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Abstract—We study linear stability of a steady state for a generalization of the basic rheological
Pokrovskii–Vinogradov model which describes the flows of melts and solutions of an incompressible
viscoelastic polymeric medium in the nonisothermal case under the influence of a magnetic field.
We prove that the corresponding linearized problem describing magnetohydrodynamic flows of
polymers in an infinite plane channel has the following property: For some values of the conduction
current which is given on the electrodes (i.e. at the channel boundaries), there exist solutions whose
amplitude grows exponentially (in the class of functions periodic along the channel).
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INTRODUCTION

In this article we study a generalization of the structurally phenomenological Pokrovskii–Vinogradov
model describing the flows of melts and solutions of incompressible viscoelastic polymeric media to the
nonisothermal case under the influence of a magnetic field. In the Pokrovskii–Vinogradov model, the
polymeric system is considered as a suspension of polymer macromolecules moving in an anisotropic
fluid formed, for example, by a solvent and other macromolecules. Impact of the environment to a real
macromolecule is approximated by the action onto a linear chain of Brownian particles each of which
is a rather large part of the macromolecule. The Brownian particles are often called the “beads,” they
are connected to each other by the elastic forces called “springs.” In the case of slow motions, the
macromolecule is modeled by a chain of two particles called a “dumbbell.”

The physical representation of linear polymeric flows described above results in the formulation of the
Pokrovskii–Vinogradov rheological model [1–3]:

ρ

(
∂

∂t
vi + vk

∂

∂xk
vi

)
=

∂

∂xk
σik,

∂vi

∂xi
= 0, (1)

σik = −pδik + 3
η0

τ0
aik, (2)

d

dt
aik − vijajk − vkjaji +

1 + (k − β)I
τ0

aik =
2
3
γik − 3β

τ0
aijajk, (3)

I = a11 + a22 + a33, γik =
vik + vki

2
,

where ρ is the polymer density, vi is the ith component of the velocity, σik is the stress tensor, p is
the hydrostatic pressure, η0 and τ0 are the initial values of the shear viscosity and the relaxation time
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for the viscoelastic component, vij is the tensor of the velocity gradients, aik is the symmetric tensor
of anisotropic stresses of second rank, I is the first invariant of the tensor of anisotropic stresses,
γik is the symmetrized tensor of the velocity gradients, k and β are the phenomenological parameters
accounting for the shape and the size of the coiled molecule in the dynamical equations of the polymer
macromolecule. Here (1) is the equation of motion and the condition of incompressibility, (2) and (3) are
the rheological relation that connects the kinematic characteristics of the flow and its thermodynamic
parameters.

Some generalizations of model (1)–(3) (for example, when some term is added into (2) to take into
account the so-called shear viscosity, and the parameter β depends also on the first invariant of the
anisotropy tensor) provide rather good results in numerical simulations of viscometric flows, i.e. when
the components of the tensor of velocity gradients are some given functions of time [4]. Therefore,
we can assume that some modifications of the basic Pokrovskii–Vinogradov model can be useful for
modeling the polymer motion under complex conditions of deformation, for example, for the stationary
and nonstationary flows in circular channels, flows in the channels with fast change of the sectional
area, and the flows with free boundary. An important peculiarity of these flows is their two- and three-
dimensional character.

In this article, we consider one of such generalizations that takes into account the influence of the
heat and the magnetic field on the polymeric fluid motion. Our main interest is the linear stability of
a steady state of the mathematical model in the case when the polymeric medium flows in an infinite
plane channel.

Structurally, Section 1 is devoted to the statement of a nonlinear model that describes the MHD
flow of an incompressible viscoelastic fluid provided that heat is supplied to the channel boundaries.
In Section 2, we obtain some model linearized with respect to the steady state and formulate the main
results of this article. The final Section 3 contains their proofs.

The results in this article are closely related to those of [5-11] in which, in particular, we obtained
some asymptotic representations of the eigenvalues of the mixed problems arising in the description
of the polymeric flows in an infinite plane channel. We use various generalizations of the Pokrovskii-
Vinogradov model as the mathematical models, and the main solutions are analogous to a Poiseuille
shear flow for the Navier–Stokes system. Finally, note that in [12] for the linear mixed problems the
results are presented with some estimates of the real parts of the eigenvalues when the Reynolds number
increases (as the main solutions, there are chosen some known shear flows). We use the Navier–Stokes
model for a viscous fluid.

1. A NONLINEAR MODEL OF THE POLYMERIC FLUID FLOW IN A PLANE CHANNEL
UNDER THE PRESENCE OF AN EXTERNAL MAGNETIC FIELD

Using the results of [3, 13–16] and following [17], we formulate the mathematical model that
describes the magnetohydrodynamic flows of an nonisothermal incompressible polymeric fluid. Consider
some variant of this model in which, by analogy with [18], we introduce some dissipative terms in the
equation for the heat gain.

In dimensionless form this version of the mathematical model can be written as follows:

div 
u = ux + vy = 0, (4)

div 
H = Lx + My = 0, (5)

d
u

dt
+ ∇P = div (ZΠ) + σm( 
H,∇) 
H + Gr(Z − 1)

⎛
⎝ 0

1

⎞
⎠ , (6)

da11

dt
− 2A1ux − 2a12uy + L11 = 0, (7)

da22

dt
− 2A2vy − 2a12vx + L22 = 0, (8)

da12

dt
− A1vx − A2uy +

K̃Ia12

τ̄0(Z)
= 0, (9)
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dZ

dt
=

1
Pr

Δx,yZ +
Ar

Pr
ZD +

Am

Pr
σmDm, (10)

d 
H

dt
− ( 
H,∇)
u − bmΔx,y


H = 0. (11)

Here t is time, 
u = (u, v); L and 1 + M are the components of the magnetizing force 
H in the Cartesian
coordinate system x and y;

P = p + σm
L2 + (1 + M)2

2
;

p is the pressure; a11, a22, and a12 are the components of the symmetrical anisotropy tensor of second
rank;

Π =
1

Re
(aij), i, j = 1, 2; Lii =

KIaii + β(a2
ii + a2

12)
τ̄0(Z)

, i = 1, 2;

KI = W−1 +
k̄

3
I, k̄ = k − β;

I = a11 + a22 is the first invariant of the anisotropy tensor; k and β (0 < β < 1) are the phenomenolog-
ical parameters of the rheological model (see [1]);

Ai = W−1 + aii, i = 1, 2; Z = T/T0,

where T is the temperature, T0 is the average temperature (room temperature; we will further assume
that T0 = 300 K);

K̃I = KI + βI; τ̄0(Z) = 1/(ZJ(Z)), J(Z) = exp
{

EA
Z − 1

Z

}
, EA = EA/T0.

The constants are described in detail in [17, 19–21]: EA is the activation energy, Re is the Reynolds
number, W is the Weissenberg number, Gr = Ra /Pr is the Grasshoff number, Pr is the Prandtl
number, Ra is the Rayleigh number, Ar and Am are the dissipative coefficients, σm is the magnetic
pressure coefficient, bm = 1/Rem, and Rem is the magnetic Reynolds number. Further,

DΓ = a11ux + (vx + uy)a12 + a22vy, Dm = L2ux + L(1 + M)(vx + uy) + (1 + M)2vy,

d

dt
=

∂

∂t
+ (
u,∇) =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
,

and Δx,y is the Laplace operator

Δx,y =
∂2

∂x2
+

∂2

∂y2
.

The variables t, x, y, u, v, p, a11, a22, a12, L, and M in (4)–(11) correspond to the following values: l/uH ,
l, uH , ρu2

H , W /3, and H0, where H0 is the characteristic magnetizing force (see Fig. 1)

Remark 1. The MHD equations (4)–(11) are derived with the use of the Maxwell equations
(see [13, 15]). Moreover, the magnetic induction vector 
B is represented as


B = μμ0

H = (1 + χ)μ0


H, (12)

where χ is the magnetic susceptibility (see [22, 23]), χ = χ0/Z, and χ0 is the magnetic susceptibility for
T = T0; μ is the magnetic penetration of the polymeric fluid, and μ0 is magnetic permeability in vacuum.
In what follows, we assume that for a polymeric medium μ = 1 (i.e., χ0 = 0).

Remark 2. Our main target is the problem of finding the solutions to (4)–(11) that describe
magnetohydrodynamic flows of an incompressible polymeric fluid in a plane channel S of depth 1(l).
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Fig. 1. A plane channel.

The cannel is bounded with the horizontal walls that are the electrodes C+ and C− along which we have
the conduction currents of current strengths of J+ and J− respectively (see the figure).

The domains S+
1 and S−

1 external to the channel are under the influence of the uniform magnetic fields
with components L±

1 and M±
1 respectively:

L+
1 = 0, M+

1

∣∣
y=1/2+0

= −1 +
1 + M(1/2)

1 + χ+
0

,

L−
1 = 0, M−

1

∣∣
y=−1/2−0

= −1 +
1 + M(−1/2)
1 + χ−

0 /(1 + θ̄)
.

Moreover, χ+
1 and χ−

1 are the magnetic susceptibilities of the magnets S+
1 and S−

1 , while χ = χ0/Z. The
temperature values on the channel walls will be defined below on using (13). Finally, the correlations
between the boundary values M+

1 + 1, 1 + M(1/2) and M−
1 + 1, 1 + M(−1/2) arise correspondingly

due to continuity of the normal component of the magnetic induction vector on the channel walls and
equality (12).

On the channel walls we have the boundary conditions:


u|y=±1/2 = 0 (no-slip condition),

Z|y=1/2 = 1 (T = T0),

Z|y=−1/2 = 1 + θ̄ (θ̄ = θ/T0, θ = T − T0).
(13)

The temperature is given too:

T =

{
T0, in S+

1 ,

T0 + θ, in S−
1 .

Moreover, for θ̄ > 0 we have some heating from below; and for θ̄ < 0 the heating occurs from above.

Remark 3. We will consider the electrodes C+ and C− as the boundaries between the two uniform
isotropic magnetics. Therefore, the following well-known boundary conditions hold (see [22, 24]):

L = −J+, My = 0 for y = 1/2 (on C+),

L = −J−, My = 0 for y = −1/2 (on C−).
(14)

Assuming that (5) holds for y = ±1/2, L = −J+ for y = 1/2, and L = −J− for y = −1/2 (see (14)),
we arrive at the boundary condition My = 0 at y = ±1/2.
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Remark 4. Note that under the conditions

d = Lx + My = 0 for y = ±1/2,
d = 0 for t = 0, |y| < 1/2, x ∈ R,

d → 0 as |x| → ∞, for t > 0, |y| < 1/2, x ∈ R,

we have d ≡ 0 for t > 0, |y| < 1/3, and all x ∈ R; i.e., (5) follows from (4) and (11).

To prove this we apply the operator div to (11). Taking (4) into account, we obtain

dt + (
u,∇)d − bmΔx,yd = 0,

and then

(d2)t + div (d2
u − 2bmd · ∇d) + 2bm|∇d|2 = 0.

Integrating this relation with respect to x from −∞ to +∞ and with respect to y from −1/2 to 1/2,
we have

d

dt

{ 1/2∫
−1/2

+∞∫
−∞

d2(t, x, y) dxdy

}
+ 2bm

1/2∫
−1/2

+∞∫
−∞

|∇d(t, x, y)|2 dxdy = 0,

which implies

1/2∫
−1/2

+∞∫
−∞

d2(t, x, y) dxdy ≤ 0;

i.e., d ≡ 0 for t > 0, |y| < 1/2, and x ∈ R.

2. A STEADY STATE. THE LINEARIZED PROBLEM.
FORMULATION OF THE MAIN RESULTS

As the main solution to problem (4)–(11),(13),(14) we take the steady state: 
̂u ≡ 0, α̂11 = α̂12 =
α̂22 ≡ 0, p(t, x, y) = p̂0 = const, Ẑ ≡ 1 (θ̄ = 0 and in what follows), L̂ = J0 (J± = J0 and in what
follows), and M̂ = λ̂ = χ+

0 = χ−
0 .

Linearizing (4)–(11) with respect to the chosen steady state, we arrive at the linear system:

ut − (α11)x + (α22)x − (α12)y + Ωx + σm(1 + λ̂)ωm = 0,

vt − (α12)x + Ωy − Gr Z + σmJ0ωm = 0,

(α11)t − 2κ
2ux + W−1 α11 = 0,

(α12)t − κ
2vx − κ

2uy + W−1 α12 = 0,

(α22)t − 2κ
2vy + W−1 α222 = 0,

Zt =
1
Pr

Δx,yZ +
Amσm

Pr
(
J2

0ux − J0(1 + λ̂)vx − J0(1 + λ̂)uy + (1 + λ̂)2vy

)
,

Lt + J0ux − (1 + λ̂)uy − bmΔx,yL = 0,

Mt + J0vx − (1 + λ̂)vy − bmΔx,yM = 0,

ux + vy = 0, t > 0, |y| < 1/2, x ∈ R.

(15)

Here

Ω = p − α22, ωm = Mx − Ly, κ
2 = 1/(W Re).
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Note that (5) is omitted according to Remark 4. Moreover, if (α11 + α22)|t=0 ≡ 0 then from the third,
fifth, and last equations of (15) it follows that

α11 = −α22 for |y| < 1/2, t > 0, x ∈ R. (16)

By (13) and (14), the boundary conditions for the linearized problem (15) are as follows:

u = v = Z = L = My = 0 for y = ±1/2, t > 0, x ∈ R. (17)

Remark 5. As was noted in Section 1, the boundary values of the components M+
1 and M−

1 in the
domains S+

1 and S−
1 are determined as follows:

M+
1

∣∣
y=1/2+0

= −1 +
1 + M(1/2)

1 + χ+
0

,

M−
1

∣∣
y=−1/2−0

= −1 +
1 + M(−1/2)
1 + χ−

0 /(1 + θ̄)
= −1 +

1 + M(−1/2)
1 + χ+

0

,

(18)

where M(1/2) and M(−1/2) are the values of M on the upper and lower electrodes respectively.

Suppose that S±
1 are filled with nonconductive media. Then, owing to the Maxwell’s equations [23],

we conclude that the small and time-independent perturbations of M±
1 satisfy the Laplace equation and

the additional conditions at infinity:

Δx,yM
+
1 = 0 in S+

1 , M+
1 → 0 as y → ∞,

Δx,yM
−
1 = 0 in S−

1 , M−
1 → 0 as y → −∞.

(19)

If the components of M±
1 are periodic functions in x so that

M±
1 (x, y) = M̃±(y)eiωx, ω ∈ R;

then from (19) we obtain

M̃+
1 (y) = M+

1

∣∣
y=1/2+0

e−|ω|(y−1/2), y > 1/2,

M̃−
1 (y) = M−

1

∣∣
y=1/2−0

e|ω|(y+1/2), y < −1/2.

Thus, by (18), the components L±
1 and 1 + M±

1 are defined of the tension vector 
H in S±
1 .

Consider the particular case of the model (15), (17) for bm = 0 (the absolute conductivity) and
additionally assume that Am = 0. Then (15), (17) will be much simpler and have only four unknowns: u,
v, α12, and Ω.

Let the class of admissible perturbations contain the periodic functions of x, namely,


U = (u, v, α12)� = 
̃
U(y) exp{λt + iωx},

Ω = Ω̃(y) exp{λt + iωx},
(20)

where λ = η + iω0, ω0, ω ∈ R (in what follows we will omit the ∼ mark for the unknown functions).
Using (20), we transform the boundary value problem (15), (17), and obtain the spectral problem


G′ = A
G, |y| < 1/2,

L 
G(±1/2) = 0,
(21)

where


G = (u, v, α12,Ω)�, L =

⎛
⎝1 0 0 0

0 1 0 0

⎞
⎠ , A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −iω q0 0

−iω 0 0 0

ρ̄1/ρ0 a1 a2 iω/ρ0

b1 b2 b3 a2

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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ρ̄1 =
ρ1

q0
+ 2σm(1 + λ̂)2

ω2

λ
, q0 =

λ + W−1

κ2
, ρ1 = λq0 + 4ω2, ρ0 = 1 +

σm(1 + λ̂)2

λ
q0,

a1 =
2σm(1 + λ̂)ω2

λρ0
J0, a2 =

σm(1 + λ̂)J0q0

λρ0
iω,

b1 =
ρ̄1

ρ0

J0σmq0(1 + λ̂)
λ

− 2J0σmω2(1 + λ̂)
λ

, b2 = a1
J0σmq0(1 + λ̂)

λ
−
(

2J0σmω2(1 + λ̂)
λ

+ λ

)
,

b3 = a2
J0σmq0(1 + λ̂)

λ
− J2

0 σmω2(1 + λ̂)
λ

+ iω.

Remark 6. The functions L(y) and M(y) are found as follows:

M = − iω

λ
(J0v + (1 + λ̂)u), L = − 1

λ
(iωJ0u + iω(1 + λ̂)v − q0(1 + λ̂)α12);

and, moreover, Lx + My = 0.
Thus, we have

Proposition 1. If J0 is small enough then some nontrivial solutions of (21) exist with 	λ (=
η) > 0.

And as a consequence, the following holds:

Proposition 2. The steady state of (4)–(11) with boundary conditions (13) and (14) (θ̄ = 0,
J± = J0, and J0 is small enough ) in the case of absolute conductivity (bm = 0, with additional
Am = 0) is linearly unstable in the sense of Lyapunov.

3. PROOFS OF PROPOSITIONS 1 AND 2

The nontrivial solution of (21) can be written as follows:

G(y) = exp{(y + 1/2)A}G(−1/2), G(−1/2) 
= 0, (22)

where exp{(y + 1/2)A} denotes the matrix exponent.
Therefore, the nontrivial solution to (21) exists if and only if the following is satisfied:

det

⎛
⎝ R

R exp{A}

⎞
⎠ = 0, (23)

which is actually the equation for defining λ.
The columns of the matrix exponent (Yik)i,k=1,2,3,4 = exp{A} are the solution of the system (here-

inafter, if this does not cause confusion, we omit the second index):

Y ′
1 = −iωY2 + q0Y3,

Y ′
2 = −iωY1,

Y ′
3 =

ρ̄1

ρ0
Y1 + a1Y2 + a2Y3 +

iω

ρ0
Y4,

Y ′
4 = b1Y1 + b2Y2 + b3Y3 + a2Y4, |y| < 1/2;

(24)

and, moreover,

Yk,k(−1/2) = 1, k = 1, 2, 3, 4; Yi,k(−1/2) = 0, i 
= k, i = 1, 2, 3, 4.

Then it follows from the explicit form of the R-matrix that (23) is equivalent to the relation

(Y1,3Y2,4 − Y1,4Y2,3)
∣∣
y=1/2

= 0. (25)
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For the third and fourth columns of exp{A} we obtain from (24)

Y1(y) = q0

y∫
−1/2

cos ω(y − ξ)Y3(ξ) dξ, Y2(y) = −iq0

y∫
−1/2

sinω(y − ξ)Y3(ξ) dξ,

Y ′
3(y) =

ρ̄1q0

ρ0

y∫
−1/2

cos ω(y − ξ)Y3(ξ) dξ

− iq0a1

y∫
−1/2

sin ω(y − ξ)Y3(ξ) dξ + a2Y3(y) +
iω

ρ0
Y4(y), (26)

Y ′
4(y) = b1q0

y∫
−1/2

cos ω(y − ξ)Y3(ξ) dξ

− iq0b2

y∫
−1/2

sinω(y − ξ)Y3(ξ) dξ + b3Y3(y) + a2Y4(y),

Y3,3(−1/2) = Y4,4(−1/2) = 1, Y4,3(−1/2) = Y3,4(−1/2) = 0.

Rewrite the last two differential relations of (26) as

Ỹ ′
3(y) =

ρ̄1q0

ρ0

y∫
−1/2

e−a2(y−ξ) cos ω(y − ξ)Ỹ3(ξ) dξ

− iq0a1

y∫
−1/2

e−a2(y−ξ) sinω(y − ξ)Ỹ3(ξ) dξ +
iω

ρ0
Ỹ4(y), (27)

Ỹ ′
4(y) = b1q0

y∫
−1/2

e−a2(y−ξ) cos ω(y − ξ)Ỹ3(ξ) dξ

− iq0b2

y∫
−1/2

e−a2(y−ξ) sin ω(y − ξ)Ỹ3(ξ) dξ + b3Ỹ3(y).

Here Ỹi(y) = e−a2(y+1/2)Yi(y), i = 3, 4. Taking (26) into account, from (27) we obtain

Ỹ4(y) = b1q0

y∫
−1/2

dη

η∫
−1/2

e−a2(η−ξ) cos ω(η − ξ)Ỹ3(ξ) dξ

− iq0b2

y∫
−1/2

dη

η∫
−1/2

e−a2(η−ξ) sin ω(η − ξ)Ỹ3(ξ) dξ + b3

y∫
−1/2

Ỹ3(η) dη +

{
0, k = 3,
1, k = 4,

(28)
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Ỹ3(y) =
ρ̄1q0

ρ0

y∫
−1/2

dη

η∫
−1/2

e−a2(η−ξ) cos ω(η − ξ)Ỹ3(ξ) dξ

− iq0a1

y∫
−1/2

dη

η∫
−1/2

e−a2(η−ξ) sin ω(η − ξ)Ỹ3(ξ) dξ

+
iω

ρ0
b1q0

y∫
−1/2

dη

η∫
−1/2

dξ

ξ∫
−1/2

e−a2(ξ−θ) cos ω(ξ − θ)Ỹ3(θ) dθ

+
ω

ρ0
b2q0

y∫
−1/2

dη

η∫
−1/2

dξ

∫ ξ

−1/2
e−a2(ξ−θ) sin ω(ξ − θ)Ỹ3(θ) dθ

+
iω

ρ0
b3

y∫
−1/2

dη

η∫
−1/2

Ỹ3(ξ) dξ +

⎧⎨
⎩

1, k = 3,
iω

ρ0
(y + 1/2), k = 4.

Using the Fubini Theorem to reduce the multidimensional integrals to the one-dimensional and
returning to the vector function Y3(y), we infer

(a2 + ω2)Y3(y) =

y∫
−1/2

Y3(y)
{

[(Qca2 + Qsω)ea2(y−ξ) − (Qca2 + Qsω) cos ω(y − ξ)

+ (Qcω − Qsa2) sin ω(y − ξ)] +
iω

ρ0
Be(y − ξ)ea2(y−ξ)

}
dξ

+

⎧⎨
⎩

ea2(y+1/2), k = 3,

ea2(y+1/2) iω

ρ0
(y + 1/2), k = 4,

(29)

where

Qc =
ρ̄1q0

ρ0
+

iω

ρ0

q0

a2 + ω2
(ib2ω − b1a2), Qs =

iω

ρ0

q0

a2 + ω2
(ib2a2 + b1ω) − iq0a1,

Be = b3 −
q0

a2 + ω2
(ib2ω + b1a2) for a2 + ω2 
= 0.

(30)

Let us find a solution to (29). To this end, we first change the variables η = ξ + 1/2 and x = y + 1/2
and put W (x) = Y3(x − 1/2). Then (29) can be rewritten as

W (x) =

x∫
0

W (η)
{[

Qca2 + Qsω

a2 + ω2
ea2(x−η) − Qca2 + Qsω

a2 + ω2
cos ω(x − η)

+
Qcω − Qsa2

a2 + ω2
sinω(x − η)

]
+

iω

ρ0
Be(x − η)ea2(x−η)

}
dη +

⎛
⎜⎝ 1

iω

ρ0
x

⎞
⎟⎠ ea2x. (31)

Applying the Laplace transform to (31), we obtain

Ŵ (p)
(

1 − Qca2 + Qsω

a2 + ω2
(p − a2)−1 +

Qca2 + Qsω

a2 + ω2

p

p2 + ω2
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− Qcω − Qsa2

a2 + ω2

ω

p2 + ω2
− iω

ρ0
Be(p − a2)−2

)
=

⎧⎨
⎩

(p − a2)−1, k = 3,
iω

ρ0
(p − a2)−2, k = 4.

(32)

Here Ŵ (p) is the image of W (x). Then

Ŵ (p) =

⎧⎪⎪⎨
⎪⎪⎩

(p − a2)(p2 + ω2)
B(p)

, k = 3,

iω

ρ0

p2 + ω2

B(p)
, k = 4,

(33)

where B(p) is the polynomial of degree 4:

B(p) = (p2 + ω2)(p − a2)2 −
(Qca2 + Qsω)(p − a2)(p2 + ω2)

a2 + ω2

+
Qca2 + Qsω

a2 + ω2
p(p − a2)2 −

Qcω + Qsa2

a2 + ω2
ω(p − a2)2 −

iω

ρ0
Be(p2 + ω2)

= p4 − 2a2p
3 + p2

(
a2

2 + ω2 − ρ̄1q0

ρ0
− iω

ρ0
b3

)
+ a2

2ω
2 − q0

ρ0
b2ω

2 − iω

ρ0
b3ω

2 − iq0a1a2ω. (34)

Using the inverse transformation, in the case of simple zeros of B(p), pl 
= pk, l 
= k, we find the
solution to (29):

Y3(y) =

⎧⎪⎪⎨
⎪⎪⎩

4∑
l=1

(pl − a2)(p2
l + ω2)

B′(pl)
epl(y+1/2), k = 3,

iω

ρ0

4∑
l=1

p2
l + ω2

B′(pl)
epl(y+1/2), k = 4,

(35)

and moreover,

B′(p) = 4p3 − 6a2p
2 + 2p

(
a2 + ω2 − ρ̄1q0

ρ0
− iωb3

)
.

By (35), we know the third and fourth components of the third column of exp{A} and transform (25)
(we also take (26) into account) as follows:

[ 4∑
l=1

(pl − a2)(p2
l + ω2)

(
epl+iω − 1
pl + iω

+
epl−iω − 1
pl − iω

)]

×
[ 4∑

l=1

(p2
l + ω2)

(
epl+iω − 1
pl + iω

− epl−iω − 1
pl − iω

)]

−
[ 4∑

l=1

(p2
l + ω2)

(
epl+iω − 1
pl + iω

+
epl−iω − 1
pl − iω

)]

×
[ 4∑

l=1

(pl − a2)(p2
l + ω2)

(
epl+iω − 1
pl + iω

− epl−iω − 1
pl − iω

)]
= 0. (36)

Note that the following is valid:

4∑
k=1

LkAk

4∑
k=1

Bk −
4∑

k=1

Ak

4∑
k=1

LkBk =
3∑

i=1

4∑
j=i+1

(Li − Lj)(AiBj − AjBi). (37)
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Table 1. Values of Λ(0) for λ̂ = 14 · 10−6 (ebonite) and σm = 1

No Parameters of the medium Frequency Λ(0)

Re W |ω|

1 0.0013 0.0025 0.1427 9.1925

2 0.0019 0.0086 0.2686 41.2842

3 0.001 0.0016 0.1685 17.4999

Assuming in (37) that

Lk = pk − a2, Ak = epk(pk cos ω + ω sin ω) − pk, Bk = ω + epk(sin ωpk − ω cos ω),

we obtain the equivalent form of (36):

3∑
i=1

4∑
j=i+1

(pi − pj)
{

[(pj − pi) + (epipi − epjpj) cos ω + (epi − epj )ω sin ω]

+ epiepj (pj − pi) + pipj
sin ω

ω
(epi − epj) + (epjpi − pje

pi) cos ω

}
= 0, (38)

which is the equation for λ by analogy to (36).

Remark 7. Owing to representation (33) of B(p), we can remove the constraint a2 + ω2 
= 0 imposed
earlier.

In the particular case of J0 = 0, the roots pk of B(p) = 0 are found as follows:

p1 = K+, p2 = −K+, p3 = K−, p4 = −K−. (39)

Here

K± = |ω|

√√√√−A2

2
±

√(
A2

2

)2

− 1 − q

ρ0
, A2 =

1 + ρ0

ρ0
− ρ̄1

ρ0λ
g, g =

λq0

ω2
, (40)

or

K± = |ω|
√

Q ±
√

Q2 − 4ρ0(1 − q) , Q = 2 + g + σm(1 + λ̂)2
q

Λ2
,

q =
Λ(Λ + χ2)

κ2
, Λ =

λ

|ω| , χ2 =
1

W |ω| .
(41)

Given σm, λ̂, |ω|, κ
2, and χ2, we numerically found the positive reals Λ(0) > 0 (if any) satisfying

condition (38) (see the table). For many collections of σm, λ̂, |ω|, κ
2, and χ2, the reals Λ(0) > 0 were

found (some of these calculations are presented in the table). In fact, to prove the Lyapunov instability
(see below the proof of Proposition 2) we need to provide only one set of the parameters σm, λ̂, |ω|, κ

2,
and χ2 for which Λ(0) > 0 is found.

Remark 8. The original problem does not contain the inherent velocity uH . At the same time, the
process of linearization of (4)–(11) proceeds provided that |
u| =

√
u2 + v2 < u∗ is some characteristic

quantity (rather small) that we take further as uH . Therefore, the numerical results were obtained for
some small values of the Reynolds and Weissenberg numbers: Re = ρuH l/η0 and W = τ0uH/l, where
ρ (= const) is the density of the medium, while η0 and τ0 are the initial values of shear viscosity and
relaxation time at the room temperature T0 (see [1]).
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If J0 
= 0 is small; then, by the Rouche Theorem [25], we conclude that in some neighborhood of Λ(0)

on the complex plane there exist complex numbers Λ satisfying (38) and such that 	Λ > 0.
This completes the proof of Proposition 1.

The proof of Proposition 2 follows from Proposition 1 if to boundary value problem (4)–(11), (13),
and (14) transformed in the case of absolute conductivity (recall that we consider bm = 0 and, moreover,
Am = 0), we add the initial conditions of the form


U
∣∣
t=0

= U(y) exp{iωx} + U∗,

Ω
∣∣
t=0

= Ω(y) exp{iωx} + Ω∗, ω ∈ R,

where U∗ = (0, 0, 0)� , Ω∗ = p̂0 is the steady state in this case. Then, by Proposition 1, this mixed
problem has an exponentially runaway solution, which leads to the Lyapunov instability of the steady
state. Proposition 2 is proved.

CONCLUSION

In this article we prove the linear instability in the sense of Lyapunov (at certain values of the
conduction current) of the steady state of the MHD model flow of an incompressible viscoelastic
polymeric medium in an infinite plane channel (conduction currents and heat are applied to the channel
boundaries to the electrodes).
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