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Abstract—Some algorithm is presented for solving the convolution type Volterra integral equation
of the first kind by the quadrature-sum method. We assume that the integral equation of the first
kind cannot be reduced to an integral equation of the second kind but we do not assume that either
the kernel or some of its derivatives at zero are unequal to zero. For the relations we propose there is
given an estimate of the error of the calculated solution. Some examples of numerical experiments
are presented to demonstrate the efficiency of the algorithm.
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INTRODUCTION

Solving the heat equation with data on a timelike boundary (for example, see [1]) or some inverse
problems for the heat equation (see [2]), we have to solve the convolution type Volterra integral equation
of the first kind

t∫

0

K(t − s)f(s) ds = g(t). (1)

The distinctive feature of applications of this type is that (1) cannot be reduced to the Volterra integral
equation of the second kind since the function K(t), as well as all its derivatives, vanishes at the point
t = 0.

Example 1. Consider the function K(t) = t−1/2e−a/t (see Fig. 1). In [1, 2] the cases are considered
when the kernel is the same or more intricate but K(t) has similar behavior in the neighborhood of t = 0.

In this case for the solution of (1) the regularization methods applied in [3-6] cannot be used since
these methods require the condition K(n)(0) �= 0 (n is some natural). The Denisov method requires the

Fig. 1. The graph of K(t).
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knowledge of f(0), but this condition is not usually fulfilled in practice. The Tikhonov regularization
method leads to the solution of a Fredholm equations of the first kind [7].

Basing on the quadrature method, we propose the numerical method for solving integral equation (1)
and obtain an estimate of the error of the solution. Some example is presented of a numerical implemen-
tation of the method.

The particularity of the solution of the convolution type Volterra integral equation of the first kind
by applying the quadrature integration method is that we need to use only a fixed time meshsize. The
time meshsize cannot be too small since, otherwise, a solution of the integral equation will take more
time than we can afford. The second particularity that should be taken into account in our case is the
behavior of K(t). Usually, this function changes significantly in a small neighborhood of t = 0, and then
it has a fairly “calm” behavior.

Example 2. The kernel K(t) = t−1/2e−a/t attains the maximum value at tmax = 2a after which
K(t) decreases smoothly as t−1/2 (see Fig. 1). In practice the parameter a is very small (for example,
a = 10−6 [2]); i.e., a is smaller than any reasonable time meshsize. Therefore, this imposes constraints
on the construction of the quadrature formula.

In [8], another technique is proposed for solving the given integral equation. This result is based on
an optimization approach and the theorem of existence (proved in [8]) of a solution of this equation in the
class of functions that can be represented by a Fourier series whose coefficients tend to zero as k−(1+γ),
γ > 0. Sufficiently complete information of the theory and practice of the solutions of integral equations
of various types is collected in the books [7, 9, 10] and their electronic version [11].

1. CONSTRUCTION OF A QUADRATURE FORMULA

We follow the standard scheme for constructing a quadrature formula for the solution of integral
equation (1) (for example, see [7]). We will seek a solution on the interval [0, T ]. To construct a quadrature
formula, it suffices to assume that

g(0) = 0, g(t) ∈ C[0, T ], K(t) ∈ C[0, T ], f(t) ∈ C[0, T ].

Let the number of nodes of the interval [0, T ] be N + 1. We denote the nodes of the mesh by tn, n = 0, N ,
and the meshsize by h = T/N , tn = hn. Put Kn = K(hn), fn = f(hn), and gn = g(hn).

To construct a quadrature formula, we write (1) at tk as follows:

tn∫

0

K(tn − s)f(s) ds = g(tn)

or

n∑
j=1

tj∫

tj−1

K(tn − s)f(s) ds = g(tn). (2)

Before proceeding with the construction of the quadrature formula, we make some assumptions:
1. Assume that K(t) �= 0 (t ∈ (0, τ ], where τ is some positive real). This assumption is related to the

Titchmarsh Theorem:

Theorem 1 [12, p. 352]. Let f(t) and K(t) belong to L(0, T ), and let

t∫

0

K(t − s)f(s) ds = 0

for almost all t ∈ (0, T ). Then f(t) = 0 for almost all t ∈ (0, θ) and K(t) = 0 for almost all
t ∈ (0, T − θ).
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The uniqueness of the solution of (1) if K(t) �≡ 0 in some neighborhood of zero on [0, T ] is a conse-
quence of this theorem.

2. Assume that N is chosen so that h ≤ τ . We will need this assumption to use the mean value
theorem below (see, for instance, [13]).

Theorem 2. If K(t) is of constant sign in the interval [0, τ ] then there is ϑ ∈ (0, τ) such that
τ∫

0

K(s)f(s) ds = f(ϑ)

τ∫

0

K(s) ds.

To construct the quadrature formula we will proceed under the assumption that the kernel K(t) is
given analytically, while the function g(t) is the result of measurements and is given in a table.

We have already noted that K(t) is a rapidly varying function in a small neighborhood of zero (the
radius of the neighborhood is much less than h) and changes smoothly on the rest of the interval. Using
the above suggestions, let us approximate each integral by the midpoint rectangle formula:

tj∫

tj−1

K(tn − s)f(s) ds = hKn−j+1/2f j−1/2 + rn
j ,

where rn
j is the approximation error and j < n. The last integral is approximated as follows:

tn∫

tn−1

K(tn − s)f(s) ds = fn−1/2

h∫

0

K(s) ds + rn
n.

3. Suppose that for K(t) the following holds:

h∫

0

K(s) ds = k(h), |k(h)| ≥ c0h
α, 0 < α ≤ 1. (3)

Example 3. Let K(t) = t−1/2e−a/t. Then

h∫

0

K(s) ds = 2h1/2e−a/h − 2
√

πa erfc(
√

a/h).

Since a � h, we have |k(h)| ≥ h1/2.

Remark. If K(t) has no singularity in neighborhood of zero then we put α = 1. In this case
the method for approximating the definite integral on [tn, tn−1] will not differ from the approximation
method on each other interval [tj , tj−1], j < n.

From (2) we have

k(h)f1/2 = g1 + R1,

h

n−1∑
j=1

Kn−j+1/2f j−1/2 + k(h)fn−1/2 = gn + Rn, n ≥ 2,
(4)

where

Rn =
n∑

j=1

rn
j (5)
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is the approximation error (the remainder term in the quadrature) for (2).
Subtracting (4) with number n − 1 from (4) with number n, we have

k(h)f1/2 = g1 + R1,

[hK3/2 − k(h)]f1/2 + k(h)f3/2 = g2 − g1 + R2 − R1, (6)

h

n−2∑
j=1

[Kn−j+1/2 − Kn−j−1/2]f j−1/2

+ [hK3/2 − k(h)]fn−3/2 + k(h)fn−1/2 = gn − gn−1 + Rn − Rn−1, n ≥ 3.

4. Assuming that the remainder terms Rj are small, we obtain

k(h)f1/2 = g1,

[hK3/2 − k(h)]f1/2 + k(h)f3/2 = g2 − g1, (7)

h

n−2∑
j=1

[
Kn−j+1/2 − Kn−j−1/2

]
f j−1/2 + [hK3/2 − k(h)]fn−3/2 + k(h)fn−1/2

= gn − gn−1, n ≥ 3,

which can be used for solving (1).

2. PRELIMINARY ESTIMATES

To obtain some estimates, it is necessary to assume that

f(t) ∈ C2[0, T ], |f (j)(t)| ≤ Fj , K(t) ∈ C2[0, T ], |K(j)(t)| ≤ Mj , j = 0, 2.

1. Estimate the difference hK3/2 − k(h). It is not hard to see that

K3/2 = K1/2 + hK ′(ξ1), ξ1 ∈ (t1/2, t3/2),

hK1/2 − k(h) = hK1/2 −
h∫

0

K(s) ds =

h∫

0

(K1/2 − K(s)) ds

= −
h∫

0

(
K ′(h/2)(s − h/2) +

1
2
K ′′(ξ2)(s − h/2)2

)
ds =

1
24

K ′′(ξ2)h3, ξ2 ∈ (0, t1/2).

From these two equalities we have ∣∣hK3/2 − k(ζ)
∣∣ ≤ h2c1, (8)

where c1 = c1(M1,M2).

2. Estimate the difference Kn−j+1/2 − Kn−j−1/2. From

Kn−j+1/2 = Kn−j−1/2 + hK ′(ξ3), ξ3 ∈ (tn−j−1/2, tn−j+1/2),

we obtain

|Kn−j+1/2 − Kn−j−1/2| ≤ hM1. (9)
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3. Consider the remainder term in the quadrature when the integral in [tj−1, tj] is approximated by
the midpoint rectangle formula

tj∫

tj−1

u(s) ds = u(tj−1/2)h + rn
j , j < n.

We have the chain of equalities

rn
j =

tj∫

tj−1

u(s) ds − hu(tj−1/2) =

tj∫

tj−1

[u(s) − u(tk−1/2)] ds

=

tj∫

tj−1

[
u′(tk−1/2)(s − tk−1/2) + u′′(ξj)

(s − tk−1/2)2

2!

]
ds = u′′(ξj)

h3

24
,

where ξj is some point in (tj−1, tj).
Hence, for the quadrature remainder rn

j it is easy to obtain the estimate∣∣rn
j

∣∣ ≤ h3c3, j < n. (10)

Note that since u(s) is the product of the two functions K(t − s)f(s) (here t plays the role of some
parameter) then c3 = c3(M0,M1,M2, F0, F1, F2).

3. AN ERROR ESTIMATE OF A SOLUTION

Let f(t) be the solution of (1) such that (6) holds at tj−1/2, j = 1, N . Relation (7) is a system of linear

algebraic equations with a triangular matrix that can be solved. Let its solution be f̃ j−1/2. Put

Δf j−1/2 = f j−1/2 − f̃ j−1/2.

Assume that g(t) ∈ C[0, T ] and g(t) is defined with some error δ̃(t); i.e.,

|gδ(t) − g(t)| = |δ̃(t)| ≤ δ.

Subtracting (7) from (6), we obtain that for Δf j−1/2 the following relations hold:

k(h)Δf1/2 = δ̃1 + R1,

[hK3/2 − k(h)]Δf1/2 + k(h)Δf3/2 = δ̃2 − δ̃1 + R2 − R1, (11)

h

n−2∑
j=1

[
Kn−j+1/2 − Kn−j−1/2

]
Δf j−1/2 +

[
hK3/2 − k(h)

]
Δfn−3/2 + k(h)Δfn−1/2

= δ̃n − δ̃n−1 + Rn − Rn−1, n ≥ 3.

From (11) we infer

c0|Δfn−1/2| ≤ h
n−2∑
j=1

|Kn−j+1/2 − Kn−j−1/2||Δf j−1/2| + |hK3/2 − k(ζ)||Δfn−3/2|

+ |Rn| + |Rn−1| + 2δ.

Taking (5) and (8)-(10) into account, we obtain

c0h
α|Δfn−1/2| ≤ h2M1

n−2∑
j=1

|Δf j−1/2| + h2c1|Δfn−3/2| + 2h3c3(n − 1) + 2δ.
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Since T = Nh and n ≤ N , we can simplify the estimate:

c0h
α|Δfn−1/2| ≤ h2c1

n−1∑
j=1

|Δf j−1/2| + 2Tc3h
2 + 2δ.

Dividing this by c0h
α and applying Gronwall’s Lemma, as a result we get

|Δfn−1/2| ≤ (h2−αc4 + c5δ/h)eh2−αnc6 ≤ (h2−αc4 + c5δ/h
α)eh1−αTc6,

where c4 = 2Tc3/c0, c5 = 2/c0, and c6 = c1/c0. On the right-hand side of the inequality one term tends
to zero as h → 0, the second term can take different values with a mismatched tendency of δ and h
to zero. In this case h must agree with the error value δ; i.e., h is quasi-optimal [14]. Assuming that
h∗ = (αc4/(2 − α)c5)1/2δ1/2, we have the estimate

|Δfn−1/2| ≤ c7 δ1−α/2, (12)

where c7 = 2(c4c5/(2 − α))1/2eh1−α
∗ Tc6 .

4. THE TECHNIQUE TO IMPROVE (12)

Estimation (12) can be improved by assuming

f(t) ∈ C4[0, T ], |f (j)(t)| ≤ Fj , K(t) ∈ C4[0, T ], |K(j)(t)| ≤ Mj , j = 0, 4,

and/or

g(t) ∈ C1[0, T ], |g′(t) − g′δ(t)| ≤ ε.

In this case, the following equality holds (see the derivation of (10)):

rn
j =

tj∫

tj−1

u(s) ds − u(t∗)h =

tj∫

tj−1

[u(s) − u(t∗)] ds

=

tj∫

tj−1

[
u′(t∗)(s − t∗) + u′′(t∗)

(s − t∗)2

2!
+ u(3)(t∗)

(s − t∗)3

3!
+ u(4)(ξk)

(s − t∗)4

4!

]
dt

= u′′(t∗)
h3

24
+ u(4)(ξj)

h5

1920
, (13)

where, for short, t∗ = tj−1/2 and ξj ∈ (tj−1, tj). From (13) the next estimate is obtained:
∣∣∣∣rn

j − u′′(tj−1/2)
h3

24

∣∣∣∣ ≤ c8
h5

1920
. (14)

Since the integrand u(s) is a product of the two functions K(s) and f(tn − s); therefore,

c10 = c10(M0,M1,M2,M3,M4, F0, F1, F2, F3, F4).

From (11) it follows that

c0h
α|Δfn−1/2| ≤ h2M1

n−2∑
j=1

|Δf j−1/2| + c1h
2|Δfn−3/2| + |Rn − Rn−1| + εh.

Further, (14) allows us to estimate |Rn − Rn−1| and conclude that

c0h
α|Δfn−1/2| ≤ h2M1

n−2∑
j=1

|Δf j−1/2| + h2c1|Δfn−3/2| + h5c8
(n − 1)
1920

+ εh.
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Then

c0h
α|Δfn−1/2| ≤ h2c1

n−1∑
j=1

|Δf j−1/2| + h4c8
T

1920
+ εh.

Let us divide this inequality by c0h
α and apply the Gronwall’s lemma. Then we have

|Δfn−1/2| ≤ (h4−αc9 + c10εh
1−α)eh1−αTc11 , (15)

where c9 = (Tc8/1920)/c0 , c10 = 1/c0, and c11 = c1/c0. Since, as h and ε tend to zero, both terms on
the right hand side of (15) decrease; therefore, there is no need to choose a quasi-optimal meshsize.

5. A NUMERICAL EXPERIMENT

Let us give the three examples of solution of (1) by using (6). Consider K(t) = t−1/2e−a/t and
a = 10−5.

Put T = 10 and h = 10−2. Consider the following three solutions of (1):

f(t) = 1, (16)

f(t) = t, (17)

f(t) = 1 +
3∑

j=1

[aj sin(ωjt) + bj sin(ωjt)], (18)

a1 = 1/3, a2 = 1/7, a3 = 1/20, b1 = 1/4, b2 = 1/8, b3 = 1/21,
ω0 = 2π/T, ω1 = 2ω0, ω2 = 5ω0, ω3 = 20ω0.

The functions f(t) are chosen in such a way that in these cases it is easy to calculate the corresponding
functions g(t) by using the equality

t∫

0

K(t − s)f(s) ds =

t∫

0

K(s)f(t − s) ds

and the property f(t − s) = f11(t)f12(s) − f21(s)f22(t). The corresponding integrals

t∫

0

K(s) ds,

t∫

0

K(s)fmn(s) ds

are calculated analytically or numerically by using the trapezoid formula with h = 10−6. The calculation
results are shown in Fig. 2. On the left-hand side of the picture the exact fe(t) and computed f(t) solu-
tions are given, while on the right-hand side the relative calculation error Δ(t) = |fe(t) − f(t)|/|fe(t)|
is shown. It is clear that as t grows, the relative error decreases. The largest relative error is obtained in
the neighborhood of zero which, as shown by the numerical experiments, decreases as h decreases.

Thus, f(t) is calculated at tj−1/2, j = 1, N . At practice point of view, this is quite sufficient to
evaluate the behavior of the unknown function. Nevertheless, if for some purpose we need to know the
values of f(t) at points tj , j = 1, N − 1 then we can use the interpolation procedure. The extrapolation
procedure can be used to find the value of f(t) at tN . However, judging by the behavior of the relative
error (see Fig. 2), the extrapolation will not give a satisfactory result for t0 = 0.

To find the value of f(0), we use the equality that follows from (1):

K(t)f(0) +

t∫

0

K(s)f ′(t − s) ds = g′(t). (19)
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Fig. 2. Some examples of solutions of (1) by (6), when f(t) is given by (16) (see plot (a)), (17) (see plot (b)),
or (18) (see plot (c)).

Let t = h and let f(t) on the interval [0, h] be approximated by the straight line at + b. From (1) and (19)
the two equalities follow:

a(hk − m) + bk = g, ak + bK = g′,

where

k = k(h) =

h∫

0

K(s) ds, m =

h∫

0

sK(s) ds, K = K(h), g = g(h), g′ = g′(h).
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Fig. 3. Some examples of solutions of (1) when the right-hand side of g(t) is defined with an error. The exact
solution is given by the smooth line, and the solution when the right-hand side is defined with an error is depicted
in a broken line.

From these it is easy to obtain that

a =
Kg − kg′

K(hk − m) − k2
, b =

(hk − m)g′ − gk

K(hk − m) − k2
. (20)

Obviously,

f(0) = b, f1/2 =
1
2
ah + b. (21)

It remains to determine what value to take for g′. Since g(t) is given in tabular form, we have the two
choices: (1) g′ = g1/h and (2) g′ = (g2 − g1)/h. If you look at the behavior of the function K(t) in the
interval [0, 2h] (see Fig. 1), then the second choice is preferable. Numerical experiments have shown
that the second choice leads to the smaller computational errors. Which is the preferred choice for
calculating f1/2: (1) the first formula from (7); or (2) the second expression from (21)? Numerical
calculations have shown that both expressions give comparable accuracy results when calculating f(t)
in a neighborhood of zero, and then the calculation error decreases in the same way. Nevertheless, the
second choice is preferable since it additionally allows us to compute the value of f(0).

In Fig. 3 the result is presented of some solution of (1) when g(t) is defined with an error; i.e., instead
of g(t), we consider gε(t) as follows:

gε(tj) = g(tj)
(

1 + hζj
P

100

)
.

Here ζj is a random variable uniformly distributed in [−1, 1], while P is the error percentage, and the
factor h ensures the inequality |gε(tj) − g′(tj)| ≤ ε. In the numerical experiment presented in Fig. 3,
P = 20% and the error with which the solution of (1) was obtained is at most 10%.

CONCLUSION

In this article some algorithm is presented for solving the convolution type Volterra integral equation
of the first kind by the quadrature-sum method. It is assumed that this integral equation of the first kind
cannot be reduced to an integral equation of the second kind. For the relations we propose there is given
the error estimate of the numerical solution.

We present the numerical experiments demonstrating the efficiency of the proposed algorithm.
During calculations the solution of (1) was obtained at the points tj−1/2, j = 1, N .

In practice it is quite sufficient to evaluate the behavior of the desired function. Nevertheless, if we
need for some purpose to know the values of f(t) at tj (j = 1, N − 1) then we can use some interpolation
procedure. The extrapolation procedure can be used to find f(t) at tN . To find the value of f(0), we give
a simple formula in Section 5.
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