conservation of the total energy and
angular momentum of the ionic pair between two con�
secutive encounters (about 15 significant digits). The
precise instant of the impact was determined by a
series of trial one�step backward integrations of the
equations of motion by the fourth order Runge–Kutta
method.

If the total internal energy   of the

ionic pair between two successive encounters of the
particles is negative, then the corresponding material
point of mass μi moves along an ellipse, if this energy is
positive, then the point moves along a hyperbola.
Within all the complex of the calculations described
below, the minimal eccentricity of such an ellipse was
equal to 0.0008724, while the maximal one differed
from unity by a quantity smaller than 5 × 10–7. The
minimal eccentricity of a hyperbola differed from
unity by a quantity smaller than 5 × 10–6 while the
maximal one was equal to 113.7.

Denote by  and  the initial distances between
the nucleus of the atom R and the nuclei of the Cs+

and Br– ions, respectively. The integration of the equa�
tions of motion was stopped and the program pro�
ceeded to selecting the next collection of the values of
the kinematic parameters bi, bR, Θ, Φ, γ as soon as the
minimum of the two distances between the nucleus of
the atom R and the nuclei of the ions became larger

than  Bohr. If at this instant the total
internal energy Etot of the ionic pair turned out to be
negative, recombination of the Cs+ and Br– ions was
regarded as having occurred (irrespective of the cur�
rent distance between the ion nuclei). While using the
hard sphere model, one has to distinguish clearly
between a three�body collision of the particles (such a
collision is understood as the whole process of interac�
tion of the Cs+ and Br– ions and the atom R from the
initial time instant t = 0 to the termination of integrat�
ing the equations of motion) and pairwise elastic
encounters of the particles (there can be many such
encounters within a single collision event).

For each of the four atoms R = Hg, Xe, Kr, Ar, we
varied each of the energies Ei and ER in the interval
from 1 to 10 eV with a step of 1 eV. It was these ranges

totE i
21 1

2
r= µ −r�

0r
+

0r
−

0 0max( , ) 100r r+ −

+
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of the energies Ei and ER that were used in most of the
works [7–20] on trajectory simulation of direct three�
body recombination (1), although we also considered
larger [7, 9, 10] and smaller [7–10, 13, 18] values of
the energies. Recall that in gas�discharge plasma (the
most representative example of low temperature
plasma [38]), a typical temperature of the electronic
component ranges between 0.5 and 7 eV (in the units
of k–1), whereas the gas temperature (and, conse�
quently, the temperature of the ionic component)
ranges between 0.03 and 3 eV (see Table 1.2 in the
manual [39]).

For each atom R and for each pair of energies
(Ei, ER), we generated N = 500000 events of three�body
collision (3) with bi max = 40 Bohr, bRmax = 20 Bohr (these

maximal values of the impact parameters were used in
the paper [13]) and 500000 three�body collision events
with doubled values bi max = 80 Bohr, bR max = 40 Bohr. In
the sequel, calculations with bi max = 40 Bohr and bR max =
20 Bohr will be referred to as case 1, while calculations
with bi max = 80 Bohr and bR max = 40 Bohr will be
referred to as case 2.

In each of cases 1 and 2, for each of the four atoms
R and for each pair of energy values (Ei, ER), we com�
puted the total recombination probability 
as the ratio of the number N0 of three�body collision
events ending in recombination of the ions (such col�
lisions will be said to be recombinative) to the number
N = 500000 of all the three�body collision events gen�
erated. The adequacy of such a method for finding the

0P N N=

Table 1. Some characteristics of the recombination process within the framework of the hard sphere model

The third body R
Hg Xe Kr Ar Hg Xe Kr Ar

case 1  case 2

0.08135 0.09865 0.07814 0.05432 0.01074 0.01373 0.01123 0.00775

5.40 4.74 3.66 2.02 6.04 5.34 3.96 2.11

13.2 14.3 19.3 183.5 13.7 16.5 28.1 387.7

18.6 18.3 18.0 19.5 19.1 19.0 21.1 23.9

 for 0.04642 0.05896 0.04755 0.03402 0.00305 0.00457 0.00373 0.00209

0.00488 0.00653 0.00577 0.00500 0.00041 0.00055 0.00046 0.00036

 for 0.01505 0.02043 0.01433 0.00936 0.00256 0.00325 0.00264 0.00221

0.00296 0.00400 0.00332 0.00269 0.00029 0.00037 0.00032 0.00033

 for 5.551 5.815 5.920 6.093 1.415 1.660 1.656 1.341

2.997 3.008 2.777 2.263 1.200 1.109 0.864 0.538

 for 3.503 3.921 3.471 3.262 2.327 2.315 2.297 2.786

4.699 5.227 5.734 6.963 1.941 1.943 2.034 3.434

 for 0.10 0.46 0.67 2.41 3.57 4.34 6.30 9.80

 for 0.00 0.00 0.01 0.34 0.81 1.08 1.19 2.23

 for 4.27 7.50 14.37 19.30 9.14 17.83 21.76 21.67

 for 9.13 9.35 8.96 8.92 17.81 16.09 16.37 21.46

 in per cent 35.75 34.60 33.66 30.69 41.90 40.45 39.93 36.37

 in per cent 44.57 45.36 50.70 59.40 47.34 48.85 52.55 59.36

Angle brackets denote the mean value over all the 100 pairs of energies (Ei, ER).
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Table 2. The types of recombinative three�body collisions

Number 
of collisions In per cent  Type

1521776 49.56 (–23)

1060178 34.53 (–13)

150762 4.910 (13, –23)

145311 4.733 (23, –13)

89433 2.913 (12, –23)

46057 1.500 (–23, –13)

26039 0.848 (12, –13)

19845 0.646 (–13, –23)

5010 0.163 (13, 12, –23)

2765 0.0901 (23, 12, –23)

875 0.0285 (23, –13, –23)

861 0.0280 (23, 12, –13)

374 0.0122 (13, 12, –13)

330 0.0107 (–23, –13, –23)

327 0.0106 (13, –23, –13)

269 0.0088 (23, 13, –23)

104 0.0034 (–23, –12, –13)

59 0.0019 (–13, –12, –23)

30 0.00098 (23, –23)

17 0.00055 (–23, 13, –23)

16 0.00052 (–13, –23, –13)

16 0.00052 (13, 23, –13)

11 0.00036 (13, 23, 12, –23)

8 0.00026 (–23, –12, –23)

4 0.00013 (23, 23, –13, –23)

2 6.5 × 10–5 (–13, 23, –13)

2 6.5 × 10–5 (13, –23, –12, –23)

2 6.5 × 10–5 (23, 23, 23, –13, –23)

1 3.3 × 10–5 (23, 23, –13)

1 3.3 × 10–5 (23, 23, 12, –23)

1 3.3 × 10–5 (23, 23, 13, –23)

1 3.3 × 10–5 (–23, –13, –12, –13)

1 3.3 × 10–5 (23, 13, 12, –13)

1 3.3 × 10–5 (23, –13, –23, –13)

The number of collisions in per cent is given with respect to the to�
tal number of recombinative collisions, 3070489.

recombination probability follows from the formulas (5)
which correspond to uniform distributions of the

quantities    Φ, and γ. Moreover, we deter�
mined the dependences of the recombination proba�
bility on each of the kinematic parameters bi, bR, Θ,
and Φ. To this end, the range of the parameter at hand
(   , and

) was divided into a sufficiently large
number of equal subintervals (of a length of 2 Bohr,
2 Bohr, 5°, and 10° for bi, bR, Θ, and Φ, respectively),

and then the ratios  =  were com�

puted, where  ( ) is the number of all the
three�body collisions generated (that of the recombi�
native collisions, respectively), for which the value of
the parameter in question lies inside the subinterval
under consideration. For the impact parameter bi, we

will also write  =  regarding bi

in this equality as the middle of the subinterval under
consideration, and similar notation will also be used
for the kinematic parameters bR, Θ, and Φ. For
instance, the middle of the last subinterval for bi is

 Bohr, and that for bR is  Bohr. Accord�

ing to the formulas (5),  is almost independent

of Φ, whereas the quantities  , and

 are approximately proportional to bi, bR, and
, respectively. Since our selection procedure for

the initial conditions of a three�body collision is sym�
metric with respect to the Oxy plane, the approxi�

mate equality  ≈  holds for any
angle Φ. We did not examine the dependence of the
recombination probability on the orientation angle γ.

Recall that the dependences  and 
of the recombination probability on the impact
parameters are called the opacity functions, see the the�
sis [10] and references therein. It is important to note
that the opacity function in bi depends on bR max and
the opacity function in bR depends on bi max.

3. RESULTS OF THE CALCULATIONS

One of the most important characteristics of direct
three�body recombination is the dependence of the
total recombination probability P on the ion approach
energy Ei and the third body energy ER. In Table 1, for
R = Hg, Xe, Kr, Ar and for both cases 1 and 2, we
present the probability P for the lowest values of these
energies, Ei = ER = 1 eV, as well as the ratios of the
recombination probability at Ei = ER = 1 eV to the
recombination probabilities at Ei = 1 eV, ER = 10 eV, at
Ei = 10 eV, ER = 1 eV, and at Ei = ER = 10 eV. As is seen
in Table 1, at Ei = ER = 1 eV in both cases 1 and 2, the
heavier the third body R is (and, consequently, the
stronger on the average the total internal energy Etot of
the ionic pair changes at an encounter of the atom R
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with one of the ions), the higher is the probability P,
on the whole. An increase in the recombination prob�
ability as one passes from Hg to Xe is caused by the fact
that the atomic radius of a mercury atom is signifi�
cantly smaller than that of an atom of any of the three
inert gases considered [31–33]. The heavier the third
body is, the faster the probability P decreases as ER
grows at the fixed energy Ei = 1 eV. On the other hand,
one observes the opposite trend as Ei increases at ER =
1 eV, namely, the heavier the third body is, the more
slowly the recombination probability decreases (but
this decrease is always much stronger than that as ER
grows for Ei = 1 eV). On the whole, for each of the four
atoms R, the functions P(Ei, ER) in case 1 and in case 2
are very similar (up to a certain proportionality factor,
see below). Figures 1 and 2 show the dependences of
the recombination probability P on the energies Ei and
ER in case 2 for R = Hg and R = Ar, respectively.

As our calculations prove, the recombination prob�
ability P depends on Ei much stronger than on ER.
Therefore, at any fixed value of the third body energy
ER, the probability P decreases monotonously as the
ion approach energy Ei grows, for each of the four
atoms R in both cases 1 and 2. On the other hand, we
observed pairs (Ei, ER) of values of the energies Ei ≥ 2 eV
and ER ≤ 9 eV for which P(Ei, ER + 1 eV) > P(Ei, ER).
The existence of such pairs cannot be attributed to sta�
tistical errors: the almost inexplicable trend of an
increase in the recombination probability as the third
body energy ER grows manifests itself regularly. The
higher Ei, the lower ER, and the lighter the atom R is,
the stronger this trend is pronounced, on the whole.
For instance, for R = Ar in both cases 1 and 2, for 5 ≤
Ei ≤ 10 eV, the probability P increases monotonously as

ER rises in the interval 1 ≤ ER ≤ 8 eV, while for Ei =
10 eV, it increases monotonously in the whole interval
1 ≤ ER ≤ 10 eV (see Fig. 2).

A comparison of the function P(Ei, ER) for R = Xe
in case 1 with the results of the trajectory calculations
carried out for R = Xe at the same values bi max = 40 Bohr,
bR max = 20 Bohr of the maximal impact parameters
(see Fig. 2b in the paper [13]) shows an approximate
equality of the “trajectory” and “hard sphere” recom�
bination probabilities. For instance, at Ei = ER = 1 eV,
the “hard sphere” probability P is equal to 0.09865
(see Table 1) and the “trajectory” one is slightly less
than 0.09. The axes labels Eini(Cs+–Br–) (Ei in the
notation of the present paper) and Erel(Xe–CsBr) (ER in
the notation of the present paper) in the histogram of
Fig. 2b in [13] are interchanged. Taking this misprint
into account, Fig. 2b in [13] allows us to conclude that
for R = Xe, like the “hard sphere” recombination prob�
ability, the “trajectory” recombination probability P
decreases much faster as Ei grows at fixed small values of
ER than as ER increases at fixed small values of Ei.

Note that Fig. 2a in the paper [18] shows a histo�
gram of the function P(Ei, ER) for R = Xe obtained in
trajectory calculations with bi max = 40 Bohr and bRmax =
100 Bohr. Since recombination with R = Xe is virtually
absent in trajectory simulation of the one�stage pro�
cesses (1) for bR > 20 Bohr, the ratio P(Fig. 2b in
[13])/P(Fig. 2a in [18]) is equal to (100/20)2 = 25 for
all values of Ei and ER with a high accuracy.

Another extremely important characteristic of
direct three�body recombination is the dependence of
the minimum possible total internal energy Emin of the
molecule obtained on the ion approach energy Ei and
the third body energy ER. The function Emin(Ei, ER) is
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Fig. 2. The dependence of the total recombination probability P on the energies Ei and ER in case 2 for R = Ar.



776

RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B  Vol. 8  No. 6  2014

ERMOLOVA et al.

more sensitive to the process dynamics than P(Ei, ER)
because it involves no averaging over kinematic
parameters. For each atom R and for all the pairs of
energies (Ei, ER), we determined the minimum E0 of
the total internal energy of the resulting bound pair of
the Cs+ and Br– ions over all the recombinative three�
body collisions we generated. However, for all atoms
R, the minimum E0 we found turned out to depend on
the energies Ei and ER in a rather chaotic manner in
case 1 as well as in case 2. This fact enables one to con�
clude that E0 exceeded considerably the real minimum
Emin almost always. To find Emin, one has either to gen�
erate a much larger number, by orders of magnitude,
of three�body collision events for each energy pair (Ei,
ER) or to make use of gradient�free optimization
methods well known in numerical analysis [19, 40–
42] for functions in many variables. The objective
function here is the dependence of the total internal
energy of the resulting bound pair of the Cs+ and Br–

ions on the kinematic parameters of the collisions.
Within the framework of trajectory simulation of
direct three�body recombination (1), the second
approach was successfully employed for central [12,
13, 16, 17, 19, 20] as well as for non�central [13, 19]
approach of the ions. Note, however, that in the calcu�
lations described in the present work, the inequality
E0(case 1) < E0(case 2) held for almost all R, Ei, and ER.
This fact allows one to conjecture that the real mini�
mum Emin is attained at bi < 40 Bohr and bR < 20 Bohr.

Of course, an overwhelming majority of the
nascent bound pairs of the Cs+ and Br– ions in our cal�
culations possessed a rather noticeable amount of
internal energy. The a priori minimal total internal
energy of the ionic pair corresponds to motionless tan�
gent balls representing the Cs+ and Br– ions and is
equal to E

ω
 = –3.966842 eV. In our calculations, the

proportion of the recombinative three�body collisions
for which the total internal energy Etot < 0 of the result�
ing bound ionic pair exceeded E

ω
/20 = –0.198342 eV

ranged between 19.15 and 53.85% depending on R, Ei,
ER, and the case under consideration (1 or 2).

The question at what maximal values of the impact
parameters bi and bR recombination is possible is
rather non�trivial. In test calculations performed in
quasiclassical trajectory simulation of the reaction (1)
with R = Xe [13], we observed recombination neither
for bi > 40 Bohr nor for bR > 20 Bohr, and this fact was
the reason why the values bi max = 40 Bohr and bR max =
20 Bohr were used in the paper [13]. On the other
hand, in the works [12, 19], we carried out a purpose�
ful analysis (making use of a special algorithm) of the
region of the occurrence of recombination in the space
of the kinematic parameters in trajectory calculations.
It was found that even for central approaches of the ions
(bi ≡ 0), recombination (1) for R = Xe and Hg at low
energies Ei and ER is possible at very large values of the
impact parameter bR of the third body, up to 40.5 Bohr
(but to such values of bR, there correspond very narrow
intervals of the Θ and Φ angles).

It has not been our goal in the present paper to
determine the extreme values of the parameters bi and
bR for which recombination can occur within the hard
sphere model. The similarity of the dependences of the
recombination probability P on the energies Ei and ER

in cases 1 and 2 (for each of the four atoms R) men�
tioned above indicates that, in principle, one could
have confined oneself with considering case 1 to figure
out characteristic features of the “hard sphere”
recombination dynamics. Nevertheless, impact
parameters bi between 40 and 80 Bohr and impact
parameters bR between 20 and 40 Bohr also contribute
to the reactions (3). Indeed, otherwise the probability
ratio λ = P(case 1)/P(case 2) for all R, Ei, and ER

would be approximately equal to  Actually
this ratio, with few exceptions (however, the lighter the
atom R is, the larger is the number of these excep�
tions), lies between 7.3 and 9.3. The minimal value of
the ratio λ we met with is equal to 6.484, while the
maximal one is equal to 18.417 (large values of this
ratio are typical for low energies ER). At Ei = ER = 1 eV,
the ratio λ is equal to 7.572, 7.183, 6.957, and 7.006 for
R = Hg, Xe, Kr, and Ar, respectively (see Table 1). The
mean value of the ratio λ over all the 100 energy pairs
(Ei, ER) is equal to 8.383, 8.266, 8.369, and 8.933 for
R = Hg, Xe, Kr, and Ar, respectively.

That three�body collisions with impact parameters bi
between 40 and 80 Bohr or with impact parameters bR
between 20 and 40 Bohr make a rather noticeable con�
tribution to recombination can also be deduced from a
straightforward analysis of the opacity functions. Con�
sider the values

(  – 1 Bohr) 

and

(  – 1 Bohr)

of the opacity functions at the middle of the last sub�
interval for the impact parameter bi of ion approach
and for the impact parameter bR of the third body,
respectively. In Table 1 for R = Hg, Xe, Kr, Ar and for

both cases 1 and 2, we present the quantities  and 
at Ei = ER = 1 eV as well as the mean values of these
quantities over all the energy pairs (Ei, ER). As is seen

in Table 1, although the numbers  and  in case 2
are systematically much smaller than those in case 1,
they are nevertheless not negligibly small. The opacity
functions for both the impact parameters bi and bR

within the hard sphere model are characterized by
much longer “tails” than in trajectory calculations.

One more way to estimate the “tails” of the opacity
functions consists in considering the ratios
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and

which express the proportions (in per cent) of the
recombinative three�body collisions for which the
impact parameter bi or the impact parameter bR,
respectively, lie in the last subinterval. In Table 1 for
R = Hg, Xe, Kr, Ar and for both cases 1 and 2, we

present the numbers  and  at Ei = ER = 1 eV as well
as the mean values of these numbers over all the energy

pairs (Ei, ER). As is seen in Table 1, the numbers  and

 in case 2 are systematically smaller than those in
case 1, but they are of the same order of magnitude

(this refers especially to ).
There is the trend of a shift to the right of the max�

imum of the opacity function  for the impact
parameter bi of ion approach as the atom R mass
decreases. For R = Hg, for most of the pairs (Ei, ER),

the function  attains its maximum at bi = 1 or
3 Bohr in case 1 and at bi = 3 Bohr in case 2. For R =
Ar in case 1 and for R = Kr, Ar in case 2, for many pairs

(Ei, ER), the function  attains its maximum at
rather large values of bi equal to 11, 13, or 15 Bohr. The

opacity function  for the impact parameter bR

of the third body does not exhibit such a trend. Only
note that the situations where the maximum of the

function  is attained at the smallest value bR =
1 Bohr of the impact parameter are much more typical
for case 1 than for case 2.

The functions  and  which express
the dependence of the recombination probability on
the Θ and Φ angles exhibit bimodality for some R, Ei,
and ER, i.e., the presence of two distinct maxima. To
automate an analysis of a large collection of such func�
tions (recall that in each of cases 1 and 2, recombina�
tion was simulated for four atoms R and for 100 energy
pairs (Ei, ER)), one needs formal and easily comput�
able measures of bimodality for sequences of numbers

 Several measures of this kind have been
described in the literature (see e.g. the review [43]). As
a rule, those measures are based on calculating the
skewness and excess coefficients of the sequence at
hand (these coefficients are discussed in e.g. the man�
ual [44]). In the present paper, we have used a more
visual measure of bimodality of a sequence of numbers
(this measure is probably new).

Let  be a sequence of non�negative
numbers (n ≥ 2). A term xj of this sequence is a non�
strict local maximum whenever  ≥ 
for j = 1 or j = n, the inequalities  or ,
respectively, should be valid. If the sequence possesses
just a single local maximum, then the degree β of its
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bimodality is regarded as being zero. Let the number
of the local maxima be larger than one. Consider an
arbitrary pair (xk, xm) of local maxima (k < m). To each
such pair, assign the number  in the following way.
If  then  On the other hand, if

 then denote by  =  the min�
imum of the two numbers xk and xm and set

(6)

where

In other words, each term xj of the sequence with
index j intermediate between k and m makes a contri�

bution to  equal to  if  and equal
to zero otherwise. The factor 100 in the formula (6) has
been chosen for convenience reasons. The degree β of
bimodality of the sequence  will be
defined to be the largest of the numbers  over all the
pairs (xk, xm) of local maxima. It is easy to see that the
bimodality degree β ranges between 0 and 100 and
does not change as one multiplies all the terms of the
sequence by one and the same positive number. On the
other hand, if one adds one and the same number δ > 0
to all the terms of the sequence, the bimodality degree β
will either remain to be zero or decrease because after
such an action, all the values  will remain
unchanged whereas X will increase by nδ. One can
show that β is a continuous function of the numbers

If the number of well pronounced maxima of the
sequence is greater than two, then the value of β for
such a sequence is rather large as well, but all the
bimodality measures considered in the review [43]
probably possess this property. It is not hard to gener�
alize the bimodality degree β to distributions defined
on an interval rather than on a discrete set.

The probability distribution  consists of n =
20 numbers in case 1 and of n = 40 numbers in case 2.

The probability distribution  consists of n = 10
numbers in case 1 and of n = 20 numbers in case 2. The

probability distribution  always consists of n =
36 numbers. One can estimate the bimodality degree
of these distributions straightforwardly by calculating
the quantity β. An analysis of the probability distribu�

tion  which always consists of n = 36 numbers
as well is more delicate. The reason is that the period�
icity of the spherical frame in the azimuthal angle Φ
can give an illusion of bimodality which is absent in
reality. For example, suppose that the probabilities
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 are large for angles Φ close to 0° and to 360°
and are small for the intermediate angles. Such a prob�
ability distribution seems to be bimodal but in fact it
has the only maximum at the point Φ = 0°. Indeed, if
the values of the kinematic parameters Ei, ER, bi, bR,
Θ, γ are fixed then, as  and as , we
are approaching, from different directions, the same
collection of initial conditions of a three�body colli�
sion of the particles (see Section 2). A similar phe�
nomenon is also possible for a larger number of max�
ima. For instance, if the distribution of recombination
probabilities with respect to Φ admits two maxima at
the points Φ = 0° and Φ = 180°, then the impression
can be created that there are three maxima (such situ�
ations are exemplified by line 3 in Fig. 3). Therefore,

as the bimodality degree of the distribution , one
has to use the minimum of the quantities β correspond�
ing to this sequence itself and to all its 35 cyclic permuta�

tions. We will denote this bimodality measure by 
Recall that the cyclic permutations (or cyclic shifts) of a
sequence  are by definition the n – 1
sequences   …,  …,

 [45].

In Table 1 for R = Hg, Xe, Kr, Ar and for both cases 1
and 2, we present the bimodality degrees β of the prob�

ability distributions    and
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the bimodality degree  of the distribution 
The bimodality degrees are averaged over all the
energy pairs (Ei, ER).

It is seen in Table 1 that the opacity functions are
bimodal neither for bi nor for bR, on the whole. The
bimodality degrees of the distributions of recombina�
tion probabilities with respect to the Θ and Φ angles
are significantly higher on the average, especially in
case 2. For some R, Ei, and ER, the quantity β for

 attains a value of 30 or even 50. The region of

high values of β for  on the (Ei, ER) plane is
approximately a wide strip parallel to the straight line
Ei = ER. This strip shifts towards the point Ei = 10 eV,
ER = 1 eV as the mass of the atom R increases. The

quantity  for  for some R, Ei, and ER attains a

value of 35 or 40. High values of  are typical mainly
for low energies Ei as well as (for R = Kr and Ar) for
low energies ER.

As an example, Fig. 3 shows two functions 

and two functions  in case 1 for various R, Ei,
and ER. The small oscillations in these dependences
are due to statistical inaccuracies.

Note that in trajectory simulation of the reaction (1)
with R = Xe for non�central approach of the ions, the
typical distributions of recombination probability with
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respect to the impact parameter bR of the third body
and to the Θ angle turn out to be unimodal (i.e., each
of them has a single distinct maximum) and those with
respect to the Φ angle turn out to be bimodal [13, 18].
In contrast to that, for central approach of the ions
(bi ≡ 0), the “trajectory” distributions of recombina�
tion probability with respect to bR are bimodal for any
of the atoms R = Hg, Xe, Kr [8–10, 13] (the two max�
ima in these distributions correspond to two different
recombination mechanisms).

4. TYPES OF THREE�BODY COLLISIONS

In an analysis of the dynamics of direct three�body
recombination by the quasiclassical trajectory
method, a description of the configurations of the
three particles during energy transfer from the ionic
pair to the third body plays a great role [7–20]. In hard
sphere simulation of recombination, three�body con�
figurations have only kinematic meaning but not
dynamical one, because the atom R interacts with
each of the ions at the instant of direct contact only.
On the other hand, for each three�body collision
event, the hard sphere model enables one to determine
absolutely unambiguously the sequence of pairwise
encounters of the balls representing the particles Cs+,
Br–, and R. Treating the Cs+ ion as the first particle,
the Br– ion as the second one, and the atom R as the
third one, we will encode any such encounter by one
of the six numbers 12, –12, 13, –13, 23, and –23
according to the following rule. An encounter of the
ions with each other is denoted by one of the numbers
12 or –12, an encounter of the Cs+ ion with the atom R,
by one of the numbers 13 or –13, an encounter of the
Br– ion with the atom R, by one of the numbers 23 or
–23, while the sign of the number coincides with the
sign of the total internal energy Etot of the ionic pair
after the encounter.

Any recombinative three�body collision includes at
least one encounter of the code –13 or –23, and after
all the encounters of the atom R with the ions, some
more encounters of the ions with each other of the
code –12 are possible. Within the framework of a non�
recombinative three�body collision, after all the
encounters of the atom R with the ions, one more
encounter of the ions with each other of the code 12 is
possible. While assigning a sequence of the numbers
encoding the pairwise encounters of the particles to a
three�body collision, we will not take into account
these final encounters of the ions with each other (they
do not change the total internal energy of the ionic
pair). The sequence of numbers thus obtained will be
called the type of the three�body collision.

For instance, a collision of the type (13, –23) is
recombinative and includes an encounter of the Cs+

ion with the atom R leaving the energy Etot positive, an
encounter of the Br– ion with the atom R changing the
sign of the energy Etot, and possibly some more

encounters of the ions with each other of the code –12. A
non�recombinative collision of the type  (an empty
sequence) either does not include encounters of the
particles at all or includes the only encounter of the
code 12. The “longest” type we met with was the
sequence (23, 23, 23, 23, 23, 23, 23, 23, 23). We
observed only one collision of this type, and during
that non�recombinative collision, nine encounters of
the Br– ion with the Hg atom occurred.

Of course, as a result of a recombinative three�body
collision, a bound ionic pair remains after all the
encounters of the atom R with the ions, and in this
pair, either no encounters of the ions with each other
occur at all or the ions undergo infinitely many
encounters. However, before the termination of inte�
grating the equations of motion according to the algo�
rithm presented in Section 2, only a finite number
(usually no greater than ten) of such encounters of the
code –12 have time to happen. The maximal number
of such encounters in our calculations took place for
one of the collisions with R = Kr and was equal to
1324.

All the totality of the calculations described in this

work comprises  × 4 × 100 × 500000 
three�body collision events, here one takes into
account two cases (1 and 2), four different atoms R,

and 100 energy pairs (Ei, ER). Of these  three�
body collisions, 3070489 collisions (0.7676%) of
34 different types turned out to be recombinative. All
the types of recombinative collisions we observed are
listed in Table 2 (in the descending order of the num�
bers of collisions belonging to the types in question).
In this table as well as in Table 3 below, we present exact
numbers of collisions of various types we met with in

∅

2allN =

84 10= ×

84 10×

Table 3. The fifteen most frequently occurring types of
non�recombinative three�body collisions

Number of collisions In per cent Type

337533617 85.04 ∅

29165971 7.348 (13)
27248230 6.865 (23)

1166056 0.294 (23, 13)
925488 0.233 (13, 23)
439401 0.111 (12, 23)
223502 0.0563 (12, 13)

59961 0.0151 (–23, 13)
39858 0.0100 (–13, 23)
32631 0.0082 (13, 12, 23)
23868 0.0060 (23, 13, 23)
21507 0.0054 (23, 12, 23)
14709 0.0037 (23, 12, 13)
14603 0.0037 (13, 23, 13)
11634 0.0029 (13, 12, 13)

The number of collisions in per cent is given with respect to the to�
tal number of non�recombinative collisions, 396929511.
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our calculations. If the proportion of the collisions of
a certain type among all the Nall collisions turns out to
be equal to η ( ), then the statistical inaccu�

racy of the quantity η is of the order 
[44].

As is seen in Table 2, an overwhelming majority
(84.0893%) of recombinative collisions belong to the
types (–23) and (–13). Collisions of these types
include the only encounter of the atom R with one of
the ions (without a preceding encounter of the ions
with each other possible for small values of bi only). As
a result of this encounter, excess energy transfers from
the ionic pair to the neutral atom. The energy removal
occurs more frequently in an encounter of the atom R
with the Br– ion than in that with the Cs+ ion, which is
due to two reasons. First, a Br– ion is lighter than a Cs+

ion, so that in an encounter with the third body, the
velocity of the Br– ion changes stronger on the average
(and, consequently, the relative velocity of the two ions
and the total internal energy Etot of the ionic pair change
stronger as well). Second, the ionic radius of a Br– ion is
larger than that of a Cs+ ion [30], so that it is easier for the
atom R to “touch” the Br– ion. The next in frequency are
the collision types (13, –23) and (23, –13) correspond�
ing to the situation where the atom R encounters first
one of the ions and then the other ion, and excess
energy transfers from the ionic pair to the neutral atom
at the instant of the second encounter. The four types
just mentioned put together cover 93.7319% of all the
recombinative collisions.

The number of different types of non�recombina�
tive three�body collisions we observed was equal to 61.
The fifteen most frequently occurring types are listed
in Table 3 (in the descending order of the numbers of
collisions belonging to the types in question). These
15 types cover 99.9979% of all the non�recombinative
collisions. An overwhelming majority (85.0362%) of
non�recombinative collisions belong to the type 
(the neutral atom R flies past the ionic pair without
having “touched” any of the ions). The dynamics of
non�recombinative collisions of the types (–23, 13)
and (–13, 23) is of special interest. Such collisions
correspond to the situation where an impact of the
atom R with one of the ions stabilizes the ionic pair,
but after the subsequent encounter of the atom R with
the other ion the total internal energy Etot of the ionic
pair becomes positive again.

Table 1 presents the proportions of the three�body
collisions of the types (–13) and (–23) among all the
recombinative collisions with a given atom R within
the framework of one of cases 1 and 2. These propor�
tions are denoted by  and  As is seen in Table 1,
the lighter the third body R is, the smaller is the pro�
portion of the collisions of the type (–13) among all
the recombinative three�body collisions and the larger
is the proportion of the collisions of the type (–23).
Indeed, the smaller the mass of the atom R is, the
more slightly on the average the total internal energy

0 1< η <

1 2[ (1 ) ]allNη − η

∅

13Z
− 23.Z

−

Etot of the ionic pair changes at an encounter of this
atom with one of the ions. Such an effect takes place
for both the ions, but it is pronounced much stronger
at encounters of R with the heavy ion Cs+ than at
encounters of R with the lighter ion Br–. Therefore, as
the mass of the atom R decreases, the role of the
encounters of R with Br– in the recombination process
increases and the role of the encounters of R with Cs+

falls off, although the inequality  <  holds even
for the heaviest third body R = Hg.

The relative contributions of the three�body colli�
sions of the types (–13) and (–23) to the total recom�
bination probability depend very strongly on the ion
approach energy Ei and the third body energy ER. A
possible reason is that for some energy pairs (Ei, ER),
the encounter of the atom R with the ion occurs
mainly when the ions approach each other, whereas
for the other pairs, it happens when the ions move
away from each other. Denote by  and

 the proportions of the three�body colli�
sions of the types (–13) and (–23), respectively,
among all the recombinative collisions (3) with a given
atom R and given energies Ei and ER within the frame�
work of one of cases 1 and 2. As the energy Ei

increases, the quantity  decreases on the
whole while the quantity  grows. As the
energy ER increases, the opposite trends are observed,
namely, the quantity  grows on the whole
while the quantity  falls off. It is not hard to
express these trends in a quantitative form. The ine�
quality  eV,  <  holds in 590
situations out of 2 × 4 × 10 × 9 = 720, here one takes
into account two cases (1 and 2), four different atoms
R, 10 values of the energy ER, and 9 values of the energy
Ei. The inequality  eV,  > 
holds in 611 situations out of 720. The inequality

(  eV) >  holds in 624 situations
out of 720, and the inequality (  eV) <

 holds in 592 situations out of 720.

For high values of ER and low values of Ei, the pro�
portion  usually exceeds  espe�
cially for R = Hg, Xe, and Kr, despite the inequality

 <  which expresses the relation between the
contributions of the collisions of the types (–13) and
(–23) after summing over the energies. On the con�
trary, for high values of Ei and low values of ER, very
small (less than 10%) values of the quantity

 are typical. The lighter the third body R is,
the more pronounced is this effect. For instance, for
R = Ar in case 1 for the energy pairs (Ei, ER) = (4, 1),
(5, 1), (6, 1), (6, 2), (7, 1), (7, 2), (7, 3), (8, 1), (8, 2),
(8, 3), (9, 1), (9, 2), (9, 3), (9, 4), (10, 1), (10, 2), (10, 3),
(10, 4), and (10, 5) (in eV), we observed no recombi�
native collisions of the type (–13) at all.

13Z
− 23Z

−

i R13( , )E E
−

ζ

i R23( , )E E
−

ζ

i R13( , )E E
−

ζ

i R23( , )E E
−

ζ

i R13( , )E E
−

ζ

i R23( , )E E
−

ζ

i13( 1E
−

ζ + R)E i R13( , )E E
−

ζ

i23( 1E
−

ζ + R)E i R23( , )E E
−

ζ

13−

ζ i R, 1E E + i R13( , )E E
−

ζ

23−

ζ i R, 1E E +

i R23( , )E E
−

ζ

i R13( , )E E
−

ζ i R23( , ),E E
−

ζ
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− 23Z

−

−

ζ i R13( , )E E
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5. CONCLUSIONS

The calculations we carried out have shown that
the hard sphere model allows one to reproduce many
characteristic features of the dynamics of direct three�
body recombination of ions, in particular, the shape of
the dependence P(Ei, ER) of the total recombination
probability P on the ion approach energy Ei and the
third body energy ER, unimodal opacity functions in
the impact parameter bR of the third body, and bimo�
dal dependences of the recombination probability on
the azimuthal angle Φ. This implies that one can cer�
tainly use the hard sphere model to clarify those
aspects of the three�body recombination dynamics
that are difficult to be separated “in pure form” in qua�
siclassical trajectory calculations. Although, as a
research tool, hard sphere simulation is much cruder
than the conventional method of classical trajectories,
the essential advantages of hard sphere models are,
first, a higher speed of calculations, second, the possi�
bility of studying mass and orientation effects irrespec�
tive of the PES topography, third, the possibility of an
unambiguous classification of the collisions according
to the sequences of pairwise encounters of the particles
(an analogous classification of the trajectories cannot
be performed without a certain arbitrariness), and
fourth, visuality [27].

In the present paper, we have not employed these
advantages to a full extent, because we examined the
recombination reaction mainly on the statistical level,
with a selection of the kinematic parameters of the
collision according to the formulas (5). In recent
years, within the framework of the classical trajectory
method, the detailed dynamics of elementary pro�
cesses (dynamics within a single trajectory) has been
developed, where averaging over kinematic parame�
ters is reduced to a minimum or absent at all [8, 11, 14,
15, 18–20, 46]. What can be the hard sphere analogue
of the detailed dynamics of a reaction is the detailed
kinematics, i.e., an analysis of the evolution of the
mutual arrangement of the particles (in our situation,
the particles are the ionic pair and the third body
which moves under no forces in the time intervals
between the encounters with the ions) during a single
collision event. We are going to carry out such an anal�
ysis in subsequent publications. In particular, it will
hopefully enable one to explain the dependences of
the relative contributions of recombinative collisions
of various types on the energies Ei and ER.

The authors are grateful to V. M. Azriel for fruitful
discussions. 
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