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Abstract—The paper considers the mathematical problems of constructing sonar images of
the seabed from the data of measurements of a multibeam side-scan sonar. For the nonsta-
tionary radiative transfer equation describing the process of acoustic sounding in the ocean,
we investigate the inverse problem of finding the discontinuity lines of the bottom scattering
coefficient. A numerical algorithm for solving the inverse problem is developed, and the analysis
of the quality of localization of the boundaries of inhomogeneities of the seabed depending on
the number of angles and the sounding range is carried out.
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INTRODUCTION

The radiative transfer equation describes a wide variety of physical processes and is used in the
design of nuclear reactors, in astrophysics and atmospheric optics, in X-ray and optical tomography,
and in gas dynamics and acoustics. We consider the radiative transfer equation in the context
of modeling the process of high-frequency acoustic sounding in a fluctuating ocean [1–5]. Our
interest in the model is due to the specific goal of improving the quality of sonar images of the
seabed according to measurements obtained from a side-scan sonar (SSS) installed on autonomous
unmanned underwater vehicles (AUV) [6–9].

The mathematical model includes a monochromatic integro-differential transfer equation, an
initial condition, and a boundary condition describing the diffuse reflection from the bottom sur-
face [9–16]. For simplicity, it is assumed that the carrier of the receiving-transmitting antenna
emitting a pulsed signal moves at a constant speed in a certain straight line. The inverse problem
is to find the bottom scattering coefficient under some additional conditions for redefining the so-
lution of the radiative transfer equation, the physical meaning of which is to measure the backward
reflected signal.

For a narrow radiation pattern in the single-scattering approximation, an explicit solution was
obtained in [16] to find the diffuse reflection coefficient, the use of which leads to defocusing bottom
objects on sonar images as the width of the radiation pattern increases. Attempts to eliminate
this defect in single-beam probing are often unsuccessful, because the resulting system of linear
algebraic equations has an ill-conditioned matrix when the problem is discretized and the solution
of the problem becomes sensitive to errors in the initial data [17]. To overcome the difficulties that
arise, one resorts to the use of multibeam echo sounders or to an increase in the number of tacks
when monitoring water areas [7, 8]. The papers [18, 19] propose an approximate method for finding
the bottom scattering coefficient from multibeam sounding data, which, despite its efficiency, has
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LOCALIZATION OF THE DISCONTINUITY LINES 71

a number of significant drawbacks and requires additional a priori information about the acoustic
characteristics of the medium.

In the present paper, we suggest to modify the statement of the original problem assuming that
the desired characteristic is not the reflection coefficient but only the lines where the coefficient
undergoes a discontinuity of the first kind. Information about the discontinuity lines of the coeffi-
cient is often sufficient to determine the location and shape of the desired object. The interest in
inverse problems in which it is required to find the discontinuity surfaces or the singular support
of a function is quite high and is connected, first of all, with integral geometry problems [21–25].
Generalized statements of such problems were considered in [26, 27] and consisted in determin-
ing the discontinuity surfaces of the coefficients of the stationary radiative transfer equation from
information about the radiation emerging from the medium.

In practice, the number of angles of sounding the medium is relatively low, and we are dealing
with the so-called problems of few-view tomography [28]. The main part of the known results in
this area deals with the problem of inverting the Radon transform based on incomplete data. More
complex problems concerning the partial localization of the discontinuity surfaces of the coefficients
of the stationary radiative transfer equation for one- and two-angle probing were considered in the
relatively recent papers [29–32].

1. DIRECT AND INVERSE PROBLEMS FOR NONSTATIONARY
RADIATIVE TRANSFER EQUATION

The mathematical model under consideration describing the propagation of high-frequency acous-
tic wave fields in scattering media is based on a nonstationary radiative transfer equation of the
form [6–19] (

1

c

∂

∂t
+ k · ∇r + μ

)
I(r,k, t) =

σ

4π

∫
Ω

I(r,k′, t) dk′ + J(r,k, t), (1)

where r ∈ G ⊂ R
3, t ∈ [0, T ], and the wave vector k belongs to the unit sphere Ω = {k ∈ R

3 |
|k| = 1}. The function I(r,k, t) is interpreted as the energy flux density of a wave propagating in
the direction k with velocity c at time t at point r. The numbers μ and σ have the meaning of
attenuation and scattering coefficients, and the function J describes the sound field sources.

The domain G is the upper half-space bounded by the horizontal plane γ = {r = (r1, r2, r3) ∈
R

3 | r3 = −l}, l > 0. Equation (1) is supplemented with the initial and boundary conditions [13, 14]

I−(r,k, t)|t<0 = 0, (r,k) ∈ G× Ω, (2)

I−(y,k, t) =
σd(y)

π

∫
Ω+

|n · k′|I+(y,k′, t)(y,k′, t) dk, (y,k, t) ∈ Γ−. (3)

In relations (2), (3), we use the notation

I±(y,k, t) = lim
ε→−0

I(y ± εk,k, t± ε/c),

Γ± =
{
(y,k, t) ∈ γ × Ω± × (0, T )

}
,

Ω± =
{
k ∈ Ω | sgn(n · k) = ±1},

where n = (0, 0,−1) is the unit outward normal vector on the boundary of the domain G. Condi-
tion (2) means that there is no radiation in the medium at the initial time, and the boundary condi-
tion (3) describes the effects of diffuse reflection from the seabed by the Lambert law with reflection
coefficient σd(y). The function σd(y) varying on the interval from zero to one in the γ-plane is also
called the bottom scattering coefficient. It is assumed that the γ-plane on which the function σd(y)
is defined can be represented as the union of disjoint two-dimensional subdomains γi, i = 0, . . . , p,
with piecewise smooth boundaries ∂γi such that σd(y) is constant in each of the domains γi.
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Problem 1. Equation (1) with the initial and boundary conditions (2), (3) and with
given μ, σ, σd, J , and c forms an initial–boundary value problem of finding the unknown func-
tion I on the set G× Ω× (0, T ).

The papers [13–19] deal with the well-posedness of Problem 1, also known as the direct problem
for the radiative transfer equation.

The function J , which describes a point pulsed sound source moving at a constant velocity V in
the positive direction of the r2-axis, has the form

J(r,k, t) = δ(r−Vt)

m∑
i=1

δ(t− ti), V = (0, V, 0), ti > 0, (4)

where δ is the Dirac delta function. Let us supplement the system of relations (1)–(3) with the
relation ∫

Ω

Sj(k)I
+(Vt,k, t) dk = Pj(t), j = 1, . . . , q, (5)

where the function Sj(k) is integrable, nonnegative, and distinct from zero only in some subdo-
main Ωj ⊂ Ω. We state the following inverse problems.

Problem 2. Find the function σd(y) from relations (1), (2), (3), (5) for given μ, σ, c, V , J , l
and Sj , and Pj(t).

Problem 3. Find the lines of discontinuity ∂γi, i = 0, . . . , p, of the function σd(y) from rela-
tions (1)–(3), (5) for given V , J and Sj , and Pj(t).

As was already mentioned, the physical meaning of the inverse Problem 2 is to reconstruct
the reflection coefficient σd during acoustic sounding of the seabed by a side-scan sonar that
moves rectilinearly at a constant velocity V and sounds the surrounding space with pulsed sig-
nals. There are antennas on the carrier that measure the total intensity Pj(t) in the field of view Ωj

at time t, and the functions Sj(k) characterize the radiation pattern of the jth antenna. If q = 2,
Ω1 = {k ∈ Ω | k1 < 0}, and Ω2 = {k ∈ Ω | k1 > 0}, then we are dealing with the simplest case of a
side-scan sonar with one receiving antenna on each side of the carrier [9].

Problem 3 is to determine not the function σd itself but only its discontinuity lines ∂γi with
much less information about the initial data of the problem. In particular, the quantities μ and σ
are not supposed to be known, but they cannot be determined in such a statement of the problem
either. Problem 2 was studied in [18, 19], and so the main attention will be focused on Problem 3.
As applied to X-ray tomography problems, similar problems for the stationary transport equation
were considered in [26, 27, 29–32]. These papers propose original methods based on construct-
ing an inhomogeneity indicator, which permit efficiently reconstructing the discontinuity surfaces
of the coefficients of the radiative transfer equation. Note that in Problem 3 we determine the
lines of discontinuity of the coefficient σd(y), which occurs in the boundary condition (3) rather
than in Eq. (1).

2. EXPRESSIONS FOR THE FUNCTIONS Pj(t)
IN THE SINGLE-SCATTERING APPROXIMATION

As a rule, the antenna carrier velocity V , the medium parameters μ, σ, and c, and the sounding
periods ti+1 − ti are such that (σ/μ)2 � 1, V/c � 1, and exp(−μc|t− ti|) � 1, t �∈ (ti, ti+1). This
gives grounds to apply the single-scattering approximation to find a solution of the initial–boundary
value problem and to neglect echolocation signals from the other sounding periods (tj, tj+1), j �= i,
at the current reception interval t ∈ (ti, ti+1) [10].

Under the above-indicated conditions, the approximate solution of the initial–boundary value
problem (1)–(3) has the form [18, 19]

I(r,k, t) = I0(r,k, t) + Iγ(r,k, t) + IG(r,k, t), (6)
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where

I0(r,k, t) =

d(r,−k,t)∫
0

exp(−μτ)J(r− τk,k, t− τ/c) dτ, (7)

Iγ(r,k, t) =
σd

(
r− d(r,−k, t)k)

π
exp

(− μd(r,−k, t))
×

∫
Ω+

|n · k′|I+0
(
r− d(r,−k, t)k,k′, t− d(r,−k, t)

c

)
dk′,

(8)

IG(r,k, t) =

d(r,−k,t)∫
0

exp(−μτ) σ
4π

∫
Ω

I0

(
r− τk,k′, t− τ

c

)
dk′dτ. (9)

In the expressions (7)–(9), we use the notation d(r,−k, t) = min{d(r,−k), ct}, where d(r,−k)
is the distance from a point r ∈ G in the direction −k to the boundary of the domain G.
If r− d(r,−k, t)k �∈ ∂G, then Iγ = 0. The simple structure of the domain G allows one to write an
explicit representation d(r,−k, t) = min{l/k3, ct} of the function d(r,−k, t) at the points belonging
to the plane r3 = 0 for k3 > 0 and d(r,−k, t) = ct for k3 ≤ 0. By substituting I0, Iγ, and IG
into (5), we obtain

Pj(t) = Pj,0(t) + Pj,γ(t) + Pj,G(t), (10)

where
Pj,0(t) =

∫
Ω

Sj(k)I
+
0 (Vt,k, t) dk, (11)

Pj,γ(t) =

∫
Ω

Sj(k)I
+
γ (Vt,k, t) dk, (12)

Pj,G(t) =

∫
Ω

Sj(k)I
+
G (Vt,k, t) dk. (13)

Taking into account the structure of the function J and the paper [18], we obtain

Pj,0(t) = 0,

Pj,γ(t) =
cl2

2π

exp
(− μc(t− ti)

)
(
c(t− ti)/2

)5
2π∫
0

Sj

(
k(ϕ, θi)

)
σd

(
y(ϕ, θi)

)
dϕ, (14)

Pj,G(t) =
σc exp

(− μc(t− ti)
)

8π
(
c(t− ti)/2

)2
2π∫
0

π∫
θi

Sj

(
k(θ, ϕ)

)
sin θ dθdϕ, (15)

where k(θ, ϕ) = (− sinϕ sin θ, cosϕ sin θ, cos θ), the angle θ varies from θi = arccos

(
2l

c(t− ti)

)
to π,

and ϕ ∈ [0, 2π).
If the receiving antenna pattern Sj is narrowly directed in planes perpendicular to the bottom

surface r3 = −l,
Sj

(
k(θ, ϕ)

)
= δ(ϕ− ϕj),

where δ(ϕ − ϕj) is the Dirac delta function, then formulas (14) and (15) for t ∈ (ti + 2l/c, ti+1)
acquire the very simple form

Pj,γ(t) =
cl2c

2π

exp
(− μc(t− ti)

)
(
c(t− ti)/2

)5 σd

(
y(ϕj, θi)

)
, (16)
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Pj,G(t) =
σc exp

(− μc(t− ti)
)

8π
(
c(t− ti)/2

)2
(
1 +

2l

c(t− ti)

)
. (17)

In this case, for determining the function σd, from (10), (14), and (15) for any j we obtain the
explicit formula [18]

σd,j(y) =

(
Pj

(
t

)
− σc exp

(− 2μ|y −Vt|)
8π|y −Vt|2

(
1 +

l

|y −Vt|
))(

cl2

2π

exp
(− 2μ|y −Vt|)
|y −Vt|5

)−1

, (18)

where t = (y2 + y1cotϕj)/V . Thus, for a narrowly collimated (in the angle ϕ) radiation pattern,
formula (18) gives an explicit solution of Problem 2 in the single-scattering approximation. Obvi-
ously, in this case it suffices to carry out measurements using two receiving antennas located on
different sides of the carrier, say, with S1 = δ(ϕ − π/2) and S2 = δ(ϕ − 3π/2); this corresponds
to the widespread method of constructing sonar images successively strip by strip perpendicular to
the direction of motion of the antenna carrier.

With an increase in the width of the radiation pattern, the calculation of the function σd by for-
mula (18) leads to an increase in the error, especially when reconstructing high-contrast structures.
On sonar images, the so-called effect of “smearing,” or defocusing, of the image appears. To elimi-
nate such defects, various focusing methods are used, which in mathematical terms are reduced to
solving an integral equation of the first kind. When the desired function is discretized, the solution
of the integral equation is equivalent to the solution of an (as a rule, ill-conditioned) system of linear
algebraic equations; this considerably complicates determining the desired function [17].

Another, in our opinion, the most important drawback of the algorithm for reconstructing the
bottom scattering coefficient by using formula (18) is due to the fact that additional information
about the attenuation and volume-scattering coefficients is required. As a rule, the coefficients
of Eq. (1) that describe the interaction of radiation in the ocean are known only approximately;
therefore, the reconstruction of the bottom scattering coefficient by formula (18) leads to large
distortions of tomographic images.

Thus, the construction of numerical algorithms for solving Problem 3 that require much less
information about the initial data and are free from most of the indicated drawbacks is really
important for the development of modern methods of acoustic sounding of the seabed.

3. NUMERICAL ALGORITHM FOR SOLVING INVERSE PROBLEM 3

In this section, we present a numerical scheme for solving the inverse Problem 3. As we have
already noted, the problem under consideration can be viewed as a problem of few-view tomography,
and the algorithm for solving it is close to the methods described in the papers [29–32].

Let the radiation pattern Sj(k(ϕ, θ)) be equal to

Sj(k(ϕ, θ)) =

⎧⎨
⎩1/2β, ϕ ∈ (ϕj − β, ϕj + β)

0, ϕ /∈ (ϕj − β, ϕj + β),

with the support of each of the functions Sj concentrated either in the interval 0 < π/2 − δ/2 <
ϕ < π/2 + δ/2 or in the interval 0 < 3π/2 − δ/2 < ϕ < 3π/2 + δ/2, where δ < π. The latter
restriction is typical of scanning the seabed with a side-scan sonar and makes it possible to recover
the function σd separately for r1 > 0 and r1 < 0 [8–10]. When constructing the algorithm and
carrying out numerical experiments, we consider only the half-plane r3 = −l, r1 > 0, and the value
of the exponent q corresponds not to the total number of sounding angles but only to one of the
“shipboards” of antenna carrier motion.

Taking into account the stated constraints and the relation

|Vt− y|2 = y2
1/ sin

2 ϕj + l2 for t = (y2 + y1 cotϕj)/V,
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the expressions for the functions Pj,γ((y2+y1 cotϕj)/V ) and Pj,G((y2+y1 cotϕj)/V ) can be written
in the form

Pj,γ

(
(y2 + y1cotϕj)/V

)

=
c l2c

2π

exp

(
−2μ

√
y2
1/ sin

2 ϕj + l2
)

(y2
1/ sin

2 ϕj + l2)5/2

× 1

2β

ϕj+β∫
ϕj−β

σd

(|y1| sinϕ/| sinϕj|, y2 + y1 cotϕj − |y1| cosϕ/| sinϕj|
)
dϕ

=
cl2c

2π

exp

(
−2μ

√
y2
1/ sin

2 ϕj + l2
)

(y2
1/ sin

2 ϕj + l2)5/2

× 1

2β

ϕj+β∫
ϕj−β

σd

(|y1| sinϕ/| sinϕj|, y2 + |y1|(cosϕj − cosϕ)/| sinϕj|
)
dϕ,

(19)

Pj,G

(
(y2 + y1cotϕj)/V

)

=
cσ

8π

exp

(
−2μ

√
y2
1/ sin

2 ϕj + l2
)

(y2
1/ sin

2 ϕj + l2)

⎛
⎝1 + l√

y2
1/ sin

2 ϕj + l2

⎞
⎠ .

(20)

Set

P̂j,γ(y) ≡ Pj,γ

(
(y2 + y1 cotϕj)/V

)
,

P̂j,G(y) ≡ Pj,G

(
(y2 + y1 cotϕj)/V

)
,

where y = (y1, y2,−l) and the functions Pj,γ and Pj,G are defined in (19) and (20). An approximate
method for solving the inverse Problem 3 is based on preliminary calculation of functions of the
form

σ̂d,j(y) =
∣∣∣∇(

P̂j(y)Aj(y)
) · kj

∣∣∣ (21)

for each kj = (cosϕj, sinϕj, 0) and subsequent construction of the indicator function

σ̂d(y) =

q∑
j=1

σ̂d,j(y). (22)

In Eq. (21), the function Aj(y) is some continuously differentiable weight function selected so
as to compensate for a strong decay of the function P as |y1| → ∞. For example, if we know the
quantities μ and l or at least their approximate values, then for the function Aj(y) we can take
an expression of the form ⎛

⎝exp(−2μ
√

y2
1/ sin

2 ϕj + l2)

(y2
1/ sin

2 ϕj + l2)5/2

⎞
⎠

−1

.

If, however, there is no a priori information, then we can set A = 1. One can readily see
that the functions ∇P̂j,G(y) · kj are bounded on the entire range of their arguments, and the
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Fig. 1. Graphical representation of the bottom scattering coefficient σd(y) (original). The linear dimensions of the
surveyed bottom area are 300× 50 m.

functions ∇P̂j,γ(y) · kj may grow unboundedly only for the case in which for ϕ ∈ [ϕj,−β, ϕj + β]
the line of integration in (19),

z1 = |y1| sinϕ/| sinϕj|,
z2 = y2 + |y1|(cosϕj − cosϕ)/| sinϕj|,
z3 = −l,

(23)

intersects the line of discontinuity of the function σd(y), y = (y1, y2,−l). As the point y tends
to the line of discontinuity ∂γi, the number of terms σ̂d,j(y) in the sum (22) with the indicated
property will grow; this leads to the growth of the function σ̂d(y). The degree of growth of the
functions σ̂d,j(y) depends on the angle between the curve (23) and the line of discontinuity at the
point of their intersection, and the growth is maximal if the angle is zero, i.e., the curves touch each
other. A rigorous substantiation of these facts is hampered by the restriction associated with the
discreteness of the set of sounding directions; moreover, it is rather cumbersome and goes beyond
the scope of this article. In the next section, we give a numerical confirmation of the efficiency of
the algorithm based on the construction of the indicator function (22).

4. RESULTS OF NUMERICAL SIMULATION

When monitoring water areas by autonomous unmanned underwater vehicles, the speed of the
carrier, the height of its trajectory above the bottom of the reservoir, and the sounding interval
usually depend on the mission objectives, the size of the basin under study, and the features of
the equipment. In numerical experiments, the following values of sounding parameters were cho-
sen: V = 1 m/s, l = 12 m, ti+1 − ti = 0.4 s. The receiving antenna beam width in the horizontal
plane was 2 deg (β = 1/π), which is typical for most modern side-scan sonars [7, 8]. The remain-
ing quantities took the following values, typical for acoustic sounding in the oceanic medium at
frequencies of the order of 100 kHz [5, 9, 11]: μ = 0.018 m−1, σ = 0.1μ, c = 1500 m/s.

The algorithm for solving the inverse problem was tested for the function σd(r) whose graphical
representation for r1 > 0 is given in Fig. 1. The function σd takes the value 0.9 in all three
inclusions γi, i = 1, 2, 3. The domains Gi, i = 1, 2, 3, which are inclusions of the “aircraft wreckage”
type, are located at distances of 50, 150, and 250 m from the axis r1 = 0, respectively. In the
complement γ0 = γ \ (γ1 ∪ γ2 ∪ γ3), the function σd takes the value 0.1.

Figure 2 shows the images of the functions σ̂d,j(y) calculated using formulas (21) for single-beam
probing at the angles ϕ1 = π/6, ϕ3 = π/2, and ϕ5 = 5π/6. The quality of the images corresponding
to the angles ϕ1 = π/6 and ϕ5 = 5π/6 is much lower; this is not surprising, because the sounding
range at oblique angles increases. This leads to a deterioration in the resolution of the seabed image
reconstruction algorithm.

Figure 3 shows graphic representations of the function σ̂d(y) for various values of the parameter q.
It can be seen from Fig. 3a that the first inclusion is clearly reconstructed only for q = 5; therefore,
when localizing the lines of discontinuity of the bottom scattering coefficient at a distance of up
to 100 m, it suffices to use a small number of sounding angles.

As expected, the quality of object focusing increases with the increase in the number of probing
angles. Improving the quality of the tomographic image with an increase in q is especially noticeable
at a probing distance of more than 100 m. However, for a high-quality reconstruction of the
discontinuity lines of the desired coefficient at a distance of approximately 250 m, an increase in
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Fig. 2. Reconstructed functions σ̂d,j(y) for j = 1, 3, 5 for single-beam sounding with beam width of 2 deg:
(a) ϕ1 = π/6, (b) ϕ1 = π/2, (c) ϕ1 = 5π/6.

Fig. 3. Function σ̂d(y) characterizing the set of points of discontinuity of σd(y) for various numbers q of sounding
angles: (a) q = 5, (b) q = 15, (c) q = 25.

the number of angles alone is not sufficient. This is due to an increase in the relative error of the
approximate calculation of the function Pj((y2 + y1 cotϕj)/V ) with an increase in |y1|.

Note that the deterioration in the seabed image reconstruction quality is also observed with
distance from the transmitting-receiving antenna in real physical experiments when monitoring
water areas. With an increase in the probing range, a considerable decrease in the useful reflected
signal occurs, while the destructive noise in the detection devices remains at the same level. The
nature of such noise can be very diverse and associated, say, with a strong instability of the trajectory

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 16 No. 1 2022



78 KOVALENKO, PROKHOROV

of motion of an autonomous unmanned underwater vehicle or with refraction of sound rays due to
a change in the density of the marine environment [6–8]. In the most simplified case, a timed
automatic gain control algorithm is used to amplify the reflected signal in accordance with the time
of its arrival. Despite the fact that today there are already many varieties of such algorithms, it is
not possible to completely compensate for the loss in the image reconstruction quality [6–8].

CONCLUSIONS

The inverse problem of finding the discontinuity lines of the bottom scattering coefficient for the
nonstationary radiative transfer equation describing the process of acoustic sounding in the ocean is
studied. A numerical algorithm for solving the inverse problem has been developed and verified on
model data corresponding to acoustic sounding of the seabed at frequencies of the order of 100 kHz.
It is shown that for successful localization of discontinuity lines of the bottom scattering coefficient
at a distance of up to 100 m, a small number of angles (of the order of 5) is sufficient. With an
increase in the sounding range, it is necessary not only to increase the number of sounding angles
but also to reduce the error in calculating the functions Pj . In practice, such restrictions impose
strict requirements on the transceiver equipment of side-scan sonars.
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