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Abstract—Basing on the rheological mesoscopic Pokrovskii–Vinogradov model, the equations of
nonrelativistic magneto-hydrodynamics, and the heat conduction equation with dissipative terms,
we obtain a closed coupled system of nonlinear partial differential equations that describes the
flow of solutions and melts of linear polymers. We take into account the rheology and induced
anisotropy of a polymeric fluid flow as well as mechanical, thermal, and electromagnetic impacts.
The parameters of the equations are determined by mechanical tests with up-to-date materials
and devices used in additive technologies (as 3D printing). The statement is given of the problems
concerning stationary polymeric fluid flows in channels with circular and elliptical cross-sections
with thin inclusions (some heating elements). We show that, for certain values of parameters,
the equations can have three stationary solutions of high order of smoothness. Just these smooth
solutions provide the defect-free additive manufacturing. To search for them, some algorithm is used
that bases on the approximations without saturation, the collocation method, and the relaxation
method. Under study are the dependences of the distributions of the saturation fluid velocity and
temperature on the pressure gradient in the channel.
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INTRODUCTION

As is known [1], the solutions and melts of linear polymers are nonlinear viscoelastic media. In the
article, we consider some model of the dynamics of these media that is a modification of the well-known
rheological mesoscopic model due to Pokrovskii–Vinogradov [1-3] describing complex rheology and
induced anisotropy of polymer solutions and melts with high degree of accuracy. In Section 1, the
equations of the model with dimensionless variables are presented that also account for the influence
of temperature and electromagnetic fields, which is impotrant for solving the problems of many applied
fields; in particular, the problems related to the development and improvement of technology of additive
manufacturing (3D printing) of polymer-based products.

The first natural step in studying the described model is to identify the characteristic regimes of the
stationary flow of polymers which are close in the qualitative features to the well-known Poiseuille flows
for the system of Navier–Stokes equations (see [4] and Section 2). In particular, these flow regimes occur
in the channels of printing devices at continuous supply of ink. Note that, for certain parameter values,
the model admits the multiplicity of stationary smooth solutions (see Section 3). As a rule, the channels
have circular or elliptical cross-section and include some internal heating elements. The statement of
the boundary value problems in the domains of this type is described in Section 4.
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SIMULATION OF THE STATIONARY NONISOTHERMAL MHD FLOWS 223

Identification of the parameters of the developed model and formulated problems rests upon the data of
the mechanical tests that involve up-to-date materials and devices used in additive technologies. These
data are obtained from a wide set of sources [5–15]; their consolidated table as well as a brief summary
are presented in the Appendix.

For numerical solution of the nonlinear boundary value problems with given parameters, the nonlocal
method without saturation is used [16, 17] with application of the Chebyshev and Fourier approxima-
tions. This method allows us to carry out calculations with rather low consumption of memory and
computer time and the error control in the problems with highly smooth solutions [18, 19]. The graphs
of numerical solutions and comments to them are given in Section 5 together with some discussion of
flow properties in dependence on the pressure gradient in the channel.

1. A MODIFIED POKROVSKII–VINOGRADOV MODEL
Following the monographs [1, 2, 4, 20–22] and articles [23, 24], we derive the equations of the

modified rheological Pokrovskii–Vinogradov model which describes nonisothermal magneto-
hydrodynamic (hereinafter MHD) flow of an incompressible viscoelastic polymeric fluid and takes
into account the heat dissipation. In dimensionless form in a rectangular Cartesian coordinate system
(x, y, z) these equations are as follows:

div u = 0, (1)

div H = 0, (2)

du
dt

+ ∇
(

P +
σm‖H2‖

2

)
=

1
Re

div (Y Π) + σm(H,∇)H + Ga(Y − 1)

⎛
⎜⎜⎜⎝

1

0

0

⎞
⎟⎟⎟⎠ , (3)

dH
dt

= (H,∇)u + bmΔx,y,zH, (4)

da11

dt
− 2A1ux − 2a12uy − 2a13uz + L11 = 0, (5)

da22

dt
− 2a12vx − 2A2vy − 2a23vz + L22 = 0, (6)

da33

dt
− 2a13wx − 2a23wy − 2A3wz + L33 = 0, (7)

da12

dt
+ wza12 − A1vx − A2uy − vza13 − uza23 + L12 = 0, (8)

da13

dt
− wya12 − A1wx − A3uz + vya13 − uya23 + L13 = 0, (9)

da23

dt
+ uxa23 − A2wy − A3vz − wxa12 − vxa13 + L23 = 0, (10)

dY

dt
=

1
Pr

(Δx,y,zY + AY Φ + AmΦm). (11)

Here t is time; u, v, and w are the components of the velocity vector u in the Cartesian coordinate
system x, y, and z; H = (L,M,N) is the vector of the magnetic field intensity; P is the pressure; aij ,
i, j = 1, 2, 3, are the components of the second rank symmetric anisotropy tensor Π; a1, a2, and a3 are
the columns of the symmetric matrix Π = (aij) = (a1,a2,a3); ‖ai‖2 = (ai,ai), i = 1, 2, 3;

div (Y Π) = (div (Y a1),div (Y a2),div (Y a3))�;

and Y = T/T0, T is the temperature, T0 = 293.15 K = 20◦ C is the environment temperature;

Lij =
(
KIaij + β(ai,aj)

)
/τ̄0(Y ), i, j = 1, 2, 3;

KI = W−1 + k̄/3 I, k̄ = k − β, I = (a11 + a22 + a33) is the first invariant of the anisotropy tensor Π,
Ai = aii + W−1, i = 1, 2, 3; k and β, 0 < β < 1, are the phenomenological parameters of the model
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that characterize the contributions related to anisotropy (β takes into account the orientation of the
macromolecular coil, while k stands for its size [1]);

τ̄0 =
J(Y )

Y
, J(Y ) = exp

(
− EA

Y − 1
Y

)
;

Re = ρuH l/η∗0 is the Reynolds number, ρ = const is the density of the medium; W = τ∗
0 uH/l is the

Weissenberg number; η∗0 and τ∗
0 are the initial values of the shear viscosity and the relaxation time at

T = T0 [1, 5]; Φ and Φm are the dissipative functions (see Remark 2); the Laplace operator Δx,y,z has
the form

Δx,y,z =
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
=

(
∂2

∂x2
+ Δy,z

)
;

Δx,y,zH = (Δx,y,zL,Δx,y,zM,Δx,y,zN)�;
d

dt
=

∂

∂t
+ (u,∇),

where for arbitrary vector-functions q = (q1, q2, q3) and s = (s1, s2, s3) the vector (q,∇)s has the form

(q,∇)s =
(

q1
∂s1

∂x
+ q2

∂s1

∂y
+ q3

∂s1

∂z
, q1

∂s2

∂x
+ q2

∂s2

∂y
+ q3

∂s2

∂z
, q1

∂s3

∂x
+ q2

∂s3

∂y
+ q3

∂s3

∂z

)�
;

Ga = Ra /Pr, EA = EA/T0; the Rayleigh number Ra, the Prandtl number Pr, and the activation
energy EA are described in [4]; A and Am are the dissipation coefficients of the heat equation (11);
σm = μ0H

2
0/

(
ρu2

H

)
is the magnetic pressure coefficient; bm = 1/Rem, Rem = σeμ0uH l is the magnetic

Reynolds number; μ0 is the magnetic permeability of vacuum; and σe is the electrical conductivity of the
medium.

System (1)–(11) is written in dimensionless form, where the time t, the coordinates x, y, and z, the
velocity vector components u, v, and w, the pressure P , the components of the vector of the magnetic
field intensity L, M , and N , and the components of the anisotropy tensor aij are normalized by l/uH , l,
uH , ρu2

H , H0, and W/3, respectively, where l is the characteristic length, uH is the characteristic velocity,
and H0 is the characteristic value of the magnetic field intensity.

It was possible to identify the most parameters of the above model using the results of mechanical
tests with certain polymer materials and 3D printing devices. These values with the links to sources and
comments are given in the Appendix.

Remark 1. Magnetohydrodynamic equations (1)–(11) are derived involving the system of Maxwell’s
equations [20, 21], whereas the magnetic induction vector B is taken in the form B = μ0H. In fact, the
more general formula holds [25, 26]:

B = μμ0H = (1 + χ)μ0H, (12)

where μ is the magnetic permeability χ is the magnetic susceptibility, and moreover

χ = χ0/Y, (13)

χ0 is the magnetic susceptibility at T = T0.

Remark 2. Following [27], we use the binary tensor operation “:” to specify the dissipative functions
Φ and Φm in (11):

Φ = Π : ∇u :=
3∑

i,j=1

aij
∂uj

∂xi
= a11

∂u1

∂x1
+

(
∂u1

∂x2
+

∂u2

∂x1

)
a12

+
(

∂u1

∂x3
+

∂u3

∂x1

)
a13 + a22

∂u2

∂x2
+

(
∂u2

∂x3
+

∂u3

∂x2

)
a23 + a33

∂u3

∂x3
, (14)
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Fig. 1. A channel with rectangular section.

Φm = σmΠm : ∇u := σm

3∑
i,j=1

LiLj
∂uj

∂xi
= σm

{
L2

1

∂u1

∂x1
+

(
∂u1

∂x2
+

∂u2

∂x1

)
L1L2

+
(

∂u1

∂x3
+

∂u3

∂x1

)
L1L3 + L2

2

∂u2

∂x2
+

(
∂u2

∂x3
+

∂u3

∂x2

)
L2L3 + L2

3

∂u3

∂x3

}
. (15)

Here u1(= u), u2(= v), u3(= w) and L1(= L), L2(= M), L3(= N) are the components of the velocity
vector u and the intensity vector H in the Cartesian coordinate system x1(= x), x2(= y), x3(= z); and
Πm = (LiLj) for i, j = 1, 2, 3.

Remark 3. According to [28, 29], (1)–(11) should be supplemented by boundary conditions for
the velocity vector components (no-slip condition on the channel wall) as well as for the temperature
and magnetic field components on the channel walls. Below we obtain the resolving equations for the
above variables in the channels with circular and elliptical cross-sections and internal heating elements.
We give a specific type of boundary conditions for each problem.

As in [28, 29], we look for a particular solution to the original system (1)–(11) of the following form:

v = w ≡ 0, u = û(y, z),

P = P̂ (x, y, z) = S(y, z) − Âx,

aij = âij(y, z), i, j = 1, 2, 3, Y = Ŷ (y, z).

(16)

Moreover, assume that M = N = 0 and L = L̂(y, z). Such a situation is realized when a channel is
wound with an electric wire or immersed into a coil.

Solution (16) corresponds to a stationary flow of a polymeric fluid in a channel with rectangular cross
section under the action of the constant pressure drop Δ̂P along the channel axis (see Fig. 1). Here

P̂x = −Â(= const) =
1

Re
{(Ŷ â12)y + (Ŷ â13)z} + Ga(Y − 1) + L̂L̂x, Â =

Δ̂P

ρu2
Hh

, L̂x = 0,

where −Δ̂P/
(
ρu2

H

)
is the dimensionless pressure drop on the segment h, while the dimensional quantity

is positive, Δ̂P > 0. To determine the functions û, S, âij , and Ŷ (see (16)) from (3)–(11), we arrive at
the following relations:

(Ŷ â12)y + (Ŷ â13)z = −D̂ = −Re[Â + Ga(Ŷ − 1)], (17)

Sy =
1

Re
[(Ŷ â22)y + (Ŷ â23)z ] − σmL̂L̂y, Sz =

1
Re

[(Ŷ â23)y + (Ŷ â33)z ] − σmL̂L̂z, (18)

Δy,zL̂ = 0, (19)
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KÎ â11 + β‖â1‖2 = 2τ̄0(Ŷ )(â12ûy + â13ûz), (20)

KÎ â22 + β‖â2‖2 = 0, KÎ â33 + β‖â3‖2 = 0, (21)

KÎ â12 + β(â1, â2) = τ̄0(Ŷ )(Â2ûy + â23ûz), (22)

KÎ â13 + β(â1, â3) = τ̄0(Ŷ )(Â3ûz + â23ûy), (23)

KÎ â23 + β(â2, â3) = 0, (24)

Δy,zŶ + AŶ Φ̂ = 0. (25)

Here KÎ = W−1 + k̄/3Î , Î = â11 + â22 + â33, Âi = W−1 + âii for i = 2, 3; and Φ̂ = ûyâ12 + ûzâ13.

Note that, by (15), in this formulation Φ̂m = 0.

Remark 4. In Fig. 1 we show the vector g = −ga(1, 0, 0)� , where ga is the gravitational acceleration
value that is used in the definition of the Rayleigh number Ra, whereas the corresponding vector is in the
last term of (3).

In what follows, we omit caps over variables which denote that we consider the class of solutions of
form (16).

2. DERIVATION OF THE RESOLVING SYSTEM OF EQUATIONS

In [28], the following relations are obtained for the components of the anisotropy tensor:

a12a23 − a13a22 = 0, a13a23 − a12a33 = 0, a2
23 − a22a33 = 0. (26)

Owing to (26), rewrite (22) and (23) as

K̃Ia12 = τ̄0(A2uy + a23uz), K̃Ia13 = τ̄0(A3uz + a23uy);

i.e.,

uy = KY a12, uz = KY a13. (27)

Here

K̃I = KI + βI, K =
WK̃I

J(1 + Wσ)
, σ = a22 + a33, I = a11 + σ.

From (24), taking (26) into account, we have

a23 = − βa12a13

KI + βσ
. (28)

Summing up the equations of (21) and taking (26) into account, we obtain

KIσ + β(σ2 + μ2) = 0, μ2 = a2
12 + a2

13. (29)

It follows from (28) and (29) that a23 = σa12a13/μ
2. Since a22a33 = a2

23 and a22 + a33 = σ, we find

a22 = σa2
12/μ

2, a33 = σa2
13/μ

2. (30)

Subtracting (29) from (20) and assuming that K̃I �= 0, we have

a11 = σ +
2Wμ2

1 + Wσ
, I = 2

(
σ +

Wμ2

1 + Wσ

)
. (31)

Finally, using (27) and the expressions for τ̄0, we arrive at the nonlinear equation to determine μ:

K̃(μ2)μ = Λ := τ̄0λ, (32)
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where

λ2 = u2
y + u2

z, K̃(μ2) = K(μ2)J =
WK̃I(μ2)

1 + Wσ(μ2)
.

Thus, to determine μ(Λ) from (32) we must firstly to find the solutions σ(μ2) of nonlinear equation (29).
Some study of these solutions is presented below, but first we formulate a boundary value problem with
respect to the flow velocity u in the channel with rectangular cross section (see Fig. 1).

In view of (27), it follows from (17) that

(Juy/K̃)y + (Juz/K̃)z = −D. (33)

Relation (32) determines μ = μ(Λ). Hence, rewriting (33) by analogy with [28], we formulate the
boundary value problem for u:

âuyy − 2b̂uyz + ĉuzz + d̂uy + êuz = −DK̃, u = 0 for (y, z) ∈ ∂Ω, (34)

where

â = 1 − u2
yL, ĉ = 1 − u2

zL, b̂ = uyuzL,

d̂ = (1 − Δ)
Yy

Y
− ΔEA

Yy

Y 2
, ê = (1 − Δ)

Yz

Y
− ΔEA

Yz

Y 2
,

L =
1 − Δ

λ2
, Δ =

Λ
μ

μΛ.

Differentiating (32) with respect to Λ, using (31) and the expressions for K̃, we find

μΛ =
1

K̃μμ + K̃
, K̃ =

1 + Wσ + 2W (k̄/3 + β)(σ(1 + Wσ) + Wμ2)
(1 + Wσ)2

,

K̃μ =
Wσμ

(1 + Wσ)2
[
2(k̄/3 + β) − 1

]
+

4W 2μ

(1 + Wσ)3
(k̄/3 + β)

[
Wσ − Wμσμ + 1

]
.

Here the function σ = σ(μ2) can have three branches (the specific expressions are given below).
Inserting the expressions of these branches into the expression for K̃, and the latter, in turn, into (32), we
can compose a cumbersome nonlinear equation for writing the function μ in terms of Λ. In the analytical
form, this equation cannot be solved. However, if the solution to the nonlinear equation (34) is sought
numerically by some iterative method then it is natural to use (32) for the expression μ[n] at the nth
iteration:

μ[n] =
τ̄0λ

K̃
(
(μ[n−1])2

) . (35)

Problem (34) should be supplemented by the boundary value problems for the temperature and
magnetic field. Taking into account (25)–(27), we obtain

Δy,zY + AY λμ = 0. (36)

The equation for L remains the same (see (19)). The boundary conditions for these equations will be
formulated in the next section.

After calculating the distributions u(y, z), Y (y, z), and L(y, z), from equations (27), (30), and (31)
together with a23 = σa12a13/μ

2, we find the distributions of the components of the anisotropy tensor Π;
and finally the pressure distribution is obtained using (18).
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3. ANALYSIS OF THE MULTIPLICITY OF THE SOLUTIONS OF PROBLEM (34)

We now come back to search for solutions σ(μ2) of (29) appearing in the formulas for K̃ and K̃μ. In-
serting the expressions for KI in (29) and taking σ = a22 + a33 into account, after some transformations
we arrive at the third degree equation

aσ3 + bσ2 + cσ + d = 0, σ �= −1/W, (37)

a = β̃W, b = β̃ + 1, c = W−1 + Wμ2β̃, d = βμ2, β̃ = 2k̄/3 + β.

Following the Cardano formulas for solution of a cubic equation, we introduce the notations

p =
3ac − b2

3a2
, q =

2b3 − 9abc + 27a2d

27a3
, Q = (p/3)3 + (q/2)2.

After transformations we have p = μ2 −A and q = Bμ2 + C, where

A =
1 − β̃ + β̃2

3β̃2W 2
, B =

3β − β̃ − 1
3Wβ̃

, C =
(1 + β̃)(β̃ − 2)(2β̃ − 1)

27W 3β̃3
.

In what follows, we will be interested only in the real roots of (37).
For Q > 0 we have the single real root

σ1 = 3

√
−q/2 +

√
Q + 3

√
−q/2 −

√
Q− b/3a;

for Q = 0; the two roots

σ1 = − 3
√

4q − b/3a, σ2 = 3
√

q/2 − b/3a;

and for Q < 0; the three real roots

σ1 = −2 cos α| 6
√

q2/4 −Q | − b/(3a); σ2,3 = −| 6
√

q2/4 −Q |(− cos α ±
√

3 sin α) − b/(3a),

α = arctan(2
√
−Q/q)/3.

Here and below, the absolute value signs are included to fulfill the condition of continuous dependence
of the roots of (37) on Q in the neighborhood of the point Q = 0.

In the first case, it is easy to calculate that

∂σ1

∂μ
= σ′

1 =
(Q′/

√
Q− q′)(

√
Q + q/2)2/3 − (Q′/

√
Q + q′)(

√
Q− q/2)2/3

6(Q− q2/4)2/3
.

In the third case,

∂σ1

∂μ
= σ′

1 =
−22/3

3
√
−Q|(q2 − 4Q)5/6|

(
(q sin α − 2

√
−Q cos α)Q′ + (q

√
−Q cos α − 2Q sin α)q′

)
.

Next,

∂σ2,3

∂μ
= σ′

2,3 =
−1

3 3
√

2
√
−Q|(q2 − 4Q)5/6|

(
± (

√
3 cos α ± sin α)(2Qq′ − qQ′)

+ (cos α ∓
√

3 sin α)(2Q′ − qq′)
√
−Q

)
,

where for σ2 we choose the upper sign from ± and ∓; while for σ3, the lower sign;

q′ =
∂q

∂μ
= −2μ

1 − 3β + β̃

3β̃W
,

Q′ =
∂Q
∂μ

=
μ

27β̃4W 4

{
27β2β̃2μ2W 2 + β̃

(
1 + β̃μ2W 2

)[
β̃(β̃(6μ2W 2 − 1) + 4) − 1

]

− β(1 + β̃)
[
β̃
(
2β̃(9μ2W 2 − 1) + 5

)
− 2

]}
.
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In order to determine which of the indicated three options is realized, we denote M = μ2 � 0 and
consider the function

Q(M) = 1/27M3 + (B2/4 −A/9)M2 + (A2/9 + BC/2)M + (C2/4 −A3/27).

The roots M1, M2, and M3 of equation Q(M) = 0 can also be determined using the Cardano formulas.
The number of real roots and their positions determine the domains of positive and negative Q, i.e., the
number of solutions to the original equation (37). Using the expression for the discriminant Δ̃ of the
equation Q(M) = 0, we can calculate how many real roots this equation has. Here

Δ̃ =
a1a2a3a

3
4

24312β̃12W 12
, a1 = β, a2 = 2k̄/3, a3 = β − 1, a4 = (1 + β̃)3 − 9β(1 + (β̃ − 1)β̃).

Remark 5. The inequality Δ̃ < 0 means that

M1 ∈ R, M2 = M3 ∈ C.

Hereinafter, it is used that M2M3 ∈ R and M2M3 � 0. The equality Δ̃ = 0 means that the roots
M1,M2,M3 ∈ R and two of these coincide. The inequality Δ̃ > 0 means that M1,M2,M3 ∈ R. Next,
for such Δ̃ we assume that M1 < M2 < M3.

We arrive at the following cases:

Case 1. Equation (37) has a unique solution at all points of Ω if (1) Δ̃ < 0 and M1 < 0 or (2) Δ̃ � 0
and M1 � M2 � M3 < 0.

Case 2. Equation (37) has a unique solution at those points of Ω, where μ is sufficiently small
(0 � μ2 < M2) or sufficiently large (μ2 > M3), and nonunique solution at all other points if Δ̃ � 0 and
M1 � 0 < M2 � M3.

Case 3. Equation (37) has different solutions at those points Ω where 0 � μ2 � M1 (μ is sufficiently
small) or M2 � μ2 � M3, and a unique solution at other points if (1) Δ̃ < 0 and M1 > 0 or (2) Δ̃ � 0
and 0 < M1 � M2 � M3.

Case 4. Equation (37) has different solutions at those points of Ω where μ is sufficiently small
(0 � μ2 � M3) and a unique solution at the remaining points if Δ̃ � 0 and M1 � M2 � 0 < M3.

Let us note first that Q(M) → ∞ as M → ∞. Secondly, due to no-slip conditions on the channel
walls, in the vicinity of the corners of the rectangular channel Ω, the velocity u, its derivatives, and, thus,
the values of λ are close to zero. The only physically correct solution to equation (32) for λ = 0 is μ = 0.
Thus, under the assumption of continuity of the components of the stress tensor, there are points in the
domain of the solution to the problem with the values μ =

√
a2

12 + a2
13 that are arbitrarily close to zero.

Taking into account the inequalities of Cases 1–4 and the Vieta formulas for the solutions of the third
degree equation, we arrive at the conditions for determining the right-hand side and the coefficients of
boundary value problem (34).

In what follows, the above-described numbering of Cases 1–4 for (37) is preserved, but now these
statements will be formulated for the right-hand side and coefficients of (34):

Case 1′. The right-hand side and coefficients of (34) are uniquely determined if (1) Δ̃ < 0 and
M1M2M3 = A3 − 27C2/4 < 0 or (2) Δ̃ � 0 and

M1 + M2 + M3 = 3A− 27B2/4 < 0,

M1M2 + M1M3 + M2M3 = 3A2 + 27BC/2 > 0, M1M2M3 = A3 − 27C2/4 < 0.

Case 2′. The right-hand side and coefficients of (34) are uniquely determined in the class of
continuous functions but can have infinitely many values in the class of discontinuous functions if Δ̃ � 0
and M1M2M3 = A3 − 27C2/4 � 0 and, in this case, either

M1 + M2 + M3 = 3A− 27B2/4 � 0,
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or

M1M2 + M1M3 + M2M3 = 3A2 + 27BC/2 < 0.

Let us comment on this case. If the values of λ at all points of Ω are so small that μ are in the
neighborhood of the zero solution of (32), μ2 < M2, then the right-hand side and coefficients of (34)
are uniquely determined by expression of σ1(μ2). Otherwise, there appear some points in the region Ω,
where each of σi(μ2), i = 1, 2, 3, can be used to determine the right-hand side and coefficients; and then
we have infinitely many variants to determine the coefficients and right-hand side of (34) in the class
of discontinuous functions (problem with a multivalued operator) and the only variant in the class of
continuous functions corresponding to the branch σ1(μ2).

Case 3′. The right-hand side and coefficients of (34) are not uniquely defined both in the class of
continuous and discontinuous functions if

M1M2M3 = A3 − 27C2/4 > 0

and, in this case, either Δ̃ < 0, or

M1 + M2 + M3 = 3A− 27B2/4 > 0, M1M2 + M1M3 + M2M3 = 3A2 + 27BC/2 > 0.

In this case, for sufficiently small λ there are the three different variants for setting the continuous
right-hand side and coefficients of (34) using the values of σi(μ2), i = 1, 2, 3. If at some point of Ω the
values of λ turn out to be greater than some threshold value λ∗ (this fact is related to the inequality
μ2 > M1); then the right-hand side and coefficients of (34) in the neighborhood of this point are uniquely
determined by σ1(μ2).

Owing to the fact that, in the domain Ω, there are always points with M arbitrarily close to 0, the set
of values of the differential operator of (34) has the cardinality of continuum.

Let us also note that, with the fixed temperature distribution Y (y, z), the value λ∗ corresponds to
some threshold value of the pressure gradient Â∗ above which the velocity gradients become large
enough; so that the solution μ of (32) is at sufficient distance from the zero solution of the same equation
for λ = 0; more precisely, at some distance greater than

√
M1. From this it is easy to conclude that,

for Â < Â∗, there are the three options in the class of continuous functions for obtaining the resolving
equation (34), whereas for Â > Â∗, there is the only option.

Case 4′. The right-hand side and the coefficients of equation (34) are determined nonuniquely in the
classes of continuous and discontinuous functions if

Δ̃ � 0, M1M2M3 = A3 − 27C2/4 � 0

and, in this case, either

M1 + M2 + M3 = 3A− 27B2/4 � 0,

or

M1M2 + M1M3 + M2M3 = 3A2 + 27BC/2 < 0.

This case is similar to the previous one with the exception that the fact of exceeding the threshold
value λ∗ is determined by the inequality μ2 > M3.

In the conclusion of studying the set of values of the operator of problem (34) we note that

M1M2M3 = A3 − 27C2

4
=

(β̃ − 1)2

4W 6β̃4
� 0.

This means that only the cases 3 or 4 are realized.

Remark 6. Note that the question of uniqueness of solutions of quasilinear elliptic equations is
difficult and can be solved only in some special cases. In this study, any rigorous analysis of the existence
and uniqueness of solutions to problem (34), (36), (19) when using σi(μ), i = 1, 2, 3, was not carried
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out. However, in numerical experiments while using σ1 and σ3, we succeeded in obtaining two different
approximate solutions (see Section 5.1). To understand which of these solutions is realized in practice
for the stationary flow of a polymeric fluid, the additional analysis of stability of each obtained solution is
needed and, moreover, in the original spatial statement.

Remark 7. For k̄ = 0, instead of (37) it is not difficult to obtain some quadratic equation for σ. The
roots of this equation can be easily found:

σ = ±
√

1 − q2 − 1/(2W̃ ), q2 = (2W̃μ)2 < 1, W̃ = βW.

In this case, the expression for K has the form

K = K̃/J, K̃ =
2β(ρ

√
1 − q2 + 1)

(ρ +
√

1 − q2)2
, ρ = 2β − 1, |ρ| < 1.

After cumbersome calculations in [28], it is obtained for the case of k̄ = 0:

Δ =
(1 − κ

2t̃2)(1 + t̃2)
Q

, Q = 1 − κ
2t̃4 − 6ρ

1 − ρ
t̃2 + 4Λ

t̃(1 − t̃2)
1 − ρ

,

where t̃ = g̃ ±
√

g̃2 − 1 and g̃ > 1; moreover,

g̃ =
1 +

√
1 + 4Λ2

2Λ
, Λ =

√
1 − ρ2WΛ, κ =

√
1 + ρ

1 − ρ
.

In this case,

σ = − (κt)2

βW (1 + (κt)2)
.

4. STATEMENT OF BOUNDARY VALUE PROBLEMS
IN CHANNELS WITH ELLIPTICAL AND CIRCULAR CROSS-SECTIONS

AND HEATING ELEMENTS

4.1. A Channel with Elliptical Cross-Section

Under consideration is the flow in a cylindrical channel Ω̃ with an elliptical cross-section and some
thin elliptical heating element with the same foci as for the outer boundary of the channel (Fig. 2,a).

It is assumed that the inner wall of the channel (inner ellipse) is made of a substance that is
a paramagnetic, for example, aluminum or tungsten, for which the magnetic susceptibility is χ0H > 0.
There is a winding on the surface of the inner ellipse so that there are n turns per unit length (1 m in SI).
In this case, a magnetic field appears inside the channel with a single nonzero component of the intensity
vector L (see (16)).

Let us write problem (34) in the elliptic coordinates α and γ:

y = δ cosh α sin γ, z = δ sinhα cos γ, (38)

where δ =
√

1 − r2
1 (2δ is the focal length), 0 � α < ∞, and 0 � γ � 2π. Owing to (38), we have

yα = −zγ = δ sinhα sin γ, zα = yγ = δ cosh α cos γ, yαα = −yγγ = y, yαγ = z. (39)

uy = Ruα + Quγ , uz = Quα − Ruγ . (40)

Here

R =
yα

y2
α + y2

γ

=
δ sinh α sin γ

g2
, Q =

yγ

y2
α + y2

γ

=
δ cosh α cos γ

g2
, g2 = δ2(sinh2 α + cos2 γ).

By (40), we obtain

λ2 = u2
y + u2

z =
1
g2

(
u2

α + u2
γ

)
. (41)
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Fig. 2. Cross-sections of an elliptical channel with a heating element (a) and a channel formed by
two cylinders with distance d between the axes (b).

Taking (40) into account, we successively infer

uyy = R2uαα + 2RQuαγ + Q2uγγ +
(
RRα + QRγ

)
uα +

(
RQα + QQγ

)
uγ ,

uzz = Q2uαα − 2RQuαγ + R2uγγ +
(
QQα − RQγ

)
uα +

(
RRγ − QRα

)
uγ ,

(42)

whereas

Rα = Qγ =
δ2y(cos2 γ − sinh2 α)

g4
, Rγ = −Qα =

δ2z(cosh2 α + sin2 γ)
g4

.

By analogy, we find

uyz = RQuαα + (Q2 − R2)uαγ − RQuγγ + (RQα + QQγ)uα − (RRα + QRγ)uγ . (43)

In view of (42) and (43), quasilinear equation (34) assumes the following form:

ãuαα − 2b̃uαγ + c̃uγγ + d̃uα + ẽuγ = DK̃, (44)

where

ã = âR2 + ĉQ2 − 2b̂RQ =
1
g2

− u2
α

g4
L, c̃ = âQ2 + ĉR2 + 2b̂RQ =

1
g2

−
u2

γ

g4
L,

b̃ = b̂(Q2 − R2) + RQ(ĉ − â) =
uαuγ

g4
L,

d̃ = (â − ĉ)(RRα + QRγ) − 2b̂(QRα − RRγ) + Rd̂ + Qê

=
L
g2

[(RγQ − RαR)(u2
α − u2

γ) − 2(RγR + RαQ)uαuγ ] +
(1 − Δ)Y − Δ

(Y g)2
Yα,

ẽ = (â − ĉ)(QRα − RRγ) + 2b̂(RRα + QRγ) + Qd̂ − Rê

=
L
g2

[(RγR + RαQ)(u2
α − u2

γ) + 2(RγQ − RαR)uαuγ ] +
(1 − Δ)Y − Δ

(Y g)2
Yγ ,

whereas

RγQ − RαR =
δ2

g4
sinh α cosh α, RγR + RαQ =

δ2

g4
sin γ cos γ.

Equation (44) must be supplemented by the heat equation (it is derived from (36) on the basis of the
change of coordinates (38) and formulas (39)–(41)):

Yαα + Yγγ +
(
Agμ

√
u2

α + u2
γ

)
Y = 0. (45)
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The equation for L takes the form

Lαα + Lγγ = 0. (46)

The domain of (44)–(46) is located between the confocal ellipses with small semiaxes r0 < r1

(see Fig. 2, a); therefore, α0 � α � α1 and, by (38),

α0,1 =
1
2

ln
(

1 + r0,1

1 − r0,1

)
.

Thus, we will look for solutions of equation (44)–(46) in the class of sufficiently smooth functions which
are 2π-periodic with respect to the variable γ and satisfy no-slip conditions for the velocity on the channel
walls

u = 0 for α = α0, α1 (47)

and inhomogeneous Dirichlet conditions for temperature and magnetic field

Y (α0, γ) = ψY
0 (γ), Y (α1, γ) = ψY

1 (γ), (48)

L(α0, γ) = ψL
0 (γ), L(α1, γ) = ψL

1 (γ). (49)

Here ψY,L
0,1 (γ) are the given temperature and magnetic field distributions on the inner and outer walls.

When the current IH is passed along the winding of the inner channel, we have in accordance with
[25, 26, 30] ψL

0 (γ) ≡ nIH/H0 (here H0 is the characteristic value of intensity for nondimensionalization).
Under the assumption that the channel is in an external magnetic field that is codirectional with the axis
of the channel and of intensity H0 = (L0(α, γ), 0, 0), while the outer wall of the channel has a small
thickness; we obtain ψL

1 (γ) = L0(α1, γ). Using the Curie Law (see [25, 26, 30, 31]) it is possible to
express the temperature on the inner wall through its magnetization m:

ψY
0 (γ) ≡ χH0nIH/m

(see Remark 1). The function ψY
1 (γ) is determined by the external temperature field. In our calculations,

ψY
1 (γ) ≡ T0/T0 = 1.

Note that for small values of r0 at the points α = r0, γ = π/2 and α = r0, γ = 3π/2 (points A
and B in Fig. 2, a) the function g in the denominators of the coefficients of (44) takes small values.
If we multiply (44) by g6 then we arrive at an equation with a small parameter g2 at the higher
derivatives. It means that, in the vicinity of these points, the solutions to this equation can have essential
singularities.

Remark 8. Note that, according to the reasoning in Section 3 and owing to the smoothness of the
boundary of the channel under study, the minimum values of λ and μ can be arbitrarily large, but they,
as before, are proportional to the pressure gradient. For small gradients, λ and μ are small; and so, in
the class of continuous functions there are the three possible options for writing equation (44), which
correspond to σ1, σ2, and σ3. As pressure increases (when points with positive and negative values
of Q appear in the region Ω), the only one option remains of writing (44) with continuous coefficients
and right-hand side but an infinite set of options in the class of discontinuous functions. With further
increase in the pressure gradient, the values of Q become positive throughout Ω; then there remains
a unique option of writing (44) both in the classes of smooth and discontinuous functions.

4.2. A Channel with Circular Cross-Section

Let us pose a problem concerning the polymeric fluid flow in a channel Ω̂ formed by two cylinders
of radii 0 < r0 < 1 and r1 = 1 with parallel axes spaced at distance d, 0 � d < 1 − r0. In Fig. 2 b, the
cross-section of the channel is shown. As in the above case, we assume that the inner wall of the channel
(in this case, the cylinder) is wrapped with some thin wiring with n turns per unit length that passes the
current of strength IH .
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In (34) we make the change to the bipolar coordinate system. Within the scope of this subsection, we
denote the bipolar coordinates by (α, γ) so that

y = δ0
sinhα

cosh α − cos γ
, z = δ0

sin γ

cosh α − cos γ
,

δ0 = 1 − r2
0/ν, ν =

√
d2

(
1 + r2

0

)
+ 2dω, ω =

√(
1 − r2

0

)2 + (dr0)2,

0 � α < ∞, 0 � γ � 2π.

(50)

After calculations, as in Section 4.1, for the temperature rate and the component L of the magnetic
field intensity, we obtain equations of the form (44)–(46) with the same expressions for the coefficients
ã–ẽ but with the following changes: δ should be replaced with δ0 and some items should be calculated
as follows:

yα = −zγ = δ0
1 − cos γ cosh α

(cos γ − cosh α)2
, yγ = zα = δ0

sin γ sinhα

(cos γ − cosh α)2
,

g =
δ0

(cos γ − cosh α)
, R =

1 − cos γ cosh α

δ0
, Q = −sin γ sinhα

δ0
,

Rα = Qγ = −cos γ sinhα

δ0
, Rγ = Qα =

sin γ cosh α

δ0
,

RγQ − RαR =
(cos γ − cosh α) sinh α

δ2
0

, RγR − RαQ =
(cosh α − cos γ) sin γ

δ2
0

.

The equations of the circles of radii r0 and 1 (see Fig. 2, b) in the bipolar coordinate system (50) have
the form

α = α0 = arctanh
(

dr2
0 + ω

1 − r2
0

)
, α = α1 = arctanh

(
d + ω

1 − r2
0

)
,

the coordinates of the centers of the circles in the bipolar system are y0 = coth α0 and y1 = coth α1.

As to the boundary conditions, it is also convenient to have expressions for the coordinates of points
of the indicated circles in the bipolar system (α, γ) through the polar coordinates (r, ϕ) with the pole at
(y0, 0) for the inner circle:

α(ϕ) = arctanh
(

2
(
1 − r2

0

)
(y0 + r0 cos ϕ)(

r2
0 + 2r0y0 cos ϕ + y2

0

)
ν +

(
1 − r2

0

)2
/ν

)
,

γ(ϕ) = arctan
(

2r0(1 − r2
0) sin ϕ(

r2
0 + 2r0y0 cos ϕ + y2

0)ν − (1 − r2
0)2/ν

)

and the pole at (y1, 0) for the outer circle:

α(ϕ) = arctanh
(

2(1 − r2
0)(y1 + cos ϕ)

(1 + 2y1 cos ϕ + y2
1)ν + (1 − r2

0)2/ν

)
,

γ(ϕ) = arctan
(

2(1 − r2
0) sin ϕ

(1 + 2y1 cos ϕ + y2
1)ν − (1 − r2

0)2/ν

)
.

The solutions of (44) in the problem concerning the flow between two cylinders belong to the class of
functions which are 2π-periodic in the variable γ and satisfy the Dirichlet conditions:

u(α0, γ) = u(α1, γ) = 0;

Y (α0, γ) = ψY
0 (γ) = ψY

0 (γ(ϕ)), Y (α1, γ) = ψY
1 (γ) = ψY

1 (γ(ϕ)),

L(α0, γ) = ψL
0 (γ) = ψL

0 (γ(ϕ)), L(α1, γ) = ψL
1 (γ) = ψL

1 (γ(ϕ)),
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Fig. 3. Distribution of the flow velocity u(y, z) (m/s) in an elliptical nozzle with a heating element at the
different values of the pressure gradient in the nozzle: Δ̂P = 0.7 atm (a), 2.8 (b), 4.8 (c), and 6.9 atm (d).

where ψY,L
0,1 (γ(ϕ)) are the given temperature and magnetic field distributions with respect to angular

coordinates ϕ on the outer and inner circles. They can be determined by analogy to those in Section 3.
It is easy that for small r0 the parameter α0 takes large values; therefore, in a neighborhood of the

circle α = α0 the values of the function g are small. Wherein there is a certain nonuniformity of this
expression with respect to γ. However, for d close to 0 and r0 close to 1, the values of g again turn out
close to 0 in the entire domain of the problem. As noted in Section 4.1, this circumstance can lead to
essential singularities of the solution of (44).

5. NUMERICAL SIMULATION OF POLYMERIC FLUID FLOWS
To solve boundary value problem (44)–(49) in Section 4.1, the nonlocal method without saturation

(hereinafter NMWS) is used which is implemented in Java as a computer software package [17]. In the
works indicated in the list of references, the reader can find a detailed description of this method [16],
estimates of the rate of convergence and the round-off error [18], results of tests of the method in
the problems with singularities, as well as numerical justification of the absence of saturation of the
method in solving nonlinear boundary value problems for equations of elliptic type [19]. As a result
of approximation of unknown functions in (44)–(46) by direct (tensor) product of an interpolation
polynomial with Chebyshev nodes with respect to the variable α and a trigonometric polynomial with
Dirichlet kernel in the variable γ, using the collocation method and the relaxation method that are
implemented within the framework of NMWS, we obtain the numerical solutions of the problem
(regarding the use of polynomials with the Dirichlet kernel in the framework of this algorithm, see [16]).

5.1. Flow in a Channel with Elliptical Cross-Section
Fig. 3 shows the distribution of the flow velocity of the polymeric fluid in a channel with elliptical

cross-section for various values of the pressure gradient Δ̂P in the channel with the parameters
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Fig. 4. Distribution of the fluid temperature T (y, z) (◦C) in an elliptical nozzle with a heating element
at the different values of the pressure gradient in the nozzle: Δ̂P = 0.7 atm (a), 2.8 (b), 4.8 (c), and
6.9 atm (d).

corresponding to the experimental data in [5–15] (see the Appendix; hereinafter, for convenience, the
pressure values are given in atmospheres (atm)).

According to the data from Tables 1 and 2 (see the Appendix), the following values of physical
parameters are used:

EA = 0.614, β = 0.1, k = 1.2β, W = 0.1, H0 = 1 A/m,

n = 22, IH = 22 A, m = 0.03 A/m, χH0 = 7.8 × 10−5

(we assume that the heating element is made of the paramagnet tungsten). The value of the following
dissipation coefficient A was not found in the literature; in the calculations, we put it equal to 3. The next
values of the geometric parameters were selected: r0 = 0.1 and r1 = 0.5. The degree of tensor product
of interpolation polynomials (the number of the spatial grid nodes) was also fixed and equal to 21 × 21.
Note that for given parameter values Δ̃ < 0; i.e. Case 3′ (see Section 3) is realized for the right-hand
side and the coefficients of (34), wherein M1 ≈ 1882.32. In Fig. 4, the temperature distribution is given
for the operation mode under consideration.

Note that the above values correspond to the solution σ1 of (37). However, the given values of
the pressure gradient are rather small, and there are two more options to write (44) with continuous
coefficients and the right-hand side (see Remark 8). Let us note, however, the interesting fact: For the
option of using σ2(μ2), we cannot find solutions (the relaxation method does not converge with the
variation of parameters of the numerical method in wide ranges), while with using σ3(μ2) it was possible
to find solutions. Cross-sections of the distributions of flow velocity and temperature corresponding to
the two branches σ1 and σ3 are given in Fig. 5 for the case of Δ̂P = 6.9 atm. It can be seen that the
maximum spread in the values of velocity and temperature for these two branches is large (solutions differ
by 5–7 times). In the original spatial statement, to determine a solution realized in practice, additional
analysis of the stability of each obtained solution is needed.
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Fig. 5. Section by the plane y = 0 of the distribution of the velocity u (m/s) (a) and the temperature
T (◦C) (b) which correspond to the two different solutions σ = σ1 and σ = σ3 of equation (37) with
Δ̂P = 6.9 atm.

Concluding the analysis of the multiplicity of solutions, we note that, for the flow mode under
consideration, the threshold pressure gradient value is Δ̂P

∗ ≈ 90 atm (see Remark 8). For Δ̂P < Δ̂P
∗
,

it is possible to find two solutions with high smoothness; while for Δ̂P
∗

< Δ̂P < Δ̂P
lim ≈ 248 atm only

one smooth solution can be found. With further increase of the pressure gradient, the relaxation method

ceases to converge. The indicated threshold and limit values of the gradient Δ̂P
lim

were obtained with
accuracy of 1 atm in numerical experiments.

5.2. Flow in a Channel with Circular Cross-Section

Applying NMWS, it was possible to find the approximate solutions to the equations describing
nonisothermal magnetohydrodynamic flows of a polymeric fluid between two cylinders (see Section 4.2
and boundary value problem (44)–(49)). By analogy with the reasoning given in Section 5.1, we use the
experimental data from Tables 1 and 2 (see the Appendix) and set the following values of the physical
parameters:

EA = 0.614, A = 0.5, β = 0.1, k = 1.2β, W = 0.1,

H0 = 1 A/m, n = 22, IH = 22 A, m = 0.03 A/m, χH0 = 7.8 × 10−5.

The values of the geometric parameters were selected as follows: r0 = 0.4 and d = 0.2. The degree of the
tensor product of interpolation polynomials was fixed and equal to 31 × 31. In Fig. 6 the values of the
flow velocity are shown for the considered modes.

APPENDIX

IDENTIFICATION OF PARAMETERS OF THE MODEL

We performed the analysis of the available literature sources containing data on the rheological and
thermomechanical properties of polymer solutions with different conductivity as well as data on the main
parameters of modern technologies of additive manufacturing the products from electrically conductive
polymer materials. Based on the obtained data, the values of the main parameters of the above-developed
model of the polymeric fluid flow are identified (see Tables 1 and 2).

The rheological properties of polymer solutions and melts include, first of all, the values of shear
viscosity and relaxation time, as well as their dependence on shear rates, temperature, and solution
concentration. The thermomechanical properties include thermal diffusivity, heat capacity, the coefficient
of thermal expansion, and the activation energy. Other properties of interest to researchers include
magnetic susceptibility, current-voltage characteristics, maximal charge density, and the electron
mobility.
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Fig. 6. The flow velocity u(y, z) (m/s) in a cylindrical nozzle with a heating element at the different values
of the pressure gradient: Δ̂P = 0.7 atm (a), 2.8 (b), 4.8 (c), and 6.9 atm (d).

For manufacturing electrically conductive devices, there are used polymer semiconductors such
as polyethylene glycol, polyacrylamide, etc., high conductivity polymer materials (the most common
is PEDOT:PSS) and polymer-based materials with the impurities of nanoparticles of electrically
conductive metals (typically, silver or gold nanoparticles).

In the literature sources, there is also information about the mechanical characteristics of printing
devices: the characteristic sizes of nozzles and drops of ink, the values of velocities and fluid flows
in the nozzle, maximum resolution in printing, pressure in nozzles, etc. The most common printing
technologies are piezoelectric and thermal inkjets.

All indicated data were used to identify the parameters of the above-developed model for calculating
the flows of PEDOT:PSS (see Tables 1 and 2). The values of the phenomenological parameters β and k̄
of the Pokrovskii–Vinogradov model were investigated in [1, 5]. It was found that for many linear
polymers β ∈ [0, 0.5], k̄ = β or k̄ = 1.2β.

For calculating the Reynolds, Weissenberg, Rayleigh, and Prandtl numbers for the PEDOT: PSS
solutions (see Table 3) the following formulas were used:

Re =
ρuH l

η∗0
, W =

τ∗
0 uH

l
, Ra =

gabΔT l3cP ρ2

η∗0cT
, Pr =

η∗0cP

cT
,

where ΔT = 200 K is the characteristic temperature difference between the walls and the liquid, ga =
9.81 m/s 2 is the gravity acceleration, and ρ = 1000 kg/m 3 is the fluid density. To calculate the relative
dimensionless pressure gradient Â (see (16)), it was assumed that the nozzle length is 100 times greater
than the characteristic section size l and h = 100 (see also Fig. 1).
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Table 1. Values of the parameters of model (1)–(11) for calculating a stationary flow
in the nozzle of a 3D printer

Parameter Notation Units Reference Range Value
in model in SI of values for calculations

Characteristic 0.04–1 m/s;
flow velocity uH m/s [6, 7] in particular cases 1 m/s

3–5 m/s

Characteristic length l micron [6] 0.1–250 micron 100 micron
(section size)

Characteristic 273–700 K
temperature T0 K [8] (sintering (20 ◦C)

temperature)

Characteristic Calculated
magnetic field H0 A/m — by the parameters 104 A/m

intensity of induction coils

Magnetic Permeability μ — [9] 1 + 2.5 × 10−4 1 + 3 × 10−4

(PEDOT:PSS) – 1 + 3.7 × 10−4

Solution Conductivity σe 1/(Om ·m) 800 − 3 × 104 104

PEDOT:PSS 1/(Om ·m) 1/(Om ·m)

Initial shear viscosity 1.3 × 10−3

values of conductive η∗
0 Pa · s [11, 12] –3 × 10−1 10−2 Pa · s

solution PEDOT:PSS Pa · s

Initial values
of relaxation time τ∗

0 s [7] 6 × 10−6 10−5 s
of conductive solution –1.2 × 10−4 s

PEDOT:PSS

Dimensionless EA — [13] 0.614–6.14 0.614
activation energy

Thermal conductivity
coefficient (for calculation cT W/(m ·K) [14] 0.3–0.37 0.37

of Pr and Ra numbers) W/(m ·K) W/(m ·K)

2000 (J/(kg·K)
Specific heat capacity (solid polymer)

(for calculation cP J/(kg ·K) [14] –4180 (J/(kg ·K) 4000
of Pr and Ra numbers) (aqueous solution J/(kg ·K)

of low concentration)

5 × 10−5K−1

Thermal expansion (solid polymer)
coefficient (for calculation b К−1 [15] — 6 × 10−4K−1 5 × 10−4K−1

of Ra number) (aqueous solution
of low concentration)
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Table 2. Continuation of Table 1

Parameter Notation Units Reference Range Value
in model in SI of values for calculations

Pressure gradient in the channel Δ̂P Pa [6, 8] 6.9 × 104 105 Pa
–6.9 × 105 Pa

Dimensionless gradient Â — [6, 8] 0.69–6.9 1
under condition that the nozzle length
is 100 times greater than the diameter

Characteristic of orientation β — [1, 5] 0–0.5 0.1
of the macromolecular coil

Characteristic of size k̄ — [1, 5] k̄ ∈ [β, 1.2β] k̄ = 1.2β

of the macromolecular coil

Table 3. Values of Reynolds, Weissenberg, Rayleigh, and Prandtl
numbers for aqueous solutions PEDOT:PSS

Parameter Notation Units Range Value
in the model in SI of values for calculations

Reynolds number Re — 10 10

Weissenberg number W — 0.06–1.2 0.1

Rayleigh number Ra — 1.06 1.06

Prandtl number Pr — 108.1 108.1

CONCLUSION

We propose the model that describes stationary nonisothermal MHD flows of an incompressible
viscoelastic polymeric fluid in the channels with rectangular, elliptical, and circular cross sections.

It is shown that the model allows multiple solutions and actually contains a multi-valued operator,
whose range of values consists of finitely many points and is surely not convex. The model parameters
are identified according to tests of the materials and devices used in the 3D printing.

We use the non-local algorithm without saturation to search for sufficiently smooth solutions to the
problems posed and analyze their multiplicity.

Two different solutions were found for the flow regime under consideration. To determine which of
these solutions is realized in practice, some additional analysis of their stability is needed.
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