
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2021, Vol. 15, No. 4, pp. 670–678. c© Pleiades Publishing, Ltd., 2021.
Russian Text c© The Author(s), 2021, published in Sibirskii Zhurnal Industrial’noi Matematiki, 2021, Vol. 24, No. 4, pp. 126–138.

A Robust Neural Network with Simple Architecture

V. S. Timofeev1* and M. A. Sivak1**

1Novosibirsk State Technical University, pr. Karla Marksa 20, Novosibirsk, 630073 Russia
Received November 17, 2020; in final form, October 4, 2021; accepted October 21, 2021

Abstract—Under consideration are the classification problem and application of simple neural
networks for solving the problem. A robust modification of the error backpropagation algorithm
is proposed and used for training neural networks. Some proposition is proved that allows us to
construct the proposed modification with the Huber loss-function. In order to study the properties of
the so-obtained neural network, a number of computational experiments are carried out. We consider
various values of the outliers’ fraction, noise level, and training and test samples sizes. Inspection
of the results shows that the proposed modification can significantly increase the classification
accuracy and learning rate of a neural network when working with noisy data.

DOI: 10.1134/S1990478921040104

Keywords: classification problem, neural network, Huber loss-function, error backpropaga-
tion algorithm

INTRODUCTION

Nowadays, the artificial neural networks (NNs) are one of the most popular machine learning tools.
They are applicable for solving various problems such as the object classification and prediction or
control tasks. Training such models is usually performed by adjusting their weights. One of the most
well-known algorithms for doing this is the error backpropagation algorithm that resolves oneself into
solving an optimization problem. Generally, this algorithm uses a quadratic loss-function. This is the
reason why simple NNs often work badly with real data that are usually expected to contain some
partially confounded observations from various classes [1–3].

The first approach for solving this problem is to preprocess the data under consideration and exclude
all atypical observations (outliers). The drawback of this approach is that it makes the data being ideal
and negatively affects the accuracy of the obtained network when using it with real data in the future.

The second approach is to build a more complex neural network model, for example, a convolutional
or a recurrent model. That can increase the costs associated with computational power.

However, there is another way to solve the above problem. We can modify the learning algorithm
applying the robust approach [4]. Using a robust loss-function allows us to reduce the outlier impact,
but not exclude them. Such an approach is not used so often, but it seems rather promising. The available
studies show the opportunity of using this approach only in some specific cases. For example, [5] deals
with applying the Huber loss for implementing the robust reinforcement learning. In [6], some examples
are given of using the robust loss-functions for unsupervised learning, and an adaptive loss-function is
constructed and compared with the available functions. In [7], the authors propose a robust modification
of the Levenberg–Marquardt algorithm using the Huber loss. But only the NN with one hidden layer is
considered, and it is used for solving a particular problem of European Option pricing.

As mentioned above, the method of common use for training the NNs is the error backpropagation
algorithm. Thus, the main idea of this study is to construct a new type of this algorithm using a robust
loss. The error backpropagation algorithm differs from the Levenberg–Marquardt algorithm mainly
in the approach to the weights adjusting. The former algorithm adjusts the network weights after
processing each sample of a traning set, the latter adjusts them after processing all training samples.

*E-mail: v.timofeev@corp.nstu.ru
**E-mail: pepelyaeva@ami.nstu.ru

670

A ROBUST NEURAL NETWORK WITH SIMPLE ARCHITECTURE 671

In this paper, the most general robust modification of the error backpropagation method is proposed.
It can be used for various NNs including different number of layers and applying various loss-functions.
The current research is performed for the Huber loss.

1. STATEMENT OF THE PROBLEM

One of the most abundant application of NNs is the solution of classification problems.
Let there be a finite set of classes Q = {q1, . . . , q|T |}, where qk are noncrossing; and also let X =

{X1, . . . ,X|X|} be a finite dataset. Each sample Xm, m = 1, . . . , |X|, is described with a vector xm =
{xm1, xm2, . . . , xmY } consisting of the attribute values of xmi, i = 1, . . . , Y , where Y is the number of
the attributes. To classify the sample Xm means to find for it some class qk this sample belongs to.

When solving a classification problem, usually the entire dataset X is divided into two noncrossing
subsets. They are a training set and a test set [8]. By assumption, for all samples of these subsets their
classes are already defined.

The subset L = {X1, . . . ,X|L|} is called the training set and is used for training the model NN.
The test set D = {X|L|+1, . . . ,X|X|} is used to evaluate the performance of the trained model. The
model processes each sample Xm from D, and after that the class obtained by the model is compared
with the already known class qk. It is accepted that the more similar these values are, the higher the
performance is.

Consider the following example of a classification problem:
Each sample Xm is described with four attributes (Y = 4), and the set Q includes three classes. For

solving the problem, it is proposed to apply the simple NN shown in Fig. 1. This network consists of three
layers (N = 3). The input layer that accepts the attributes of the sample Xm includes four neurons, and
the output layer includes three neurons (one neuron per each class qk). The hidden layer of the model
under study also includes four neurons. As the activation function ϕ = ϕ(z), it is highly recommended
to use a monotone and continuously differentiable function; and so, we use the sigmoid function [9]

ϕ(z) =
1

1 + ez
. (1)

In Fig. 1, y1, y2, and y3 denote the outputs of the NN. The kth neuron which has the maximum

output value corresponds to the class qk for the sample currently processed by the network. Also w
(1)
ij ,

i, j = 1, 2, 3, 4, denote the weights between the neurons of the first and second layers; while w
(2)
jk ,

j = 1, 2, 3, 4 and k = 1, 2, 3, stand for the weights between neurons of the second and third layers.

The inputs of the second layer neurons are denoted by s
(2)
j , j = 1, 2, 3, 4; the inputs of the third layer,

by s
(3)
k , k = 1, 2, 3; and the outputs of neurons of the first and second layers are designated by o

(1)
i for

i = 1, 2, 3, 4 and o
(2)
j for j = 1, 2, 3, 4 respectively.

The given designations can easily be generalized for a more complex neural network. Thus, let yk

for k = 1, . . . , |T | be the outputs of the network; let w
(n−1)
ij , with i = 1, . . . , l(n−1) and j = 1, . . . , l(n),

be the weights between neuron j of layer n and neuron i of layer n − 1 (here l(n) is the amount of

neurons on layer n); and let s
(n)
j be the input value of neuron j belonging to layer n that is defined

by the outputs o
(n−1)
i of the neurons on layer n − 1:

s
(n)
j =

l(n−1)∑
i=1

w
(n−1)
ij o

(n−1)
i , n = 2, 3, . . . , N.

For the neurons of the input layer, we have s
(1)
i = o

(1)
i . When training the NN, each sample Xm from the

training set L is supplied to the model. Hence, we can state that

s
(1)
i = o

(1)
i = xmi, m = 1, . . . , |L|.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

672 TIMOFEEV, SIVAK

Fig. 1. An artificial neural network with one hidden layer.

When evaluating the performance of NN, the samples of the test set D are supplied to the network in
the same way:

s
(1)
i = o

(1)
i = xmi, m = |L + 1|, . . . , |X|.

For each neuron j pertaining to layer n, n > 1, its output can be defined as

o
(n)
j = ϕ

(
s
(n)
j

)
. (2)

The outputs of NN are computed as

yk = ϕ
(
s
(N)
k

)
. (3)

Thus, the outputs of NN depend on all weights.

2. ROBUST MODIFICATION OF THE ERROR BACKPROPAGATION ALGORITHM
Owing to [9], we have two ways of adjusting the NN’s weights during a learning epoch. They can

be recomputed after processing each sample from the training set either after processing all training
samples. We consider the first way, thus the total loss-function E can be represented as the sum of the
loss-functions f(tj, yj) for each model output. This means that the training procedure resolves itself into
solving the optimization problem

E =
l(N)∑
j=1

f(tj, yj) → min
w

(1)
ij ,...,w

(N−1)
ij

, (4)

where tj is the required answer for the output j defined as

tj =

{
1, Xm ∈ qj,

0, otherwise.

Most commonly, of use is the quadratic function

f(tj, yj) =
1
2
(yj − tj)2. (5)

In order to minimize the total loss-function, we compute the derivative with respect to the weights
of NN. Taking (2) and (3) into account, we obtain the partial derivative of (4) by the chain rule [9]:

E
′(n)
ji =

∂E

∂w
(n−1)
ij

=
∂E

∂o
(n)
j

∂o
(n)
j

∂s(n)
j

∂s(n)
j

∂w
(n−1)
ij

. (6)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

A ROBUST NEURAL NETWORK WITH SIMPLE ARCHITECTURE 673

Only one additive term of the neuron input s
(n)
j depends on w

(n−1)
ij ; thus

∂s
(n)
j

∂w
(n−1)
ij

=
∂

∂w
(n−1)
ij

⎛
⎝l(n−1)∑

i=1

w
(n−1)
ij o

(n−1)
i

⎞
⎠ = o

(n−1)
i . (7)

The derivative of the neuron output value o
(n)
j with respect to s

(n)
j is the derivative of the activation

function (1):

∂o
(n)
j

∂s(n)
j

=
dϕ(s(n)

j)

ds(n)
j

. (8)

For the neurons of the output layer, n = N and o
(N)
j = yj ; so we have the first multiplier of (6):

∂E

∂o
(N)
j

=
∂E

∂yj
=

∂f(yj, tj)
∂yj

. (9)

Obtain the equation for the derivative of E with respect to o
(n)
j in the case of an arbitrary hidden

layer n. To this end, consider E as some function of the next layer neurons inputs

E = E
(
s
(n+1)
k

)
, k = 1, . . . , l(n+1),

and after that take the derivative with respect to the output o
(n)
j [9]:

∂E

∂o
(n)
j

=
l(n+1)∑
k=1

(
∂E

∂s
(n+1)
k

∂s
(n+1)
k

∂o
(n)
j

)
=

l(n+1)∑
k=1

(
∂E

∂o
(n+1)
k

∂o
(n+1)
k

∂s
(n+1)
k

w
(n)
jk

)
. (10)

The derivative of (10) can be computed if all derivatives taken with respect to the outputs of the next
layer neurons are defined.

In this regard, the total loss-function derivative is given by the equation

E
′(n)
ji = δ

(n)
j o

(n−1)
i , (11)

where, owing to (6)–(10), δ
(n)
j is computed as follows:

δ
(n)
j =

∂E

∂o
(n)
j

∂o
(n)
j

∂s
(n)
j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂f(yj, tj)
∂yj

ϕ′(yj), n = N,(
l(n+1)∑
k=1

w
(n)
jk δ

(n+1)
k

)
ϕ′(s(n)

j), otherwise.
(12)

Therefore, the obtained relation is valid not only for the sigmoid used in this article but also for
any other activation function ϕ = ϕ(z). Since the relation for computing the derivative is defined, the
gradient descent method [10] can be used for solving the optimization problem.

As mentioned above, the error backpropagation algorithm is unreliable when we have to process
data with outliers. In this context, we propose the modification of this algorithm that involves using
a robust loss-function fR(yj, tj) instead of the quadratic loss (5): f(yj, tj) = fR(yj, tj), where fR(yj , tj)
is assumed continuously differentiable. For instance, the Welsch, Ramsey, and Cauchy loss-functions
considered in [6] satisfy the constraint. So does the Huber loss [11] that is used to construct the
robust NN in this research:

fR(yj, tj) =

⎧⎪⎨
⎪⎩

1
2
(yj − tj)2, |yj − tj | ≤ β,

β|yj − tj| −
1
2
β2, |yj − tj | > β,

(13)

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

674 TIMOFEEV, SIVAK

where β > 0 is the loss-function parameter. We have the partial derivative of (13) with respect to the
output of the jth neuron situated in the output layer

∂fR(yj, tj)
∂yj

=

⎧⎪⎨
⎪⎩

yj − tj , |yj − tj | ≤ β,

−β, yj − tj < −β,

β, yj − tj > β.

According to the above relations, we can conclude that the behavior of the Huber loss on [−β, β]
corresponds to the quadratic loss behavior. Note that the Huber loss is linear on the intervals (−∞,−β)
and (β,+∞), which provides the reducing impact of outliers.

Proposition. Using the robust loss-function (13) instead of the quadratic loss-function in the
error backpropagation algorithm affects only (12).

Proof. Apply (13) to (4) instead of the quadratic loss. In this case, we have the optimization problem

E =
l(N)∑
j=1

fR(tj, yj) → min
w

(1)
ij ,...,w

(N−1)
ij

.

Changing the quadratic loss to the robust loss does not affect the structure of NN. Thus, repeating
the relations quoted above, in accordance to the change we note that (6)–(8) are not affected because
the result of computing them is independent of the loss-function. In this case, the first multiplier of (6)
is written as

∂E

∂o
(N)
j

=
∂E

∂yj
=

∂fR(yj , tj)
∂yj

. (14)

The chain rule for hidden layer neurons (10) also depends only on the structure of NN; and so it does
not change. Consequently, the relation for computing the total loss-function derivative (11) is the same.

However, owing to (14), the multiplier δ
(n)
j in (11) changes as follows

δ
(n)
j =

∂E

∂o
(n)
j

∂o
(n)
j

∂s
(n)
j

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂fR(yj, tj)
∂yj

ϕ′(yj), n = N,(
l(n+1)∑
k=1

w
(n)
jk δ

(n+1)
k

)
ϕ′(s(n)

j), otherwise,
(15)

that is consistent with the proclaim.
Thus, Proposition is proved.

The above Proposition allows us to modify the error backpropagation method by changing (12)
into (15) without affecting the other relations of the algorithm. Therewith, we obtain the totally new
neural network. In order to study the properties of it, we carry out some computational experiments.

3. EXPERIMENTAL RESULTS

We apply one of the most well-known datasets called “Fisher’s Iris” [12] that is commonly used to
illustrate how various classification algorithms work. This is opportune enough for our purposes because
it allows to obtain a classifyer based on a small number of attributes. The dataset includes 150 samples
corresponding to the iris flowers of three different species (iris setosa, iris versicolor, and iris virginica).
Each flower Xm, m = 1, . . . , 150 is described with four attributes xmi (i.e., the sepal width and length
and the petal width and length). For these samples, the classes yk, k = 1, 2, 3, are defined. This small
amount of attributes makes it easy to analyze the existing dependencies and the algorithm performance.

In the study, we add the noise to the third and fourth attributes xm3 and xm4:

x̃mi = xmi + εmi, i = 3, 4,

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

A ROBUST NEURAL NETWORK WITH SIMPLE ARCHITECTURE 675

where εmi are some independent random errors that have the same distribution. The distribution function
of εmi is as follows:

Fi(x) = (1 − λ)F1(x, 0, σi1) + λF2(x, 0, σi2), i = 3, 4,

where Fj(x, 0, σij), j = 1, 2, is the function of the normal distribution with zero mean and variance σ2
ij ;

and λ ∈ [0, 1] is the mixture parameter that denotes here the outlier fraction. In the experiments, we
assumed that σ2

i1 < σ2
i2. When modelling the noise, not the variance values σ2

i1 and σ2
i2 were defined but

the corresponding values of the noise level ρi1 and ρi2. The values ρi1 were relevant to the background
noise level for each attribute, and ρi2 were relevant to the noise level of outliers, which shows their
distance from the general group of observations. The noise level introduced in [13] is defined as

ρij =
σij

c
· 100%,

where c2 is the variance of the original dataset (without additional noise).
The data under study is the result of manual measurements; thus we supposed that the data already

contained some operational margins (noise). The principal interest of this study was to examine how the
outliers impacted the performance of the robust NN; and so, only the noise levels ρ32 and ρ42 were varied.
The background noise level was considered small and fixed for all experiments: ρ31 = ρ41 = 0.05%.

To estimate the performance of the NNs, we use the accuracy metric

α =
Dcorr

|D| · 100%,

where Dcorr is the amount of samples that were classified correctly, and |D| is the size of the test dataset.
The training algorithm is iterative. It means that during one training epoch the network processes

all samples from the training set consequently. In this study, the weights are adjusted after processing
each sample, and the accuracy is computed after processing all samples (i.e., after each training epoch).
Owing to analyzing the noisy data, at every step of the research each test included 200 computational
experiments, and the results of these 200 experiments were averaged. At the first step, the performance
of the robust and the ordinary networks was analyzed for different values of outliers’ fraction.

For the robust network, the values of β were considered in (0, 1). The value tj can be equal only to 0
and 1; and, since the applied activation function, yj can take the value on (0, 1], thus |yj − tj| � 1. When
β � 1, the Huber loss-function on [−1, 1] is equal to the quadratic one. It means that there is no sense
to consider these parameter values.

The results obtained at this step are shown in Table 1. The outliers’ fraction λ varied between 0.05
and 0.40, the subinterval was equal to 0.05. The noise level ρi2 that were relevant to the error variance σ2

i2

varied between 48% and 149%, and between 67% and 162% for the third and fourth attributes
respectively. Table 1 shows the values of the Huber loss-function parameter that allows us to achieve
the highest network accuracy αmax, the number of training epochs required to achieve this accuracy
value, and the accuracy after 50 training epochs α50.

We see in Table 1 that in all cases the classification accuracy for the robust network is higher than or
at least equatable to that of the ordinary model. As often as not, the robust model required less time to
be trained properly because the less number of training epoches was required to achieve the maximum
classification accuracy, and also the accuracy after 50 training epoches was higher for the robust model.
Moreover, for some outliers’ fraction values using the robust network increases accuracy by 6–10%. The
values of classification accuracy for both networks are shown in Fig. 2 for λ = 0.4.

When training the obtained NNs, various values of epoch count were considered (from 2 to 1000).
The accuracy was captured for 2, 5, 10, and 50 epochs and also for the epoch count from the range
[100, 1000] with the subinterval equal to 100. Fig. 2 shows that for small count of epochs the robust
network performance is equal to that of the ordinary NN. However the higher the epoch count is, the
better accuracy the robust model achieves (as compared to the ordinary model). It means that the robust
NN trains faster than the ordinary NN. Finally, the classification accuracy for the robust model is higher
than 90% which is rather good result for such a noisy data.

At the next two steps, we suppose that λ = 0.25 and β = 0.2 because these parameter values allowed
us to achieve the highest gain in accuracy. At the second step of the study, the values ρ32 were varied

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

676 TIMOFEEV, SIVAK

Fig. 2. Comparison of the robust NN and ordinary NN performance for λ = 0.4: h corresponds
to epochs, a to accuracy; 1 — robust NN, 2 — ordinary NN.

from 28 to 278%, and the values ρ42, from 24 to 236% for the third and fourth attributes respectively.
These values of noise level are extremely high and can hardly be implemented in practice; therefore, we
examined these cases only for research. The obtained results are provided in Table 2.

We see that in the case of small noise level the robust network is not definitely faster that the ordinary
model, but it works more accurately (generally the gain is at least 9%, and for ρ32 = 85% and ρ42 = 63%
the gain is up to 24.52%). When the noise level is higher, the ordinary network is better than the robust
network. The accuracy difference is from 2.37 to 6.42%. It can be explained by the fact that the increase
of the variance values makes the samples more distantly situated from each other. Actually, it is equal to
the cases when the noise level is lower.

At the last step of research, the impact of sizes of the training and test sets on classification accuracy
was investigated. The following three scenarios of dataset splitting were considered:

• scenario 1: |L| = 105 samples (70%) and |D| = 45 samples (30%);

• scenario 2: |L| = 120 samples (80%) and |D| = 30 samples (20%);

• scenario 3: |L| = 135 samples (90%) and |D| = 15 samples (10%).

We supposed that the robust neural network parameter β was equal to 0.2, the outliers’ fraction
value was equal to 0.25. The noise level value ρ32 varied from 109 to 122%, and ρ42 varied from 129

Table 1. Comparison of the robust NN and ordinary NN performances for various λ

ρ32 ρ42 λ Robust NN Ordinary NN

αmax, % β epochs α50, % αmax, % epochs α50, %

48 67 0.05 100.00 0.5 400 72.50 98.95 400 71.10

74 70 0.10 97.31 0.8 500 41.61 97.18 600 39.13

91 104 0.15 94.00 0.3 1000 64.49 93.20 1000 34.50

102 120 0.20 89.10 0.2 600 66.55 87.99 1000 61.59

117 138 0.25 86.77 0.2 1000 51.28 76.43 1000 66.25

138 147 0.30 89.73 0.5 1000 66.55 84.80 1000 53.11

147 153 0.35 85.88 0.4 1000 66.67 79.38 1000 45.04

149 162 0.40 92.71 0.4 900 66.67 84.73 1000 65.78

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

A ROBUST NEURAL NETWORK WITH SIMPLE ARCHITECTURE 677

Table 2. Comparison of the robust NN and ordinary NN performance for various
noise levels, λ = 0.25 and β = 0.2

ρ32 ρ42 Robust NN Ordinary NN

αmax, % epochs α50, % αmax, % epochs α50, %

28 24 97.38 1000 61.62 84.38 1000 67.73

59 45 91.65 500 58.02 82.40 1000 53.70

85 63 89.97 1000 56.07 65.45 1000 51.22

111 98 88.07 1000 54.40 76.30 1000 62.02

131 127 86.28 1000 49.92 77.45 900 65.35

145 181 89.35 1000 48.45 89.05 900 66.95

175 157 90.03 1000 46.78 92.40 900 67.40

190 213 89.62 1000 50.02 95.73 1000 67.65

211 228 90.73 1000 43.65 97.15 900 67.35

278 236 94.02 1000 45.58 97.65 900 67.35

to 330%. We can explain these extremely large noise levels by the increase of the training set size,
which provides the increase of the actual noise level. As previously, these values were examined only
for research. The results obtained at this step are shown in Table 3. Note that for the second and third
splitting scenarios the accuracy of the robust network increased by 10.3% and 27.3% respectively. Also,
for the third scenario the ordinary network performance is much worse than in the other cases. It can
be explained by the fact that the increase of the training set size leads to increase of the outliers’ count
in it (in accordance with the considered outliers’ fraction value). Hence, the classification accuracy for
the ordinary network is lower, but the robust network trains faster for the bigger training set size. It also
leads to increase of the classification accuracy.

Fig. 3 illustrates the performance of both NNs for the third splitting scenario that gives the highest
gain in accuracy. The considered values of epoch counts were the same as previously. We see that even
when the epoch count is small, the robust network trains much faster than the ordinary network and
achieves the maximum accuracy after 400 epochs (95.17%). At the same time, the ordinary model
achieves only accuracy of 67.87% even after 1000 training epochs.

The obtained results provide support to the fact that the outliers’ impact decreases when using the
robust loss. The more atypical samples are in the dataset or the bigger distance between this samples
and typical ones is, the higher performance of the robust NN becomes (compared to the ordinary model).

Table 3. Comparison of the robust NN and ordinary NN performances for various
dataset splitting variants, λ = 0.25 and β = 0.2

Splitting scenario Robust NN Ordinary NN

αmax, % epochs α50, % αmax, % epochs α50, %

Scenario 1 96.31 800 61.50 99.96 1000 66.72

Scenario 2 88.03 1000 59.75 78.17 1000 56.92

Scenario 3 95.17 400 48.33 67.87 1000 34.60

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

678 TIMOFEEV, SIVAK

Fig. 3. Comparison of the robust NN and ordinary NN performances for the third splitting scenario:
h corresponds to epochs, a to accuracy; 1 — robust NN, 2 — ordinary NN.

It is highly significant to choose the value of β correctly because this parameter determines how much
the outliers affect the model training and, consequently, the classification accuracy.

CONCLUSION
We propose a modification of the error backpropagation algorithm which assumes changing the

quadratic loss into the robust Huber loss. We prove some proposition that allows us to modify the algo-
rithm and obtain the neural network with the new properties examined by computational experiments.

Changing the value of the Huber loss-function parameter β increases the accuracy of classification
by more than 8.6% upon the average, and even by 27.3% in a specific case. The results of the study show
that the robust neural network is more efficient in the case of noisy data, but for data without noise the
ordinary network is more preferable. In addition, the robust network trains much faster than the ordinary
one (in up to two and a half times faster). The increase of the training dataset size leads to a significant
increase of the learning rate and classification accuracy for the robust neural network.

FUNDING
The authors were supported by the Russian Foundation for Basic Research (project no. 20–37–

90077).

REFERENCES
1. Yu. P. Lankin, T. F. Baskanova, and T. I. Lobova, “Neural Network Analysis of Complicated Ecological Data,”

in Modern Problems of Science and Education, No. 4 (2012).
2. V. G. Manzhula and D. S. Fedyashov, “Kohonen Neural Networks and Fuzzy Neural Networks in Data

Mining,” in Basic Research, No 4, pp. 108–115 (2011).
3. Deep neural networks. Part 1: Data Preprocessing URL: https://www.mql5.com/ru/articles/3486.
4. J. Fan and I. Gijbels, Local Polynomial Modelling and Its Applications (Chapman & Hall, London, 1996).
5. S. Fujimoto, D. Meger, and D. Precup, “An Equivalence between Loss Functions and Nonuniform Sampling

in Experience Replay” (2020); URL: https://papers.nips.cc/paper/2020/file/a3bf6e4db673b6449 c2f7d13
ee6ec9c0-Paper.pdf.

6. J. T. Barron, A General and Adaptive Robust Loss Function (2017); https://arxiv.org/abs/1701.03077.
7. P. Andreou, C. Charalambous, and S. Martzoukos, “Robust Artificial Neural Networks for Pricing of

European Options,” Comput. Econom. 2 (27), 329–351 (2006).
8. F. Sebastiani, “Text Categorization,” in Text Mining and Its Applications (WIT Press, Southampton,

2005), pp. 109–129.
9. C. Bishop, Neural Networks for Pattern Recognition (Oxford Univ. Press, New York, 1995).

10. D. M. Himmelblau, Applied Nonlinear Programming (McGraw-Hill, 1972; Mir, Moscow, 1975).
11. J. P. Huber, Robust Statistics (Wiley, Hoboken, New Jersey, 2009).
12. UCI Machine Learning Repository URL: http://www.ics.uci.edu/ mlearn/MLRepository.html.
13. A. G. Ivahnenko and V. S. Stepashko, Noise-Resistant Modeling (Naukova Dumka, Kiev, 1985) (in

Russian).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 15 No. 4 2021

