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Abstract—In the problem on the motion of a rigid body with a fixed point under the influence
of a magnetic field generated by the Barnett–London effect as well as potential forces, the
particular cases of existence of additional quadratic integrals are presented and the qualitative
analysis of the equations of motion of the body is carried out in one of these cases.
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INTRODUCTION

The problem on the rotation of a rigid body about a fixed point under the action of forces
of various nature (and also in the absence of forces) has a long history, but the interest in this
problem still persists. An absolutely rigid body is used as a model for describing the motion of
many complex technical devices, including spacecraft, industrial robots, rockets, etc. In the present
paper, we consider the problem on the rotation of a rigid body with a fixed point in a uniform
magnetic field taking into account the London–Barnett effect and potential forces. It is known that
a “neutral” ferromagnet becomes magnetized along the rotation axis during rotation (the Barnett
effect [1]). A similar phenomenon also takes place during the rotation of a superconducting solid
body (the London effect [2]). The magnetic moment B is related to the angular velocity ω by the
formula B = Bω, where B is a symmetric linear operator.

The motion of the body is described by Euler–Poisson equations of the form

Aω̇ = Aω × ω +Bω × γ + γ × (Cγ − s), γ̇ = γ × ω, (1)

where ω = (ω1, ω2, ω3) is the angular velocity of the body, γ = (γ1, γ2, γ3) is a unit vector charac-
terizing the direction of gravity, s = (s1, s2, s3) is the vector of the center of mass of the body, and
A, B, and C are symmetric 3 × 3 matrices: A is the body tensor of inertia relative to the fixed
point, B is a matrix characterizing the body magnetic moment, and C is a matrix characterizing
the effect of potential forces on the body.

For Ci = νAi, i = 1, 2, 3, where ν is the gravitational constant, the differential equations (1)
describe the motion of a body in a magnetic and a central Newtonian field.

Equations (1) admit two common first integrals

V1 = Aω · γ = κ, V2 = γ · γ = 1 (2)

and are nonintegrable in the general case.
There are quite a few papers studying the influence of the Barnett–London effect on the motion

of a body in various aspects. Similar problems arise in many applications, for example, in cosmo-
dynamics [3] and when designing devices using noncontact suspension [4]. The analysis of Eqs. (1)
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from the viewpoint of their integrability and the search for particular solutions is carried out, for
example, in [5–8]. A linear invariant relation of the Hess type [9] for Eqs. (1) was found in [5].
In [6, 7], the cases of their integrability are indicated where A and B are diagonal matrices and
there are no potential forces. It was shown [7] that for B = λE (λ = const) Eqs. (1) are reduced to
the Kirchhoff equations describing the motion of a rigid body in an ideal fluid.

In the present paper, it is assumed that

A = diag (A1, A2, A3), C = diag (C1, C2, C3)

in Eqs. (1). A qualitative analysis of these equations is carried out in special cases where there
exist additional first integrals. Linear invariant relations for Eqs. (1) were obtained in [10] using
the method of indeterminate coefficients in conjunction with the method of Gröbner bases [11]. In
the same way, the following quadratic integrals of the equations in question are found under certain
restrictions on the problem parameters:

1. For A1 = A2, B13 = B23 = 0, B33 = B11 +B22, C1 = C3 = C2, and s1 = s2 = s3 = 0, one has
the integral

K1 = ω2
1 + ω2

2 +
A3

A2
2

(2A2 −A3)ω
2
3 −

1

A2
2

(
2A2(B11 −B22)ω1γ1 + 2A2B12

(
ω1γ2 + ω2γ1)

+ 2A3B11ω3γ3 −
(
B2

22 −B2
11

)
γ2
1 + 2B12(B11 +B22)γ1γ2 + (B2

11 +B2
12)γ

2
3

)
.

(3)

2. For A1 = A3, B12 = B23 = 0, B22 = B11 +B33, C1 = C2 = C3, and s1 = s2 = s3 = 0, one has
the integral

K2 = ω2
1 −

A2

A2
3

(A2 − 2A3)ω
2
2 + ω2

3 +
1

A2
3

(
2A3

(
B33ω1γ1 +B11ω3γ3 −B13(ω1γ3 + ω3γ1)

)
+
(
B2

33 −B2
11

)
γ2
1 −

(
B2

11 +B2
13

)
γ2
2 − 2B13(B11 +B33)γ1γ3

)
.

3. For A2 = A3, B12 = B13 = 0, B33 = B11 −B22, C1 = C2 = C3, and s1 = s2 = s3 = 0, one has
the integral

K3 = ω2
1 −

A2
3

(
ω2
2 + ω2

3

)
A1(A1 − 2A3)

+
1

A1(A1 − 2A3)

(
2A1B22ω1γ1 − 2A3(B11 − 2B22)ω2γ2

+ 2A3B23(ω2γ3 + ω3γ2) +
(
B2

22 +B2
23

)
γ2
1 −B11(B11 − 2B22)γ

2
2 + 2B11B23γ2γ3

)
.

As can be seen, the integrals exist under the condition of dynamic symmetry of the body, and
the coordinates of the center of mass of the body coincide with the coordinates of the fixed point.

Further, using generalizations of the Routh–Lyapunov method [12], a qualitative analysis of
Eqs. (1) is carried out in the case where these equations admit one of the above quadratic integrals.

1. STATEMENT OF THE PROBLEM

Consider the differential equations (1) for the case in which they admit the integral K1 in (3).
The equations are written as follows:

A2ω̇1 = (B12ω1 +B22ω2)γ3 −
(
(B11 +B22)γ2 + (A3 −A2)ω2

)
ω3,

A2ω̇2 =
(
(B11 +B22)γ1 + (A3 −A2)ω1

)
ω3 − (B11ω1 +B12ω2)γ3,

A3ω̇3 = (B11ω1 +B12ω2) γ2 − (B12ω1 +B22ω2)γ1,

γ̇1 = ω3γ2 − ω2γ3, γ̇2 = ω1γ3 − ω3γ1, γ̇3 = ω2γ1 − ω1γ2.

(4)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 16 No. 1 2022



60 IRTEGOV, TITORENKO

The integrals (2) become

Ṽ1 = A2(ω1γ1 + ω2γ2) +A3ω3γ3 = κ, V2 =

2∑
i=1

γ2
i = 1. (5)

Let us pose the problem of qualitative analysis of this system. Based on the necessary conditions
for the extremum of the first integrals of the problem (or some combination of them), special sets
of differential equations will be found and their stability in the sense of Lyapunov will be studied.
With the chosen method of analysis, the special sets are defined as stationary sets [12], i.e., sets
of any finite dimension on which necessary conditions for the extremum of elements of the algebra
of first integrals of the problem are satisfied. Stationary sets of dimension zero are traditionally
called stationary solutions, and stationary sets of nonzero dimension are called stationary invariant
manifolds.

2. ISOLATION OF STATIONARY SOLUTIONS AND INVARIANT MANIFOLDS

In accordance with the above-indicated method, we take a linear combination

2Ω = λ0K1 − 2λ1Ṽ1 − λ2V2 (6)

of the first integrals and write necessary conditions for the extremum of Ω with respect to the
variables ωi and γi,

∂Ω

∂ω1

= λ0(ω1 −A−1
2 ((B11 −B22)γ1 +B12γ2))− λ1A2γ1 = 0,

∂Ω

∂ω2

= λ0

(
ω2 −A−1

2 B12γ1
)
− λ1A2γ2 = 0,

∂Ω

∂ω3

= λ0A
−2
2 A3

(
(2A2 −A3)ω3 −B11γ3

)
− λ1A3γ3 = 0,

∂Ω

∂γ1
= −λ0A

−2
2

(
A2(B11 −B22)ω1 +A2B12ω2 + (B2

11 −B2
22)γ1

+B12(B11 +B22)γ2
)
− λ1A2ω1 − λ2γ1 = 0,

∂Ω

∂γ2
= −λ0A

−2
2 B12

(
A2ω1 + (B11 +B22)γ1

)
− λ1A2ω2 − λ2γ2 = 0,

∂Ω

∂γ3
= −λ0A

−2
2

(
A3B11ω3 + (B2

11 +B2
12)γ3

)
− λ1A3ω3 − λ2γ3 = 0.

(7)

Here the λi are the parameters of the family of integrals Ω.
In the case of dependent equations, the solutions of system (7) permit one to determine the

invariant manifolds of the differential equations (4) corresponding to the family of first integrals Ω.
To find the solutions, we use the system of computer algebra Wolfram Mathematica.

As can be seen, Eqs. (7) can be separated in the variables. Let us construct a lexicographic
Gröbner basis with respect to λ1 > λ2 > γ1 > ω1 for the left-hand sides depending on ω1, ω2,
and γ1, γ2. As a result, we obtain a system of equations splitting into two subsystems. Below we
give the lexicographic bases of these subsystems:(

B2
12 −B11B22

)
γ2 −A2(B12ω1 +B22ω2) = 0,

−B12γ1 +B11γ2 +A2ω2 = 0,

λ0

(
B2

11 +B2
12

)
+ λ2A

2
2 = 0,

−λ0B11 − λ1A
2
2 = 0;

(8)
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−B12ω
2
1 + ((B11 −B22)ω1 +B12ω2)ω2 = 0,

−ω1γ2 + ω2γ1 = 0,

−
(
A2

2ω
2
2 +B12(B11 +B22)ω1γ

2
2

)
λ0 −A2

2ω2γ
2
2λ2 = 0,(

B12ω1γ2 −A2ω
2
2

)
λ0 +A2

2ω2γ2λ1 = 0.

(9)

From the last two equations in (8), we find

λ1 = −B11

A2
2

λ0, λ2 = −B2
11 +B2

12

A2
2

λ0 (10)

and substitute them into the remaining equations (7) (depending on ω3 and γ3). These equations
are reduced to one equation ω3 = 0. It can be verified by a straightforward calculation according
to the definition of invariant manifold that the equations(

B2
12 −B11B22

)
γ2 −A2(B12ω1 +B22ω2) = 0,

A2ω2 −B12γ1 +B11γ2 = 0,

ω3 = 0

(11)

define an invariant manifold of codimension 3 for the equations of motion (4).
The differential equations on this invariant manifold are written in the form

ω̇1 =
B2

12 −B11B22

A2
2

γ2γ3,

γ̇2 = ω1γ3,

γ̇3 = −ω1γ2 + (A2ω1 −B12γ2)

(
B12

B2
22

ω1 +
B11B22 −B2

12

A2B2
22

γ2

) (12)

and describe pendulum-like oscillations of the body.
Let us substitute λ1 and λ2 given by (10) into (6). By a straightforward calculation it can also

be verified that the integral

2Ω1 = K1 +
2B11

A2
2

Ṽ1 +
B2

11 +B2
12

A2
2

V2 (13)

takes a stationary value on the invariant manifold (11).
In a similar way, based on Eqs. (9), we obtain the equations

−B12ω
2
1 +

(
(B11 −B22)ω1 +B12ω2

)
ω2 = 0,

−ω1γ2 + ω2γ1 = 0,

ω3 = 0,

γ3 = 0

(14)

defining an invariant manifold of codimension 4.
The differential equations ω̇2 = 0 and γ̇2 = 0 on this invariant manifold have the following family

of solutions:
ω2 = ω0

2 = const,

γ2 = γ0
2 = const.

Thus, from the geometrical viewpoint, the invariant manifold (14) in the space R6 is associated with
a surface whose each point is a fixed point in the phase space.
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Using the maps of some atlas on the invariant manifold (14), one can readily show that the
integral

Ω2 = − 1

4A2
2V2

(
2Ṽ 2

1 − 2z1Ṽ1V2 − V2

(
(B11 +B22)z1V2 + 2A2

2K1

))
, (15)

where z1 = B11−B22−D and D =
√

(B11 −B22)2 + 4B2
12, takes a stationary value on the invariant

manifold (14) in the map
ω1 =

z1ω2

2B12

, ω3 = 0,

γ1 =
z1γ2
2B12

, γ3 = 0,
(16)

and the integral

Ω3 = − 1

4A2
2V2

(
2Ṽ 2

1 − 2z2Ṽ1V2 − V2

(
(B11 +B22)z2V2 + 2A2

2K1

))
, (17)

in the map
ω1 =

z2ω2

2B12

, ω3 = 0,

γ1 =
z2γ2
2B12

, γ3 = 0.
(18)

Here z2 = B11 −B22 +D.
Two more invariant manifolds different from the ones above and a condition on the parameters λ1

and λ2 under which the integral Ω (6) takes a stationary value on these invariant manifolds can
be obtained by constructing a lexicographic basis for the polynomials of the entire system (7)
for ω3 > ω1 > ω2 > γ1 > λ2 > λ1. The equations of the invariant manifold are written in the form

2B12γ1 − (B11 −B22 ±D)γ2 = 0,

2(A2 −A3)ω2 − (B11 +B22 ∓D)γ2 = 0,

2(A2 −A3)B12ω1 +
(
2B2

12 −B22(B11 −B22 ±D)
)
γ2 = 0,

2(A2 −A3)ω3 − (B11 +B22 ∓D)γ3 = 0.

(19)

The differential equations on these invariant manifolds are similar to the equations on the in-
variant manifolds (14),

γ̇2 = 0,

γ̇3 = 0.

The integral Ω in (6) takes a stationary value on the invariant manifold (19) for

λ1 =
λ0

2A2
2(A2 −A3)

(
A3(B11 −B22) + 2A2B22 ∓ (2A2 −A3)D

)
,

λ2 = − λ0

2A2
2(A2 −A3)2

(
2A2

2(B
2
11 +B2

12)− (2A2 −A3)A3(B11 +B22)(B11 −B22 ±D)
)
.

Let us study the relationship between the manifolds. We find the intersection of the invariant
manifolds (11) and (14). To this end, for the polynomials of the system obtained by combining
Eqs. (11) and (14) we construct the Gröbner lexicographic basis with respect to γ1 > γ3 > ω1 >
ω2 > ω3,

ω3 = 0,

(B2
12 −B11B22)γ

2
2 −A2(B11 +B22)ω2γ2 −A2

2ω
2
2 = 0,

(B11B22 −B2
12)γ2 +A2B12ω1 +A2B22ω2 = 0,

γ3 = 0,

B12γ1 −B11γ2 −A2ω2 = 0.

(20)
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Equations (20), together with the integral V2 = 1, determine the following solutions of the
differential equations (4):

γ1 = ∓
√
2B12√
DD1

, γ2 = ± D1√
2D

, γ3 = 0,

ω1 = ±
D1

(
2B2

12 −B22(B11 −B22 −D)
)

2
√
2DA2B12

, ω2 = ∓D1(B11 +B22 +D)

2
√
2DA2

, ω3 = 0;

(21)

γ1 = ±
√
2B12√
DD2

, γ2 = ± D2√
2D

, γ3 = 0,

ω1 = ±
D2

(
2B2

12 −B22(B11 −B22 +D)
)

2
√
2DA2B12

, ω2 = ∓(B11 +B22 −D)D2

2
√
2DA2

, ω3 = 0.

(22)

Here and in the following, D1 =
√
B11 −B22 +D and D2 =

√
B22 −B11 +D.

From the mechanical viewpoint, the solutions (21), (22) correspond to permanent rotations of
a body around an axis located in the Oxy-plane (in the system of axes associated with the body)
with the angular velocity ω2 =

(
B2

11 + 2B2
12 ±B11D +B22(B22 ±D)

)
/(2A2

2).
It can be verified by a straightforward calculation that the integral

2Ω4 = K1 +
1

A2
2

(
2B11Ṽ1 + (B2

11 +B2
12)V2

)
takes a stationary value on the solutions (21) and (22).

In a similar way, it can be shown that the intersection of the invariant manifold (14) with each
of the two invariant manifolds (19) is nonempty. They have common points that also correspond
to permanent rotations of the body.

3. ON THE STABILITY OF STATIONARY SOLUTIONS AND INVARIANT MANIFOLDS

Let us study the stability of the invariant manifold (11) using the integral Ω1 (13) to obtain
sufficient conditions.

We introduce the deviations

y1 = ω1 +
1

A2B12

(
A2B22ω2 + (B11B22 −B2

12)γ2
)
,

y2 = γ1 −
1

B12

(A2ω2 +B11γ2),

y3 = ω3

and write the variation of the integral Ω1 in a neighborhood of the solution to be studied,

2∆Ω1 =
1

A2
2

(
B2

12y
2
2 + (A2y1 +B22y2)

2 + (2A2 −A3)A3y
2
3

)
.

Consider the restriction of ∆Ω1 to the set defined by the first variation of the integral Ṽ1,

δṼ1 =
2

B12

(A2ω2 +B11γ2)y2 = 0.

On this set, ∆Ω1 acquires the form

2∆Ω̃1 = y2
1 +

(2A2 −A3)A3

A2
2

y2
3.
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The condition
2A2 > A3 (23)

of positive definiteness of the quadratic form ∆Ω̃1 is sufficient for the stability of the invariant
manifold studied.

Now let us analyze the stability of the invariant manifold (14) using the integral Ω2 (15) to obtain
sufficient conditions. The analysis is carried out in the map (16) on this invariant manifold.

We introduce the deviations

y1 = γ1 −
z1γ2
2B12

, y2 = ω1 −
z1ω2

2B12

, y3 = γ3, y4 = ω3.

The second variation of Ω2 on the set defined by the first variations

δṼ1 =
A2z1
2B12

(ω2y1 + γ2y2) = 0,

δV2 =
γ2z1
B12

y1 = 0

of the conditional integrals is written in the form

2δ2Ω2 =
1

4A2
2

[
2(2A2 −A3)A3y

2
4 − 2A3

(
(B11 +B22 +D) + 2A2

ω2

γ2

)
y3y4

+

(
2A2

2

ω2
2

γ2
2

−
(
B11(B11 +D) +B22(B22 +D) + 2B2

12

))
y2
3

]
.

The condition

(A2 −A3)
ω2
2

γ2
2

−A3(B11 +B22 +D)
ω2

γ2
−B11(B11 +D)−B22(B22 +D)− 2B2

12 > 0,

2A2 −A3 > 0

of sign definiteness of the quadratic form δ2Ω2 will be sufficient for the stability of the invariant
manifold in question.

Since the ratio Φ = Ṽ1/V2 of integrals on the invariant manifold (14) acquires the form
Φ|0 = A2ω2/γ2 = c = const, we see that the last inequalities are satisfied, in particular, for

(B11 > 0, B12 > 0, B22 > 0)

∧

{[(
A3

2
< A2 < A3

)
∧
(

A2z̄1
A2 −A3

< 2c < −z̄2

)]
∨ ((A2 = A3) ∧ (2c < −z̄2))

∨
[
(A2 > A3) ∧

(
(2c < −z̄2) ∨

(
2c >

A2z̄2
A2 −A3

))]}
,

(24)

where z̄1 = B11 +B22 −D and z̄2 = B11 +B22 +D.
In the map (18), the sufficient conditions for the stability of the invariant manifold (14) become

more restrictive. Under the condition of positivity of B11, B12, and B22, they contain additional
constraints on B11, say, 0 < B11 < B2

12/B22 or B11 > B2
12/B22.

Let us study the stability of the solutions (21). We introduce the deviations from the unperturbed
solution,

y1 = γ1 ±
√
2B12√

D(B11 −B22 +D)
,
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y2 = γ2 ∓
√
B11 −B22 +D√

2D
,

y3 = γ3,

y4 = ω1 ∓
√
B11 −B22 +D

(
2B2

12 +B22(B22 −B11 +D)
)

2
√
2A2B12

√
D

,

y5 = ω2 ±
√
B11 −B22 +D(B11 +B22 +D)

2
√
2A2

√
D

,

y6 = ω3.

The variation of the integral Ω4 in deviations on the set

δV2 = ∓
√
2
(
2B12y1 − (B11 −B22 +D)y2

)√
D(B11 −B22 +D)

= 0

is written as

2∆Ω4 =

(
B11 +B22 −D

2A2

y1 + y4

)2

+

(
B12

A2

(
2B11

B11 −B22 +D
− 1

)
y1 + y5

)2

+
(2A2 −A3)A3

A2
2

y2
6.

Let us introduce the variables

ζ1 =
B11 +B22 −D

2A2

y1 + y4,

ζ2 =
B12

A2

(
2B11

B11 −B22 +D
− 1

)
y1 + y5.

In terms of the new variables, ∆Ω4 acquires the form

2∆Ω̃4 = ζ21 + ζ22 +
(2A2 −A3)A3

A2
2

y2
6.

Since the quadratic form ∆Ω̃4 is sign definite with respect to the variables occurring in it
for A2 > A3/2, we conclude that the solutions studied here are stable with respect to the vari-
ables

1

2A2

(
2A2ω1 + (B11 +B22 −D)γ1 ∓

2
√
2DB12√

B11 −B22 +D

)
,

ω2 −

B12 γ1
A2

±
B11(B11 −B22 −D)

(√
2D

√
B11 −B22 +D ± 2B12γ1

)
4A2B2

12

 ,

ω3.

(25)

A similar result can be obtained for the solutions (22).
The conditions for the stability of the invariant manifold (19) coincide with the condition for the

stability of the invariant manifold (11).

4. ON SOLUTIONS ON A MANIFOLD

Consider the problem of finding stationary solutions and invariant manifolds of the differential
equations (12). We use the same approach as in Sec. 2.
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The first integrals of Eqs. (12) can be obtained by eliminating the variables ω2, ω3, and γ1 from
the original integrals K1, Ṽ1, and V2 by using Eqs. (11). They have the form

K1 = B2
22

[
B2

12(γ
2
2 + γ2

3)−B2
11(γ

2
2 − γ2

3)
]

+ (B12γ2 −A2ω1)
[
(B2

11 +B2
12)(B12γ2 −A2ω1) + 2B11B22(B12γ2 +A2ω1)

]
= c1 = const,

V 1 =
(
B2

12 −B11B22

)
γ2
2 −A2

2ω
2
1 = c2 = const,

V 2 =
(B12γ2 −A2ω1)

2

B2
22

+ γ2
2 + γ2

3 = 1.

Let us choose independent integrals from these integrals (for example, K1 and V 2), form their linear
combination 2Ω = 2µ0K1 − µ1V 2, and write the necessary conditions for the extremum of Ω in the
variables ω1, γ2, and γ3,

∂Ω

ω1

=
1

B2
22

(
B12z

A2

γ2 − (z − 2B11B22µ0)ω1

)
= 0,

∂Ω

γ2
=

1

A2B22

(
B12z

B22

ω1 +
1

A2

(
2B11

(
B11B22 −B2

12

)
µ0 −

(B2
12 +B2

22) z

B22

)
γ2

)
= 0,

∂Ω

γ2
= − z

A2
2

γ3 = 0.

(26)

Here µ0 and µ1 are parameters of the family of integrals Ω, and z =
(
B2

11 +B2
12

)
µ0 +A2

2µ1.
Obviously, for µ1 = −

((
B2

11 +B2
12

)
µ0

)
/A2

2 Eqs. (26) have the solution

ω1 = 0, γ2 = 0. (27)

A straightforward calculation using the definition of invariant manifold shows that relations (27)
determine invariant manifolds of codimension 2 of the differential equations (12).

Another invariant manifold of codimension 2 was obtained by constructing a lexicographic basis
for the polynomials of system (26) with respect to µ1 > ω1 > γ3. The equations of the invariant
manifold are written in the form

γ3 = 0,

A2
2B12ω

2
1 −A2

(
2B2

12 −B22(B11 −B22)
)
ω1γ2 +B12(B

2
12 −B11B22)γ

2
2 = 0.

(28)

The differential equations γ̇3 = 0 (γ̇2 = 0) on the invariant manifold (27) (the invariant man-
ifold (28)) have the families of solutions γ3 = γ0

3 = const (γ2 = γ0
2 = const). Thus, from the

geometrical viewpoint, the invariant manifolds found in the space R3 are associated with curves
whose each point is a fixed point in the phase space of system (12).

Let us supplement equations (26) by the relation V 2 = 1 and construct a lexicographic basis with
respect to ω1 > γ2 > γ3 > µ1 for the polynomials of the resulting system. The result will be a system
of equations that permits one to obtain the following solutions of the differential equations (12):

ω1 = γ2 = 0, γ3 = ±1, (29)

ω1 = ±
D1

(
2B2

12 −B22(B11 −B22 −D)
)

2
√
2DA2B12

, γ2 = ± D1√
2D

, γ3 = 0, (30)

ω1 = ±
D2

(
2B2

12 −B22(B11 −B22 +D)
)

2
√
2DA2B12

, γ2 = ± D2√
2D

, γ3 = 0. (31)

These solutions correspond to fixed points in the phase space of the system.
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Obviously, the solutions (29) belong to the invariant manifold (27). It can readily be shown
that the solutions (30) and (31) belong to the invariant manifold (28). To this end, we substitute
relations (30) into Eqs. (28), which turn into identities. It follows that the solutions (30) belong to
the invariant manifold (28). A similar result can also be obtained for the solutions (31).

It can be verified by a straightforward calculation that the expressions (30), together with
Eqs. (11), determine solutions of the differential equations (4) coinciding with (21) in the origi-
nal phase space. The solutions (31) in the original space are associated with the solutions (22).

Let us study the stability of the solutions (30) using the integral

2Φ = 2K1 +
B2

12 −B11(B22 +D)

A2
2

V 2,

which takes a stationary value on these solutions, to obtain sufficient conditions.
In the deviations

y1 = ω1 ∓
D1

(
2B2

12 −B22(B11 −B22 −D)
)

2
√
2DA2B12

, y2 = γ2 ∓
D1√
2D

, y3 = γ3

on the linear manifold

δV 2 = ±
√
2

B22

√
DD1

(
2A2B12 y1 +

(
B22(B11 −B22 +D)− 2B2

12

)
y2

)
= 0,

the variation of the integral Φ is written as follows:

∆Φ = −
2B11

(
4B2

12 + (B11 −B22)
2
)
(B11 −B22 +D)(

2B2
12 −B22(B11 −B22 +D)

)2 y2
1 −

B11(B11 +B22 +D)

2A2
2

y2
3.

The quadratic form ∆Φ will be positive definite under the following constraints on the parame-
ters B11, B12, and B22:(

(B12 ̸= 0) ∧
(
(B22 < 0) ∧

(
B2

12

B22

< B11 < 0

))
∨
(
(B22 > 0) ∧ (B11 < 0)

)
. (32)

Conditions (32) are sufficient for the stability of the solutions (30).
Let us obtain necessary conditions for the stability of the solutions (30) using the Lyapunov

theorem on the stability by the first approximation [13].
In the case under consideration, the equations of the first approximation are written in the form

ẏ1 =
(B11B22 −B2

12)D1√
2DA2

2

y3,

ẏ2 = ±
(
B22(B11 −B22 −D)− 2B2

12

)
D1

2
√
2DA2B12

y3,

ẏ3 = ±
(
B22

(
B2

11 +B22(B22 +D)
)
+ (2B2

12 −B11B22)(2B22 +D)

2
√
2DA2B12B22

y2 −
√
D√

2B22

y1

)
D1.

(33)

The characteristic equation

λ
(
2A2

2λ
2 + (B11 −B22)

2 + (B11 +B22)D + 4B2
12

)
= 0

of system (33) has only zero and pure imaginary roots under the conditions

(B12 ̸= 0) ∧
(
(B22 < 0) ∧

(
B2

12

B22

≤ B11 < 0)

)
∨ (B11 > 0)

)
∨
(
(B22 > 0) ∧ (B11 ̸= 0)

)
.
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Comparing the last inequalities with (32), we conclude that the sufficient conditions are close to
the necessary ones.

Thus, the solutions (30) that are stable on the manifold correspond to the solutions (21) that are
stable in part of the variables in the original phase space. The same result has also been obtained in
the case of the solutions (31).

Based on the results presented, we can state the following assertion.

Assertion. The generalizations of the Routh–Lyapunov method used to analyze the problem
under consideration have made it possible to isolate special sets of differential equations (1) in
the special case of the existence of an additional quadratic integral K1 (3) of these equations—the
stationary invariant manifolds (11), (14), (19) and the stationary solutions (21), (22) as the points
of intersection of these invariant manifolds—and investigate the solutions found for stability. With
the help of linear and nonlinear combinations of the first integrals of the problem delivering stationary
values to the solutions found, sufficient stability conditions (23) and (24) have been obtained for the
invariant manifolds (11), (19) and the invariant manifolds (14), respectively, and stability in terms
of the variables (25) is proved for the stationary solutions. The approach used has also allowed
carrying out a similar study of the differential equations on the invariant manifold (11).

CONCLUSIONS

New additional quadratic integrals are indicated in the problem of the motion of a rigid body
with a fixed point under the action of a magnetic field generated by the Barnett–London effect
and potential forces. A qualitative analysis of a system of differential equations admitting one of
these integrals is carried out. Stationary invariant manifolds of codimensions 3 and 4 are isolated,
and sufficient conditions for their stability are obtained. It is shown that the intersections of
the manifolds are fixed points in the phase space of the system corresponding to the permanent
rotations of the body. The stability of these motions with respect to part of the variables is
proved. A qualitative analysis of the differential equations has also been carried out on one of
the invariant manifolds found. Stationary solutions and invariant manifolds of codimension 2 are
isolated. Sufficient stability conditions are obtained for stationary solutions on a manifold and are
compared with the necessary ones. We note that in the considered case of the existence of an
additional quadratic integral, the parameters characterizing the influence of the potential forces
do not explicitly appear in either the equations of motion of the body or the first integrals. The
conditions for the stability of solutions are obtained in the form of constraints on the parameters
characterizing the magnetic forces. Thus, it can be assumed that potential forces do not have
a considerable effect on the motion of the body in this case.
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