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Abstract—We present a novel computational ligand-based virtual screening approach with scaffold hopping
capabilities for the identification of novel inhibitors of β-lactamases which confer bacterial resistance to β-lac-
tam antibiotics. The structures of known β-lactamase inhibitors were used as query ligands, and a virtual in
silico screening a database of 8 million drug-like compounds was performed in order to select the ligands with
similar shape and charge distribution. A set of numerical descriptors was used such as chirality, eigen spec-
trum of matrices of interatomic distances and connectivity together with higher order moment invariants that
showed their efficiency in the field of pattern recognition but have not yet been employed in drug discovery.
The developed scaffold-hopping approach was applied for the discovery of analogues of four allosteric inhib-
itors of serine β-lactamases. After a virtual in silico screening, the effect of two selected ligands on the activity
of TEM type β-lactamase was studied experimentally. New non-β-lactam inhibitors were found that showed
more effective inhibition of β-lactamases compared to query ligands.
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INTRODUCTION
The aim of drug discovery is the identification of

novel compounds active against selected protein tar-
gets. Many hit compounds identified by high through-
put screening or virtual screening cannot be developed
further due to their poor metabolic and/or physico-
chemical properties, high toxicity or low oral bioavail-
ability [1]. In this case new compounds with similar
biological activity and certain similarity in shape,
pharmacophore features or electrostatic potentials
with respect to the reference compound, could be of
high interest even if they belong to different chemical
classes. The identification of compounds with similar
biological activity but different core elements of their
structure is known as a scaffold hopping [2, 3]. During
last decade the technique has become widely used in
drug discovery today, and the amount of dedicated
publications has increased rapidly [4, 5].

One of the outstanding challenges in virtual
screening is the development of a fast and robust algo-
rithm to search large molecular databases and identify
hit compounds with desired biological activity. Until
now, different ligand-based virtual screening methods

with scaffold hopping capabilities have been proposed.
These methods can be separated into alignment-free,
descriptor vector-based methods, fragment matching
and reduced graphs, fragment replacement and meth-
ods generating ligand alignments in three-dimen-
sional (3D) space [1]. The (USR) [6], spherical har-
monics [7] and auto-correlation vectors (alignment-
free descriptor vector-based methods include those
based on fingerprints [8–11]), shape descriptors [10].

The most widely used fingerprint-based methods
characterize molecules by their 2D fragment substruc-
tures [8]. The fragments can be defined based on a dic-
tionary (BCI fingerprints) [1], systematically
extracted connection paths (Daylight fingerprints) [1,
11], and circular substructures such as extended con-
nectivity fingerprints (ECFPs) [1, 9]. The similarity
between two molecules is computed by the number of
identical substructural fragments [1]. Despite the low
computational costs, fingerprint representations have
limited capacity, do not scale well with increasing
compound complexity, depend strongly on a set of
predefined features, and have poor scaffold-hopping
performance [8, 12].
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As the affinity of a ligand to a given protein is
defined by interactions in 3D space, various methods
making use of 3D features have been proposed [13–
15]. In contrast to the descriptor vector-based meth-
ods, the 3D-methods capture conformational f lexibil-
ity of the ligands, their shape and functional features,
required for the biological interaction. Of particular
interest is the potential of such methods to provide
scaffold hopping—the identification of molecules
based on a different chemical sub-structure, but mak-
ing similar interactions with the target [16]. Many 3D
similarity methods implement virtual screening
through alignment of ligands in three-dimensional
space. These approaches describe molecules by a set of
descriptors, among which the most common ones are
field-based (GRID) [17], shape-based (ROCS) [14,
15] and pharmacophore-based (FEPOPS) [18] repre-
sentations of the molecules. Optimization methods
are subsequently applied to find the best overlay of
molecular structures [19].

The available 3D similarity methods require a high
computational power due to the complexity associated
with the ligand flexibility and with determination of
the optimal 3D alignment [19]. It has been reported
that few hundreds of conformers are needed to cover
efficiently biologically active conformations of a
ligand [19, 20]. Efficient computational approaches
applicable to databases with millions of small-mole-
cule compounds are urgently required.

One of the first examples of successful application
of scaffold hopping is a discovery of tramadol, a potent
analgesic, which works similar to its parent molecule
morphine, but shows reduced side effects [3, 21]. The
possibility for discovering structurally novel com-
pounds from known active drugs is of high interest for
treatment of a growing number of the microbial infec-
tions—such as pneumonia, tuberculosis and salmo-
nellosis; and to combat antibiotic resistance [22].

Microbial antibiotic resistance represents a global
threat and serious challenge for modern medicine [23,
24]. Modification of antibiotic molecules is one of the
most widely-spread bacterial mechanisms of antibi-
otic resistance [25, 26]. The most used β-lactam anti-
biotics such as penicillins, cephalosporins and carbap-
enemes loose their effectiveness due to the production
of bacterial β-lactamase enzymes that hydrolyse anti-
biotic β-lactam ring thus making it inactive [27]. One
of the main routes to combat antibiotic resistance is to
design novel beta-lactamase inhibitors and use them
in combination with antibiotics [28]. First inhibitors
(clavulanic acid, sulbactam, tazobactam) binding
covalently to the β-lactamase active site serine are
themselves β-lactams [29, 30]. These inhibitors are
actively used in clinical practice, but their number is
limited and they have narrow specificity for β-lact-
amases [31].

In addition, the widespread use of inhibitors led to
the emergence of mutant forms of β-lactamases, capa-
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ble of deacylating of enzyme complexes with an inhib-
itor, and as a result becoming resistant to their action.
A new strategy is currently being developed for the
search for inhibitors acting on the active center of
enzymes but not containing the β-lactam ring [32].
Compounds of the class of diazabicyclooctanes (avi-
bactam and relebactam) were found to be the most
effective, they form carbamyl-enzyme complexes with
a catalytic serine, which then undergo slow reversible
recycling with the release of the inhibitor molecule
[33, 34]. Derivatives of boronic acids (vaborbactam),
which are inhibitors of the transition state of the com-
plex of the enzyme with the antibiotic, are also actively
studied as new inhibitors of β-lactamases [35–37].
However, the structure of these compounds is still
based on the structure of known antibiotics, and resis-
tance to these inhibitors has already been discovered
[38, 39].

There is a clear pressing need for the discovery of
novel non-β-lactam inhibitors. We note that only a
small number of non-β-lactam inhibitors of various
types of β-lactamases have been discovered till now
[40, 41].

The aim of this work was to search for analogues of
known allosteric inhibitors using a new approach for
computational screening. We attempted to mimic in
silico an inverse process to the one nature uses in vivo
throughout the evolution of antibiotic resistance.
Given the fact that bacteria mutate β-lactamase
enzymes to hydrolyse different β-lactam antibiotics
more effectively, we set out to mutate the inhibitors so
that their shape and charge distribution remain
roughly preserved while the scaffold may change thus
allowing to find new inhibitors for the given target
enzyme. We describe a newly developed scaffold hop-
ping approach for 3D ligand-based virtual screening
and present its application for a search of novel non-
covalent β-lactamase inhibitors. Known allosteric
inhibitors of class A β-lactamases were investigated as
starting molecules. Ligands selected on the basis of
virtual screening were experimentally studied using
recombinant TEM type β-lactamases of molecular
class A.

MATERIALS AND METHODS

Database of Molecular Structures of Potential Ligands 
for Virtual Screening

An in-house database contains 8 million commer-
cially available drug-like compounds from various
chemical suppliers (Amri, Asinex, Bionet, Chem-
block, Chembridge, ChemDiv, Chemti, Enamine,
Florida, Fluorochem, Matrix, Maybridge, Nanosyn,
Oakwood, Otava, Specs, TimTec, Ukrorgsynth). The
size of the molecules varies from 5 to 100 non-hydro-
gen atoms. The database was created at the Chemical
Biology Core Facility (EMBL, Heidelberg, Ger-
many).
S B: BIOMEDICAL CHEMISTRY  Vol. 14  No. 2  2020
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Fig. 1. The flowchart of the scaffold hopping algorithm approach.
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Scaffold Hopping Screening Approach

Numerical values of the descriptors were calculated
for the ligands contained in the database, up to 200
different conformations were considered for each
structure. The set of numerical descriptors (Table 1)
includes general characteristics of the molecule, chi-
rality, moments of one-dimensional distribution of
distances between atoms, and moments of a higher
order that were not previously used to search for ligand
structures.

The algorithm of a scaffold hopping approach is
presented in Fig. 1. The input is a set of shape descrip-
tors for a query ligand compound. They are computed
and compared to those for all compounds in the data-
base. A shape similarity score is computed for each
database compound in its best-matching conforma-
tion. This forms the basis of the pattern-recognition
technique employed: if a ligand from the database
yields features similar to those computed from a query
compound, the atomic structure of the ligand and its
shape can be regarded as similar to that of the query
BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B:
compound. The ligands with the highest shape simi-
larity scores are selected and output.

Shape Descriptors

We use a number of numerical descriptors of
molecular shape and topology (Table 1). Table 1 con-
tains the examples of descriptor values for three chem-
ical compounds (ligands 1, 2, 3) with an equal number
of atoms and different molecular structures (linear,
planar and cyclic). Some of these descriptors have
been used within the pattern recognition tools imple-
mented in the ARP/wARP software for building of
macromolecular structures in crystallographic and
cryo-electron microscopy density maps [43–46].
These were adapted for shape description of ligand
molecules considered as drug-like compounds. The
descriptors based on the connectivity matrix were
implemented for their specific application for scaf-
fold-hopping.

The first two features, F1 and F2, describe overall
characteristics of the molecule—the number of atoms
 BIOMEDICAL CHEMISTRY  Vol. 14  No. 2  2020
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Table 1. Molecular descriptors used

Descriptor

Molecular structures/Descriptor value

Ligand 1 Ligand 2 Ligand 3

F1, Radius of gyration normalised 
by the number of atoms in the mol-
ecule [56]

0.225 0.184 0.301

F2, Number of atoms 18 18 18
F3, Chirality index [43] 1.150 0.000 4.689
F4−F5, Third (skewness) and 
fourth (kurtosis) central moments 
of the distances between atoms and 
the centre of the molecule [47]

1.250 1.022 1.256
1.679 1.056 1.685

F6, eigenvalues of connectivity 
matrices [48, 49]
1st eigenvalue 1.399 × 10–3 3.350 × 10–3 8.937 × 10–4

2nd eigenvalue 7.0513 × 10–3 3.350 × 10–3 3.547 × 10–3

3rd eigenvalue 1.666 × 10–2 1.299 × 10–2 7.881 × 10–3

4th eigenvalue 1.835 × 10–2 1.299 × 10–2 1.376 × 10–2

5th eigenvalue 2.632 × 10–2 2.778 × 10–2 2.101 × 10–2

6th eigenvalue 2.632 × 10–2 2.778 × 10–2 2.941 × 10–2

7th eigenvalue 3.337 × 10–2 4.591 × 10–2 3.870 × 10–2

8th eigenvalue 3.741 × 10–2 4.591 × 10–2 4.861 × 10–2

9th eigenvalue 5.263 × 10–2 6.520 × 10–2 5.882 × 10–2

10th eigenvalue 5.905 × 10–2 6.520 × 10–2 6.904 × 10–2

11th eigenvalue 7.895 × 10–2 8.333 × 10–2 7.894 × 10–2

12th eigenvalue 7.895 × 10–2 8.333 × 10–2 8.824 × 10–2

13th eigenvalue 9.821 × 10–2 9.811 × 10–2 9.663 × 10–2

14th eigenvalue 0.107 9.811 × 10–2 0.104
15th eigenvalue 0.113 0.108 0.110
16th eigenvalue 0.121 0.108 0.114
17th eigenvalue 0.125 0.111 0.117
F7−F16 Third order moment 
invariants [43, 52]
F7 0.301 8.944 × 10–2 0.314
F8 –0.294 4.789 × 10–2 –0.314
F9 –1.531 × 10–3 –2.395 × 10–10 –6.151 × 10–3

F10 –1.717 × 10–3 –1.745 × 10–9 –8.243 × 10–3

F11 4.148 × 10–4 2.705 × 10–11 2.046 × 10–3

F12 –1.214 × 10–4 –1.771 × 10–11 –5.979 × 10–4

F13 –6.814 × 10–5 4.753 × 10–11 –4.109 × 10–4

F14 1.631 × 10–6 3.192 × 10–20 2.966 × 10–5

F15 –1.689 × 10–7 –1.843 × 10–20 –2.564 × 10–6

F16 6.552 × 10–8 1.369 × 10–20 1.289 × 10–6

F17 3.962 × 10–8 –3.424 × 10–20 1.215 × 10–6
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and the radius of gyration. The latter reflects the
spread of atoms relative to the center of mass of the
molecule and may be regarded as the compactness of
the molecular structure. The chirality index, F3, is
one of the chiral invariants of the molecule, indicates
a dissimilarity between the molecule and its mirror
image, is related to its optical chirality and imple-
mented as described in [44]. The chirality index is
equal to 0 if the object is non-distinguishable from its
mirror image (as for the case of Ligand 2), and
increases with increasing dissimilarity between object
and its mirror image (as for Ligand 1 and Ligand 3).
Features F4 (skewness) and F5 (kurtosis) are the third
and the forth central moments of a one-dimensional
distribution of the Euclidean distances between the
atoms and the centre of the molecule [47]. Features F6
provide information about atomic connectivity. The
topology of a molecule is defined by how the atoms are
connected to each other and it can be used to infer the
chemical properties of the molecule [16, 48, 49]. The
topology can be represented as an undirected and
unweighted simple graph. The graph, in turn, can be
mathematically represented using a set of different
matrices, whose eigenspectra provide some informa-
tion about their structure. Here we used a Laplacian
connectivity matrix to enumerate the extent to which a
molecular graph differs at one vertex from its values at
nearby vertices. The number of non-zero eigenvalues
of a connectivity matrix is equal to the number of
atoms minus the number of not-connected clusters
[50]. For example, a graph for 10 atoms with all of
them connected will have nine non-zero eigenvalues,
while for 10 disconnected atoms all eigenvalues will be
zero.

The variations in the shape of the objects can be
exploited by the use of moments, since a well behaved
probability density function can be uniquely described
by exactly one infinite set of spatial moments. The sec-
ond- and third-order three-dimensional central
moments can be transformed to moment invariants
[51] using group-theoretic techniques [52]. The 11
third-order moment invariants (features F7–F17)
were effectively applied to distinguish the shape of the
objects in three-dimensional electron density maps
[43, 52] and are used in the present work for compari-
son of the atomic ligand molecules.

Ranking Molecules

The shape-similarity score for a query ligand and a
candidate compound from a database is estimated as:

where i runs over all the N features,  represents the
ith feature for the query ligand,  is the ith feature for
the candidate molecule from the database. After
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N
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i
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screening the whole database and estimation of shape
similarity scores, the software returns a list of 10,000
top ranking of compounds according to the scores.

Experimental Testing of the Selected Compounds

Chemical compounds selected as potential β-lact-
amase inhibitors were purchased from: Asinex
(www.asinex.com, USA), Chembridge, USA; Chem-
Div, USA and Bionet (www.keyorganics.net), UK.
Recombinant β-lactamase TEM-171 was expressed
and purified as described in [53]. In brief, recombi-
nant enzyme was isolated from bacterial periplasm
using osmotic shock procedure and purified further by
anion-exchange and size exclusion chromatography.

Inhibition of β-lactamase TEM-171 by the com-
pounds was determined as reduction in the rate of
enzymatic hydrolysis of chromogenic substrate
CENTA ( β-Lactamase Substrate—CAS 9073-60-3—
“Calbiochem” [54]). Stock solutions of compounds of
potential inhibitors (10 mM) were prepared in 100%
dimethyl sulfoxide (DMSO). Assay conditions were as
follows: 50 mM sodium phosphate buffer pH 7.0 with
0.05% pluronic F-127, enzyme concentration was of
6.25 nM, CENTA concentration of 100 μM. The reac-
tion was start by the adding of substrate solution to the
mixture of enzyme and compound tested in buffer. An
increase in the optical density of the enzymatic hydro-
lysis product was recorded at a wavelength of 405 nm.
The degree of inhibition was assessed by the slope of
the accumulation curve of the colored reaction prod-
uct, as well as by the absorption values of the product
after 30 minutes. Data were normalized to positive
(10 μM tazobactam) and negative (DMSO) controls.
Compounds with inhibitory activity at or greater 20%
were progressed for IC50 determination. For the best
ligands, the equilibrium inhibition constants Ki were
determined.

RESULTS AND DISCUSSION

Virtual Selection of Analogues of β-Lactamase Inhibitors 
by Scaffold Hopping Approach

As search query molecules we selected four known
low-affinity non-β-lactam inhibitors of class A β-lac-
tamases:

FTA, 3-(4-phenylamino-phenylamino)-2-(1H-
tetrazol-5-yl)-acrylonitrile—inhibitor of β-lactamase
TEM-1 [40];

CBT, N,N-bis(4-chlorobenzyl)-1H-1,2,3,4-tetra-
azol-5-amine—inhibitor of β-lactamase TEM-1 [40];

1CE, 3-(1H-tetrazol-5-ylmethyl)-5,6,7,8-tetrahy-
dro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one—inhi-
bitor of β-lactamase CTX-M-9 [41];

F13, 3-fluoro-N-[3-(1H-tetrazol-5-yl)phenyl]ben-
zamide—inhibitor of β-lactamase CTX-M-9 [41].
 BIOMEDICAL CHEMISTRY  Vol. 14  No. 2  2020
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Fig. 2. Chemical structures of template molecules, FTA and CBT, and a novel non-β-lactam inhibitors, Chembridge 7030665
and Chembridge 6922126, outputted by the scaffold hopping approach.
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All query molecules were used in their active con-
formations obtained from their co-crystallized struc-
tures with the protein targets in protein data bank (pdb
ID: 1pzp, 1pzo, 3g34, 3g35).

For starting ligands, sets of descriptors were calcu-
lated, comparing them with a set of ligand descriptors
from a database containing 8 million compounds, and
shape similarity parameters were calculated for each of
compounds in the optimal conformation. As a result
of screening, about 10,000 compounds were selected
with the maximum value of the shape similarity
parameter. Then, 3D alignment was performed for a
set of selected structures with the structure of each
query ligand. Based on the best similarities, 1000 com-
pounds were selected.

Testing the Ligands-Potential β-Lactamase Inhibitors 
Using Recombinant TEM Type β-Lactamase

For experimental confirmation of the results of vir-
tual screening, the inhibition of recombinant β-lact-
amase TEM-171 by the selected compounds was
investigated. As a control reaction, the hydrolysis of
the chromogenic substrate CENTA by β-lactamase
was used. To increase the productivity of the analysis,
the reaction was carried out in 96-well plates. Reagent
concentrations were selected so that the linearity of
the initial portion of the curve of colored product
accumulation was maintained for at least 30 minutes at
room temperature. The action of potential inhibitors
was evaluated by changing the initial slope of the
kinetic curve of roduct accumulation, as well as by
BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIE
estimation of the changein the product absorption val-
ues in 30 minutes after the reaction start. The end
point and kinetic raw data were normaized to the pos-
itive (tazobactam at 10 μM) and negative (DMSO)
control to generate the inhibition data. Using the hit
list from the kinetic analysis, compounds with inhibi-
tory activity at or greater 20% were progressed for IC50
determination. Analysis of compound activities by the
endpoint or kinetic method revealed that the kinetic
method generated more hits for follow-up in compar-
ison to the endpoint method.

Based on IC50 screening, three compounds were
identified as hits: two for TEM type beta-lactamases
(Chembridge 6922126 and Chembridge 7030665)
(Fig. 2) and one for CTX-M type beta-lactamases
(ASN02750282). Their structures and IC50 values are
shown on Fig. 3 and in Table 2.

A detailed study of the compound Chembridge
6922126 showed that it is prone to dimerization, and
the dimer is characterized by lower solubility in aque-
ous solutions. The monomeric form of the ligand did
not inhibit the activity of β-lactamases.

The ligand Chembridge 7030665, found as an ana-
logue of the query ligand FTA, was characterized by
the value of the equilibrium inhibition constant (Ki =
88 μM) determined in the hydrolysis of a CENTA sub-
strate by recombinant β-lactamase TEM-171. This
compound demonstrated a more effective inhibition
of TEM type recombinant β-lactamase compared to
FTA, for which Ki value is about five times worse (Ki =
490 μM [40]).
S B: BIOMEDICAL CHEMISTRY  Vol. 14  No. 2  2020
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Fig. 3. Structures of three identified ligands-inhibitors of β-lactamases selected by ativity in the inhibition of β-lactam hydrolysis.
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The ligand Chembridge 7030665 is a new type of
non-covalent non-β-lactam inhibitor based on acy-
lated phenoxyaniline. It was further characterized
using infrared spectroscopy and fluorescence quench-
ing [53]. Molecular docking analysis of the residues
involved in the coordination of the inhibitor in the
active site of the enzyme showed that some of them are
conservative for β-lactamases of molecular class A.
This suggests a broad specificity of this inhibitor with
respect to clinically significant class A enzymes.

We also performed an additional chemical modifi-
cation of the ligand Chembridge 7030665 in order to
improve its ability to inhibit β-lactamases. The effect
of various benzene ring substituents and the length of
hydrocarbon chains on the efficiency of hydrolysis
inhibition were investigated. As a result, a new
thiourea-based non-β-lactam inhibitor was obtained,
characterized by the inhibition constant Ki = 48 μM
[55].

CONCLUSIONS

In this paper we introduced a new computational
screening approach with scaffold hopping capabilities
for ligand-based drug design. Taking query ligand it
enables discovery of new compounds by shape and
doesn’t require structural information about protein
target. In opposite to fingerprint-based methods, the
presented method searches compounds with similar
bioactivity to the query molecule, but with different
scaffold. The compactness and simplicity in calcula-
tion of shape descriptors allow fast scanning of large
molecular databases. The presented method for
ligand-based drug design showed its applicability for
BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B:

Table 2. Summary of endpoint IC50 data for selected inhib-
itors of TEM β-lactamase

Supplier and compound ID IC50, μM

Asinex ASN02750282 36
Chembridge 6922126 58
Chembridge 7030665 88
scaffold hopping and allows fast scanning of large
molecular databases. The method helped identify
three non-β-lactam hit compounds showing higher
inhibition of TEM type beta-lactamase compared to
the used template compounds. The combination of
the virtual screening method with the subsequent
chemical design of the ligand molecule provides even
more effective inhibitors.
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